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Abstract
The versatility of the existing A-optimal-based CNN for solving multiple types of signals classification problems has not

been verified by different signals datasets. Moreover, the existing A-optimal-based CNN uses a simplified approximate

function as the optimization objective function instead of precise analytical function, which affects the signals classifi-

cation accuracy to a certain extent. In this paper, a classification method called IA-optimal CNN is proposed. To improve

the stability of the classifier, the trace of the covariance matrix of the weights of the fully connected layer is used as the

optimization objective function, and the parameter optimization model is established without any simplification of the

optimization objective function. In addition, to avoid the difficulty of not being able to obtain the analytical expression

formula of the partial derivative of the inverse matrix with regard to the networks parameters, a novel dual function is

introduced to transform the optimization problem into an equivalent binary function optimization problem. Furthermore,

based on the above analytical solution results, the parameters are updated using the alternate iterative optimization method

and the accurate weight update formula is deduced in detail. Five signals datasets are used to test the universality of the IA-

optimal CNN in signals classification fields. The performance of IA-optimal CNN is showed, and the experimental results

are compared with the existing A-optimal-based classification algorithm. Lastly, the following conclusion is proved

theoretically: For the A-optimal-based CNN, the trace of the covariance matrix will continue to decrease and approach a

convergence value in the iterative process, but it is impossible for the networks to strictly reach the A-optimal state.

Keywords A-optimal � Convolutional neural networks � Signals classification � Alternate iterative optimization �
Dual function

1 Introduction

The classification and recognition of signals data can mine

the hidden information in the signals, thereby providing the

application basis for various fields. For example,

mechanical equipment will vibrate due to the operation of

parts when working. The equipment vibration signals under

negative conditions and the signals under normal operating

conditions often have different characteristics. Therefore,

vibration signals analysis for power equipment can distin-

guish different operating conditions of equipment, thereby

helping people to diagnose faults and find the cause [1–14].

Different types of sound signals are closely related to the

characteristics of different space or objects. The sound

quality classification assessment of public places is an

important technical background of noise control technol-

ogy study. In the field of medical applications, in addition

to diagnosing heart diseases with the help of electrocar-

diogram, the acoustic signals of different heart sounds also

reflect the health of the heart. The sound signals of human

speaking can be used for voice recognition, which is an

important research topic in the field of human–computer

interaction [15–21]. The human brain is composed of a

large number of neurons, and EEG (Electroencephalogram)
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is the electrical signals generated by the activities between

these neurons. Relevant research and experiments have

proved that there is a specific connection between the EEG

potential and the type of brain thinking tasks or the external

stimuli received. Moreover, the EEG characteristics caused

by different brain thinking tasks and external stimuli are

also different. Based on above research, brain-computer

interface (BCI) technology can be used to identify the

thinking intention of the subject by analyzing EEG. Then,

this intention can be converted into instruction signals, and

mechanical equipment can help people complete a series of

tasks by identifying the instruction signals [22–33].

The purpose of signal classification is to identify the real

category of signals with unknown labels. Traditional sig-

nals classification methods based on feature extraction can

be divided into two steps: (1) Classifier training based on

training dataset: The signals features of the training dataset

will be extracted, and the extracted feature parameters will

be input to the initial classifier. The classifier will contin-

uously optimize the parameters according to the error

between the classification results and the actual labels, so

that the classifier will converge and reach a certain clas-

sification accuracy standard; (2) Signals classification

based on testing dataset: The signals features of the testing

dataset will be extracted, and the extracted feature

parameters will be input to the trained classifier. The

classifier will recognize the signals according to the input

characteristic parameters. The above classification process

is shown in Fig. 1.

Both above two steps need to perform feature extraction

from the training dataset and the testing dataset. Feature

extraction is a preprocessing of the data. For the signals

classification problem, the raw data are a vector composed

of many vibration amplitudes or electric potential ampli-

tudes. The raw signals without any processing have long

data length and large data scale, so it cannot show clear

signals characteristics. Therefore, the raw data are gener-

ally not directly input to the classifier. Researchers often

first extract some feature parameters that can reflect the

characteristics of the signals, and then input these feature

parameters into the classifier. The classifier will recognize

the type of signals based on the different feature parame-

ters. For example, the peak-to-peak represents the differ-

ence between the maximum value and minimum value of

the signals, which reflects the fluctuation range of the

signals. The kurtosis of the signals measures the steepness

of the signals waveform. The kurtosis of the waveform

which is similar to the normal distribution function is

approximately equal to 3, and the kurtosis of a smoother

signals is generally less than 3. The RMS (Root Mean

Square) of the signals is used to measure the amount of

energy contained in the signals.

However, an inconvenience of the traditional method is

that there are many features that can be extracted from the

signals, such as peak, peak to peak, RMS, kurtosis, skew-

ness, impulse factor, et al. [33–37]. In different application

scenarios, the types and quantities of extracted signals

features need to be selected based on historical experience.

Therefore, for classification problems without prior

knowledge, people do not know in advance which features

are helpful for signals classification. At this time, it is

necessary to manually complete a large number of feature

extractions, and the different signals feature combinations

will be input into the classifier to test the usability of this

combination. Finally, the available feature combinations

will be selected according to the discrimination accuracy of

the classifier, which greatly increases labor costs and time

costs.

Compared with traditional classification methods, CNN

(Convolutional Neural Networks) not only has excellent

classification and prediction capabilities, but also can

automatically extract signals features by special operations

such as convolution and pooling. In this way, it is no longer

necessary to test the availability of different feature

parameters one by one, which greatly reduces the cost of

labor and time. CNN first completes the feature extraction

of the input data by convolution and pooling operations.

Then, it uses the fully connected layer to complete the data

classification. When the output results deviate from the real

situation, the networks parameters will be continuously
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Fig. 1 Traditional feature extraction-based signals classification

method process
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updated to make the networks converges adaptively and

finally approach the correct classification conclusion.

Therefore, since the advent of CNN, people have begun to

carry out CNN-based application research in many fields

such as Internet behavior detection, image recognition, and

signals classification [38–40]. Currently, the world is fac-

ing the risk of a Covid-19 pandemic. CNN has even been

applied to the diagnosis of Covid-19, showing the strong

vitality and adaptability of CNN in solving new problems

in new fields [41].

A strategy of the CNN training is that the networks

parameters are constantly updated according to the value of

loss function. However, due to the different characteristics

of different training datasets, networks parameters often be

too sensitive to training samples. In particular, the weight

of the fully connected layer is likely to have huge differ-

ences due to the changes of input dataset. The general

existing CNN parameter training models are usually focus

on the value of loss function. In this case, the classifier

parameters of the fully connected layer will be highly

sensitive to samples. However, an excellent classifier

should be stable when different training datasets are input

to the algorithm [51]. For a classifier optimization model,

in the most ideal case, the stability of the networks under

various training sample conditions can be maintained when

the loss function value is as small as possible.

A-optimal method is a parameter optimization method

to improve the stability of the classifier [42–46]. The

optimization goal of the A-optimal method is the trace of

the covariance matrix of the classification model parame-

ters. The diagonal elements of the covariance matrix of the

classifier weights are the variances of the weights. So, the

trace of the covariance matrix of the weights is the sum of

the weight variances. The variance of the weight measures

the dispersion of the weight. The smaller the sum of the

weight variances, the smaller the overall volatility of the

weights, and the higher the stability of the classifier

parameters. He et al. proposed an image classification

algorithm based on A-optimal subspace learning [47],

which optimizes the parameters by minimizing the trace of

the covariance matrix of the classifier parameters, thereby

improving the stability of the classifier. Liu et al. proposed

the A-optimal NMF model to train the classifier for image

recognition. This method introduces nonnegative matrix

factorization and uses the A-optimal method to update the

parameters of the linear classifier [48]; Li et al. [49] and

Yang et al. [50], respectively, introduce the neighborhood

regularization and hessian regularization to improve the

classification recognition algorithm based on A-optimal. In

order to solve the problem that the existing A-optimal

classification method can only deal with single-instance

and linearly separable problems, Yin introduced the

A-optimal method to CNN for the first time to solve the

multi-instance classification question. Moreover, compared

with existing A-optimal classification methods, the A-op-

timal-based CNN method is stable for multi-instance

learning and has the higher classification accuracy [51].

In the method proposed by Yin, the trace of the

covariance matrix of the weight of the fully connected

layer is used as the optimization objective function, and the

gradient calculation of objective function with regard to the

classifier parameters is based on the above objective

function [51]. In this part, Yin simplified the formula of the

trace of the covariance matrix and replaced the original

optimization objective function with the simplified for-

mula. Therefore, the calculation of the gradient is not based

on the precise optimization objective function but on an

approximate function, which may affect the final accuracy

of the model. In addition, Yin’s literature uses only one

signals dataset to test the performance of different algo-

rithm, but the conclusions based on a single type of sample

dataset may not be comprehensive and accurate. Finally,

Yin introduced the A-optimal method to CNN and gave the

implementation steps of the A-optimal CNN method, but

did not discuss whether the A-optimal-based CNN can

finally reach the A-optimal state when the algorithm

training ends.

This paper proposes an Improved A-optimal CNN

method. Hereinafter, the ‘‘Improved A-optimal CNN’’

proposed in this paper will be referred to as ‘‘IA-optimal

CNN’’ for short. In the following, the IA-optimal CNN

architecture including the convolutional layer, the pooling

layer, the activation layer, and the fully connected layer

will be introduced, and its data processing to complete the

multi-instance classification will be described. Thereafter,

to maintain the stability of networks under the condition

that the loss function value is as small as possible, the trace

of the covariance matrix of the weight of the fully con-

nected layer is used as the optimization goal and the goal of

networks parameter update is to minimize the value of the

trace. In this part, the calculation expression formula of the

trace of the covariance matrix will not be simplified in any

way, and the precise optimization objective function is

used to derive the weight update formula in detail to

eliminate the possible classification error caused by the

simplified objective function. To avoid the problem that it

is difficult to give an analytical solution to the partial

derivative of the inverse matrix with regard to convolution

kernel, a novel binary dual function is introduced and the

optimization of the trace is transformed into an optimiza-

tion problem. Then, the alternate iterative optimization

method is adopted as the weight update strategy. In addi-

tion, different types of activation functions are test their

ability to express nonlinear characteristics of signals. To

test the algorithm performance and the universality in more

signals classification fields, five signals datasets are used as
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samples datasets. The algorithm result is compared with

existing A-optimal classification algorithms. Finally, the

following question is discussed: In the iterative process of

the A-optimal-based CNN algorithm, whether the networks

can finally reach the optimal A-optimal state.

The main improvements of the model proposed in this

paper and the corresponding work focus are shown in

Fig. 2.

2 IA-optimal CNN method

The proposed IA-optimal CNN method will be introduced

in detail in this chapter, which includes three parts: (1)

Architecture of IA-optimal CNN: In this section, the

architecture of IA-optimal CNN will be showed. IA-opti-

mal CNN includes the input layer, the convolutional layer,

the activation layer, the pooling layer, the fully connected

layer, and the output layer. The data processing and cal-

culation rules of different layer will be introduced,

respectively; (2) Optimization goal: In this section, the

trace of the covariance matrix of the weight of the fully

connected layer will be used as the optimization goal to

train network parameters. To ensure the mathematical rigor

of the algorithm, the subsequent formulas will be derived

based on the precise optimization objective function

without simplification. In addition, a novel dual function is

introduced as the optimization strategy to avoid calculation

difficulties during the formula derivation, which provide a

theoretical basis for network parameter training; (3)

Training strategy: In this section, based on the conclusions

of the previous section, the original optimization problem

is transformed into a binary matrix function optimization

problem. The alternating iteration method is used to train

the network parameters, and the algorithm steps for

parameter updating are explained.

2.1 Architecture of IA-optimal CNN

The IA-optimal CNN includes the input layer, the convo-

lutional layer, the activation layer, the pooling layer, the

fully connected layer, and the output layer. The networks is

oriented to multi-instance learning and recognition. The

input of the networks is a dataset including a number of

signals (bag), and the output of the networks is a sequence

of classification results of the input signals dataset. In a

bag, if the classification result of any instance (a sub-se-

quence signals) is positive, the classification result of this

bag is positive; if the classification result of all the

instances is negative, the classification result of this bag is

negative. The architecture of IA-optimal CNN is shown in

Fig. 2.

Input Layer: The input layer is used to accept input

signals. Suppose that the dataset input to the networks

to avoid the difficulty of obtaining the analytical 
expression formula of the partial derivative of the 
inverse matrix with regard to the networks 
parameters.

f u n c t i o n  t o  express nonlinear characteristics  o f 
signals

Discussion: Can the A-optimal-based CNN finally 
converge strictly to the A-optimal state?

Input Layer

Convolution Layer

Pooling Layer

Fully-Connected 
Layer

Output Layer

Activation Layer

N etworks parameters a r e  t r a i n e d  based on t h e 
simplified formula of the trace of the covariance 
matrix of the fully-connected layer weight

Using cube function 
to express nonlinear characteristics of signals

Proposed IA-optimal CNN A-optimal CNN

Dataset to test algorithm performance
Five different types of signals datasets

Dataset to test algorithm performance
One signals datasets

Fig. 2 The main improvements of the model proposed in this paper and the corresponding work focus
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contains n signals whose sampling points are all D, and

each signals Si is regarded as a bag. Each signals will be

divided into l equal parts by a sliding window, each sub-

sequence signals is an instance, and the number of sam-

pling points in each instance is d. Then, the j-th subse-

quence signals of the i-th sample signals can be denoted as

xij. For the convenience of subsequent calculations, the l

sub-sequences are combined by column into a matrix, then

each matrix Xi can represent a bag, denoted as

Xi ¼ ½xi1 xi2 � � � xil� 2 Rd�l, i ¼ 1; 2; � � � n.

Convolution Layer: The convolution layer performs

convolution operations on the input data. The output of

convolution layer is a feature map. Suppose that the con-

volutional layer contains m convolution kernels, and each

convolution kernel wk is a column vector, denoted as

wk 2 Rd�1, k ¼ 1; 2; � � �m. For the convenience of subse-

quent calculations, the m convolution kernels are combined

by column into a matrix, then the kernels of the convolu-

tion layer can be expressed as a convolution kernel matrix,

denoted as W ¼ ½w1 w2 � � �wm� 2 Rd�m. After the convo-

lution kernels of m channels are, respectively, convolved

with Xi, the m feature row vectors ci 2 R1�l ði ¼ 1; 2; � � � nÞ
will be obtained. The above row vectors are combined by

row into a matrix, then the output of Xi after the convo-

lution operation can be expressed as an matrix Ci, denoted

as:

Ci ¼

c1

c2

..

.

cm

2
666664

3
777775
¼

wT
1 xi1 wT

1 xi2 � � � wT
1 xil

wT
2 xi1 wT

2 xi2 � � � wT
2 xi1

� � � � � � � � � � � �
wT
mxi1 wT

mxi2 � � � wT
mxil

2
664

3
775 ¼ WTXi

ð1Þ

Activation Layer: An activation function rð�Þ is used to

process the matrix Ci so that the networks can express

nonlinear characteristics of the signals. After using the

activation function rð�Þ for each element in the matrix Ci,

the output of the activation layer is obtained, denoted as

Di ¼ rðCiÞ 2 Rm�l.

Pooling Layer: The pooling layer performs down-sam-

pling operations on the feature maps output by the con-

volutional layer to obtain feature vectors that can be used

for classification and discrimination. The pooling size is

1 � l, the row stride is 1, and the maximum pooling is

selected as the pooling method. A column feature vector zi
of size m� 1 can be obtained:

zi ¼

max
j
frðc1Þg

max
j
frðc2Þg

..

.

max
j
frðcmÞg

2
66666664

3
77777775
¼

max
j
frðw1xijÞg

max
j
frðw2xijÞg

..

.

max
j
frðwmxijÞg

2
66666664

3
77777775

ð2Þ

Input n sample signals (n bags) in a batch, and then n

column feature vectors zi can be obtained. The above

vectors are combined by column into a matrix, the output

of n sample signals through the pooling layer can be

expressed as an output matrix Z ¼ z1; z2; � � � zn½ � 2 Rm�n.

Fully Connected Layer: The fully connected layer

reduces the dimensionality of the output vector of the

pooling layer and initially completes the signals classifi-

cation. The classification of each input sample Si is a binary

discrimination, and the output is a Boolean scalar bi. The

calculation method of the output bi of the fully connected

layer is bi ¼ xTzi, x is the fully connected layer weight.

‘bi = 1’ means ‘the sample Si is judged as positive’, and

‘bi = 0’ means ‘the sample Si is judged as negative.’ In

different questions, the meaning of positive or negative is

different.

Output Layer: The real category label of sample Si is yi.

‘yi = 1’ means ‘sample Si is a positive signals’ and ‘yi = 0’

means ‘sample Si is a negative signals.’ Then, the loss

function for evaluating the classification accuracy of sam-

ple Si is:

errorðSiÞ ¼ ðyi � xTziÞ2 ð3Þ

If n samples (n bags) are input in a batch, the classifi-

cation label of each sample can be obtained. The n Boolean

scalars are combined into a row vector b, the total loss

function is:

errorðSÞ ¼
Xn
i¼1

ðyi � xTziÞ2¼
Xn
i¼1

ðyi � biÞ2 ð4Þ

In order to avoid the over-fitting, an L2 regularization

term is added to the total loss function to limit the weight.

Finally, the loss function used in the IA-optimal CNN

method is:

lossðSÞ ¼
Xn
i¼1

ðyi � xTziÞ2 þ a xk k2
2

¼ y� xTZ
�� ��2

2
þa xk k2

2 ð5Þ

where, �k k2 is the 2-norm, a is the L2 regularization

coefficient, and y ¼ ðy1; y2; � � � ynÞ is the label row vector of

n samples.

IA-optimal CNN needs to be continuously trained to

minimize the total loss function value of n samples input in

a batch, so the algorithm parameters need to be
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continuously updated. Ideally, we hope to directly obtain

the weight x0 that minimizes loss(S):

x0 ¼ arg
x

min lossðSÞ ¼ y� xTZ
�� ��2

2
þa xk k2

2

n o
ð6Þ

It should be noted that although the architecture of the

networks, the form of the loss function, and the selection of

the regularization method can be changed, these changes

may make it difficult to obtain the analytical expression of

the partial derivative of the optimization objective function

with regard to the networks’ parameter in the subsequent

derivation process. The analytical expression formula of

the partial derivative is necessary to achieve A-optimal

state, so the networks design has its unique characteristics.

2.2 Optimization goal

In order to continuously update the weight x0 of the fully

connected layer and the convolution kernel matrix W, it is

necessary to derive the mathematical relationship between

loss(S), W and x0. In this section, the weight x0 will be

derived when loss(S) takes the minimum value. According

to the A-optimal criterion, the optimization goal of the

convolution kernel matrix W is to take the minimum value

of the trace of the weight covariance matrix Tr(cov(x0)). In

addition, a novel dual function is introduced to transform

this optimization problem into a problem of finding the

minimum value of a binary function. This approach will

provide important support for the gradient calculation in

Sect. 2.3.

2.2.1 Optimization goal: trace of the covariance matrix
of the weight

The loss function can be written as follows:

lossðSÞ ¼ y� xTZ
�� ��2

2
þa xk k2

2

¼ ðy� xTZÞðy� xTZÞT þ axTx

¼yyT � 2xTZyT þ xTZZTxþaxTx

ð7Þ

In order to obtain the weight x0 when loss(S) takes the

minimum value, the derivative of loss(S) with regard to x
is set to 0.

oðlossðSÞÞ
ox

¼ �2ZyT þ 2ZZTxþ2ax ¼ 0 ð8Þ

The analytical expression of x0 is

x0 ¼ ðZZT þ aIÞ�1ZyT ð9Þ

For a certain sample set {S}, y is an invariant, so only Z

in formula (9) is a variable. Z is a function of the convo-

lution kernel matrix W, so x0 is also a function of the

convolution kernel matrix W.

The trace of the covariance matrix of the weight x0 can

be written as follows:

covðx0Þ ¼ cov ðZZT þ aIÞ�1ZyT
� �

¼ðZZT þ aIÞ�1ZcovðyTÞZTðZZT þ aIÞ�1

¼r2ðZZT þ aIÞ�1ZZTðZZT þ aIÞ�1

¼r2ðZZT þ aIÞ�1ðZZT þ aI � aIÞðZZT þ aIÞ�1

¼r2 ðZZT þ aIÞ�1 � aðZZT þ aIÞ�2
h i

ð10Þ

where r2I ¼ covðyTÞ.
In the literature [51] published by Yin, in order to

simplify the calculation, the above formula (10) is sim-

plified, and the following conclusions are used:

covðx0Þ¼r2ðZZT þ aIÞ�1 ð11Þ

Moreover, Yin took function (11) as the optimization

objective function to complete the subsequent formula

derivation. This approach reduces the complexity of for-

mula calculation to a certain extent, but may have a certain

impact on the rigor of the conclusion.

In order to ensure the accuracy, this article does not

simplify the formula, but complete the subsequent formula

derivation based on the expression formula (10). Therefore,

the trace of the covariance matrix of the weight x0 is:

Tr covðx0Þð Þ ¼ r2Tr ðZZT þ aIÞ�1 � aðZZT þ aIÞ�2
� �

ð12Þ

In the process of networks training, we hope to find the

convolution kernel matrix W that minimizes Tr(cov(x0)):

W0 ¼ arg
W

min Tr covðx0Þð Þf g ð13Þ

In the following section, the detailed steps to find W0

and the formula derivation process will be given.

2.2.2 Optimization strategy: dual function

Since r2 is a constant value, so the following conclusion is

established:

W0 ¼ arg
W

min QðZÞ ¼ Tr ðZZT þ aIÞ�1 � aðZZT þ aIÞ�2
� �n o

ð14Þ

In order to find the convolution kernel matrix W0 that

minimizes Tr(cov(x0)), a novel dual function Hðu; ZÞ is

introduced, and the expression is as follows:

Hðu; ZÞ ¼ Tr �uðZZT þ aIÞ2uT þ 2ZTuT
� �

ð15Þ

Theorem QðZÞ is the minimum value of the dual function

Hðu; ZÞ with regard to the matrix u 2 Rn�m
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QðZÞ ¼ min
u2Rn�m

Hðu; ZÞ ¼ Tr �uðZZT þ aIÞ2uT þ 2ZTuT
� �n o

ð16Þ

Proof In order to obtain the weight matrix u0 2 Rn�m

when Hðu; ZÞ takes the minimum value, the derivative of

Hðu; ZÞ with regard to u is set to 0.

oHðu; ZÞ
ou

¼� 2uðZZT þ aIÞ2 þ 2ZT ¼ 0 ð17Þ

The analytical expression of u0 is:

u0 ¼ ZTðZZT þ aIÞ�2 ð18Þ

Substitute u0 into Hðu; ZÞ, the minimum value of

Hðu; ZÞ can be calculated as follows:

Hðu0; ZÞ ¼ Tr �u0ðZZT þ aIÞ2uT
0 þ 2ZTuT

0

� �

¼ Tr �ZTðZZT þ aIÞ�2Z þ 2ZTðZZT þ aIÞ�2Z
� �

¼ Tr ðZZT þ aIÞ�2ZZT
� �

¼ Tr ðZZT þ aIÞ�2ðZZT þ aI � aIÞ
� �

¼ Tr ðZZT þ aIÞ�1 � aðZZT þ aIÞ�2
� �

¼ QðZÞ
ð19Þ

Thus, QðZÞ is the minimum value of the dual function

Hðu; ZÞ with regard to the matrix u 2 Rn�m. The opti-

mization problem can be equivalently converted to the

following problem:

W0 ¼ arg
W2Rd�m

min min
u2Rn�m

Hðu; ZÞ
� �

¼ arg
W2Rd�m

min min
u2Rn�m

Tr �uðZZT þ aIÞ2uT þ 2ZTuT
� �� �

ð20Þ

The optimization problem can be regarded as the opti-

mization of a binary matrix function.

W0;u0 ¼ arg min
W2Rd�m;u2Rn�m

Hðu; ZÞf g

¼ arg min
W2Rd�m;u2Rn�m

Tr �uðZZT þ aIÞ2uT þ 2ZTuT
� �n o

ð21Þ

The significance of this step is that the inverse matrix

ðZZT þ aIÞ�1
is included in the analytical solution of

Tr(cov(x0)). In order to calculate oTr covðx0Þð Þ=owk to

obtain the update strategy, the derivative of ðZZT þ aIÞ�1

with regard to wk must be calculated. Due to the existence

of the inverse matrix, it is very difficult to directly obtain

the analytical solution of oTr covðx0Þð Þ=owk. Therefore,

the problem of finding the minimum value of Tr(cov(x0))

needs to be transformed into the problem of finding the

minimum value of its dual function Hðu; ZÞ. By doing so,

the inconvenience of obtaining the derivative of the inverse

matrix can be avoided.

Based on the conclusions of this section, the training

process of the IA-optimal CNN method will be given in the

next section, including the update strategy of the networks

parameter and the detailed derivation process.

3 Training strategy

In this section, based on the dual function and its properties

introduced in the previous section, the analytical formula

of the gradient of the Hðu; ZÞ with regard to the convo-

lution kernel wk will be derived, the minimum value of

Hðu; ZÞ will be found by the alternate iteration method,

and the detailed steps of parameter updating based on the

gradient descent method will be given.

3.1 Alternate iterative optimization

CNN can continuously adjust the networks parameters

according to the loss function value during the training

process, so the loss function value of CNN will contin-

uously decrease and gradually converge. The commonly

used gradient descent method is to make the networks

parameters change in the direction of the gradient.

Therefore, the IA-optimal CNN method also uses the

gradient descent method to complete the parameter

updating.

According to Sect. 2.2.1, the analytical expression of the

weight x0 when loss(S) takes the minimum value is

x0 ¼ ðZZT þ aIÞ�1ZyT . In the iterative process, the weight

of the fully connected layer can be updated according to

this formula. The weight x0 is a function of the convolu-

tion kernel matrix W, so the next round of convolution

kernel matrix W can be adjusted according to the x0. The

optimization goal of W is to make Tr(cov(x0)) as small as

possible.

According to Sect. 2.2.2, the problem of finding the

minimum value of Tr(cov(x0)) has been transformed into

the problem of finding the minimum value of Hðu; ZÞ.
Hðu; ZÞ is a binary matrix function, so the alternate iter-

ation method is used for optimization in parameter update.

The main steps are as follows:

1. After the end of the t-th iteration, calculate loss(S) and

update the weight xtþ1 of the fully connected layer

according to formula (9);

2. Keep the convolution kernel matrix Wt unchanged, and

update utþ1 according to formula (18);
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3. Keep utþ1 unchanged and update wk according to the

gradient descent method:

wkðt þ 1Þ ¼ wkðtÞ � b
oHðutþ1; ZÞ

owkðtÞ
ð22Þ

where, b is the learning rate coefficient, and Wt?1 can be

updated by combining all the wkðt þ 1Þ. In the next section,

the calculation process of the partial derivative of the dual

function with regard to the convolution kernel wk will be

showed.

3.2 Derivative of the dual function with regard
to the convolution kernel

The Hðu; ZÞ can be written as follows:

Hðu; ZÞ ¼ Tr �uðZZT þ aIÞ2uT þ 2ZTuT
� �

¼Tr �uZZTZZTuT � 2auZZTuT � a2uuT þ 2ZTuT
� �

¼Tr �ZZTZZTuTu� 2aZZTuTu� a2uuT þ 2ZTuT
� �

¼� TrðZZTZZTuTuÞ � 2aTrðZZTuTuÞ
� a2TrðuuTÞ þ 2TrðZTuTÞ

ð23Þ

In order to facilitate writing, the following provisions

are made:

Trð1Þ,TrðZZTZZTuTuÞ
Trð2Þ,TrðZZTuTuÞ
Trð3Þ,TrðZTuTÞ

8><
>:

ð24Þ

Then, formula (23) can be rewritten as:

Hðu; ZÞ ¼ �Trð1Þ � 2aTrð2Þ þ 2Trð3Þ � a2TrðuuTÞ
ð25Þ

In the following, oTrð1Þ=owk, oTrð2Þ=owk and

oTrð3Þ=owk will be calculated, respectively.

First of all, the analytic formulas of the elements of the

matrices Z, ZZT and ZZTZZT need to calculate. The ele-

ments of matrix Z can be written directly:

Zðk; iÞ ¼ max
n

j¼1
frðwT

k xijÞg,rðwT
k xidki Þ

dki ¼ arg
j

maxfrðwT
k xijÞg

8><
>:

ð26Þ

where, Z(k,i) represents the element in the k-th row and

i-th column of the matrix Z, and other matrix elements are

expressed in the same way in the following.

According to (26), the expressions of the row vector of

the k-th row of the matrix Z and the column vector of the

k’-th column of the matrix ZT can be obtained:

Zðk; :Þ ¼ rðwT
k x1dk1

Þ rðwT
k x2dk2

Þ � � � rðwT
k xndknÞ

h i

ZTð:; k0Þ ¼ rðwT
k0x1dk

0
1
Þ rðwT

k0x2dk
0

2
Þ � � � rðwT

k0xndk0n
Þ

h iT

8><
>:

ð27Þ

The analytic formula for the elements in the k-th row

and k’-th column of matrix ZZT can be given:

ZZTðk; k0Þ ¼ Zðk; :Þ � ZTð:; k0Þ ¼
Xn
i¼1

rðwT
k xidki Þrðw

T
k0xidk0i

Þ

ð28Þ

the expressions of the row vector of the k-th row and the

column vector of the ḱ-th column of the matrix ZZT can be

obtained:

ZZTðk; :Þ ¼
Pn
i¼1

rðwT
k xidki Þrðw

T
1 xid1

i
Þ � � �

Pn
i¼1

rðwT
k xidki Þrðw

T
mxidmi Þ

	 


ZZTð:; k0Þ ¼
Pn
i¼1

rðwT
k0xidk0i

ÞrðwT
1 xid1

i
Þ � � �

Pn
i¼1

rðwT
k0xidk0i

ÞrðwT
mxidmi Þ

	 
T

8>>><
>>>:

ð29Þ

Based on (29), the analytic formula for the elements in

the k-th row and ḱ-th column of matrix ZZTZZT can be

given:

ZZTZZTðk; k0Þ ¼
Xm
j¼1

Xn
i¼1

rðwT
k xidki Þrðw

T
j xid j

i
Þ

" # Xn
i¼1

rðwT
k0xidk0i

ÞrðwT
j xid j

i
Þ

" #

ð30Þ

So, the analytical expressions of Tr(1), Tr(2), and Tr(3)

can be written as following:

Trð1Þ ¼ TrðZZTZZTuTuÞ
¼ Tr ðZZTZZTÞðuTuÞ

� �

¼
Xm
k¼1

Xm
k0¼1

ZZTZZTðk; k0Þ�uTuðk0; kÞ

¼
Xm
k¼1

Xm
k0¼1

Xm
j¼1

Xn
i¼1

rðwT
k xidki Þrðw

T
j xid j

i
Þ

" # Xn
i¼1

rðwT
k0xidk0i

ÞrðwT
j xid j

i
Þ

" #( )

� uTuðk0; kÞ

ð31Þ

Trð2Þ ¼ TrðZZTuTuÞ
¼Tr ðZZTÞðuTuÞ

� �

¼
Xm
k¼1

Xm
k0¼1

ZZTðk; k0Þ�uTuðk0; kÞ

¼
Xm
k¼1

Xm
k0¼1

Xn
i¼1

rðwT
k xidki Þrðw

T
k0xidk0i

Þ
" #

� uTuðk0; kÞ

ð32Þ
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Trð3Þ ¼ TrðZTuTÞ
¼TrðZuÞ

¼
Xm
k¼1

Xn
i¼1

Zðk; iÞ�uði; kÞ

¼
Xm
k¼1

Xn
i¼1

rðwT
k xidki Þ�uði; kÞ

ð33Þ

In order to calculate the derivative of (31)–(33) with

regard to wk, write the terms containing wk and the terms

not containing wk separately:

Trð1Þ ¼
X
k0 6¼k

X
k00 6¼k

X
j 6¼k

Xn
i¼1

rðwT
k0xidk0i

ÞrðwT
j xid j

i
Þ

" # Xn
i¼1

rðwT
k00xidk00i

ÞrðwT
j xid j

i
Þ

" #( )

�uTuðk00; k0Þ

þ
X
k0 6¼k

X
k00 6¼k

Xn
i¼1

rðwT
k0xidk0i

ÞrðwT
k xidki Þ

" # Xn
i¼1

rðwT
k00xidk00i

ÞrðwT
k xidki Þ

" #( )
� uTuðk00; k0Þ

þ
X
k0 6¼k

X
j 6¼k

Xn
i¼1

rðwT
k0xidk0i

ÞrðwT
j xid j

i
Þ

" # Xn
i¼1

rðwT
k xidki

ÞrðwT
j xid j

i
Þ

" #( )
� uTuðk; k0Þ

þ
X
k00 6¼k

X
j 6¼k

Xn
i¼1

rðwT
k xidki Þrðw

T
j xid j

i
Þ

" # Xn
i¼1

rðwT
k00xidk00i

ÞrðwT
j xid j

i
Þ

" #( )
� uTuðk00; kÞ

þ
X
k0 6¼k

Xn
i¼1

rðwT
k0xidk0i

ÞrðwT
k xidki Þ

" # Xn
i¼1

rðwT
k xidki Þrðw

T
k xidki Þ

" #( )
� uTuðk; k0Þ

þ
X
k00 6¼k

Xn
i¼1

rðwT
k xidki Þrðw

T
k xidki Þ

" # Xn
i¼1

rðwT
k00xidk00i

ÞrðwT
k xidki Þ

" #( )
� uTuðk00; kÞ

þ
X
j 6¼k

Xn
i¼1

rðwT
k xidki

ÞrðwT
j xid j

i
Þ

" # Xn
i¼1

rðwT
k xidki

ÞrðwT
j xid j

i
Þ

" #( )
� uTuðk; kÞ

þ
Xn
i¼1

rðwT
k xidki Þrðw

T
k xidki Þ

" #2

�uTuðk; kÞ

ð34Þ

Trð2Þ ¼
X
k0 6¼k

X
k00 6¼k

Xn
i¼1

rðwT
k0xidk0i

ÞrðwT
k00xidk00i

Þ
" #

� uTuðk00; k0Þ

þ
X
k0 6¼k

Xn
i¼1

rðwT
k0xidk0i

ÞrðwT
k xidki

Þ
" #

� uTuðk; k0Þ

þ
X
k00 6¼k

Xn
i¼1

rðwT
k xidki

ÞrðwT
k00xidk00i

Þ
" #

� uTuðk00; kÞ

þ
Xn
i¼1

rðwT
k xidki Þ

2

" #
� uTuðk; kÞ

ð35Þ

Trð3Þ ¼
X
k0 6¼k

Xn
i¼1

rðwT
k0xidk0i

Þ�uði; k0Þ þ
Xn
i¼1

rðwT
k xidki Þ�uði; kÞ

ð36Þ

According to the above conclusion, the partial derivative

of the dual function Hðu; ZÞ with regard to wk can be

obtained. For the convenience of writing, the analytical

formulas of oTrð1Þ=owk, oTrð2Þ=owk, and oTrð3Þ=owk will

be derived, respectively:

oTrð1Þ
owk

¼
X
k0 6¼k

X
k00 6¼k

Xn
i¼1

rðwT
k0xidk0i

Þ
orðwT

k xidki Þ
owk

" # Xn
i¼1

rðwT
k00xidk00i

ÞrðwT
k xidki Þ

" #( )

�uTuðk00; k0Þ

þ
X
k0 6¼k

X
k00 6¼k

Xn
i¼1

rðwT
k0xidk0i

ÞrðwT
k xidki Þ

" # Xn
i¼1

rðwT
k00xidk00i

Þ
orðwT

k xidki Þ
owk

" #( )

�uTuðk00; k0Þ

þ
X
k0 6¼k

X
j 6¼k

Xn
i¼1

rðwT
k0xidk0i

ÞrðwT
j xid j

i
Þ

" # Xn
i¼1

orðwT
k xidki

Þ
owk

rðwT
j xid j

i
Þ

" #( )

�uTuðk; k0Þ

þ
X
k00 6¼k

X
j6¼k

Xn
i¼1

orðwT
k xidki Þ

owk
rðwT

j xid j
i
Þ

" # Xn
i¼1

rðwT
k00xidk00i

ÞrðwT
j xid j

i
Þ

" #( )

�uTuðk00; kÞ

þ
X
k0 6¼k

Xn
i¼1

rðwT
k0xidk0i

Þ
orðwT

k xidki Þ
owk

" # Xn
i¼1

rðwT
k xidki Þrðw

T
k xidki Þ

" #( )
� uTuðk; k0Þ

þ
X
k0 6¼k

Xn
i¼1

rðwT
k0xidk0i

ÞrðwT
k xidki

Þ
" #

2
Xn
i¼1

rðwT
k xidki

Þ
orðwT

k xidki Þ
owk

" #( )
� uTuðk; k0Þ

þ
X
k00 6¼k

2
Xn
i¼1

rðwT
k xidki Þ

orðwT
k xidki

Þ
owk

" # Xn
i¼1

rðwT
k00xidk00i

ÞrðwT
k xidki Þ

" #( )
� uTuðk00; kÞ

þ
X
k00 6¼k

Xn
i¼1

rðwT
k xidki Þrðw

T
k xidki Þ

" # Xn
i¼1

rðwT
k00xidk00i

Þ
orðwT

k xidki Þ
owk

" #( )
� uTuðk00; kÞ

þ
X
j 6¼k

Xn
i¼1

orðwT
k xidki Þ

owk
rðwT

j xid j
i
Þ

" # Xn
i¼1

rðwT
k xidki Þrðw

T
j xid j

i
Þ

" #( )
� uTuðk; kÞ

þ
X
j 6¼k

Xn
i¼1

rðwT
k xidki

ÞrðwT
j xid j

i
Þ

" # Xn
i¼1

orðwT
k xidki Þ

owk
rðwT

j xid j
i
Þ

" #( )
� uTuðk; kÞ

þ 4
Xn
i¼1

rðwT
k xidki Þrðw

T
k xidki Þ

" #
�

Xn
i¼1

rðwT
k xidki Þ

orðwT
k xidki

Þ
owk

" #
� uTuðk; kÞ

ð37Þ

oTrð2Þ
owk

¼
X
k0 6¼k

Xn
i¼1

rðwT
k0xidk0i

Þ
orðwT

k xidki Þ
owk

" #
� uTuðk; k0Þ

þ
X
k00 6¼k

Xn
i¼1

orðwT
k xidki Þ

owk
rðwT

k00xidk00i
Þ

" #
� uTuðk00; kÞ

þ 2
Xn
i¼1

rðwT
k xidki Þ

orðwT
k xidki

Þ
owk

" #
� uTuðk; kÞ

ð38Þ

oTrð3Þ
owk

¼
Xn
i¼1

orðwT
k xidki Þ

owk
�uði; kÞ ð39Þ

The partial derivative of the dual function Hðu; ZÞ with

regard to wk can be written as:

oHðu; ZÞ
owk

¼ � oTrð1Þ
owk

� 2a
oTrð2Þ
owk

þ 2
oTrð3Þ
owk

ð40Þ

Substitute (37) * (39) into (40), the analytical expres-

sion of oHðu; ZÞ=owk can be obtained. Substitute

oHðu; ZÞ=owk into (22), the update formula of the con-

volution kernel can be obtained.
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3.3 Algorithm steps for updating

In Sect. 2.3.1 and 2.3.2, the optimization goal of networks

parameter and calculation process of parameter updating is

studied. Summarize the training process of IA-optimal

CNN as follows: Initialize the networks structure and

networks parameters. Input the training dataset and output

the classification result. If the number of iterations p is less

than the upper limit P, the convolution kernel matrix and

weight will be, respectively, updated according to the

parameter update strategy proposed in Sect. 2.3.2; other-

wise, the algorithm ends and the final convolution kernel

matrix and weight are output.

Based on this, the training process of IA-optimal CNN

can be written as follows:

The output convolution kernel matrix W and weight x
can be used as the final parameters of IA-optimal CNN, and

the trained networks can be used to classify the signals

from the testing dataset.

4 Experiments

In this chapter, experiments are carried out with different

types of signals data to test the classification ability of the

IA-optimal CNN. The classification results are showed, and

the algorithm performance are compared with the existing

A-optimal-based classification algorithm.

4.1 Experimental data

In order to verify the ability of IA-optimal CNN on clas-

sifying different types of signals data, this article uses five

datasets: P300 EEG signals dataset, bearing fault signals

dataset, English spoken digit signals dataset, arrhythmia

signals dataset, gearbox signals dataset. The above five

datasets cover a wide range of engineering application

fields, and the signals generation mechanisms are diverse,

which can be used to test the classification universality of

the different method for different signals datasets.

P300 EEG signals is an evoked EEG signals, which is

generated when the human brain is stimulated by a small

probability event. The EEG data are collected by the

character matrix flashing experiment. During the experi-

ment, a character matrix is displayed on the computer

screen, and a ‘‘target character’’ is displayed at the same

time to let the subjects pay attention to this character. Then,

each row or column of the character matrix flashes in a

random order. When the row or column contains the target

character is flashed, the P300 potential will appear in the

EEG signals. The experimental dataset contains 20 chan-

nels of collected data from the subjects. The IA-optimal

CNN method will recognize the input EEG signals sample

and determine whether it contains P300 [22]. The bearing

failure signals of mechanical equipment are collected by

the sensors installed on the bearing failure test stand, and

the sampling frequency is 12 kHz. In order to distinguish

the fault signals from the normal signals, the dataset also

contains the normal bearing signals waveform at the same

sampling frequency. The selected fault type is that outer

ring fault magnitude is 0.021 mil, and the fault location is 6

o’clock. The IA-optimal CNN method will be used to

recognize the input signals samples and determine whether

the signals are a fault signals and then determine whether

the bearing has this type of fault [5]. The English spoken

digit dataset consists of the audio of 6 speakers, each of

whom repeats different digits 50 times, and the speakers all

use English pronunciation when speaking. In this experi-

ment, digital 1 audio data are used, and all audio will be

converted into acoustic signals, and then input into the

networks for signals classification. The IA-optimal CNN

method will recognize the input acoustic signals samples

and determine whether the signals is the audio signals of

the target digit [52]. The arrhythmia signals dataset con-

tains 48 dual-channel Holter signals records, and each

record contains the ECG waveform signals with a duration

of more than 30 min and expert diagnosis results. The

records came from 47 subjects in the arrhythmia labora-

tory. The IA-optimal CNN method will use the dataset to

distinguish between normal beat signals and arrhythmia

signals [53]. The gearbox signals dataset collects signals

data under different working conditions based on drivetrain

dynamic simulator. The gearbox is driven by a motor, and

the experiment is carried out on a simulated failure test

bench. The rotating speed-system load is set to be 20 Hz–

0 V. The IA-optimal CNN method will distinguish the

signals under normal operating conditions and the fault
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signals under the damage conditions that the gear miss one

of feet [54].

The computer brand used for calculation is DELL, and

the processor model is Intel(R)Core(TM)i5-8250U CPU@

1.60 GHz 1.80 GHz. The experiment uses cross-validation.

Each rotation takes 80% of the sample set as training

samples dataset and the remaining 20% as testing samples

dataset. The final metrics is the average of all test results.

L2 regularization coefficient a = 0.02, learning rate

b = 10–4, maximum number of iterations P = 1000.

4.2 Performance comparison

The performance comparison section is divided into two

parts: In the first part, the performance difference of the IA-

optimal CNN method using different activation functions

will be compared, and the method with the best perfor-

mance will be selected as the object for subsequent com-

parison with other algorithms; In the second part, the IA-

optimal CNN will be compared with the existing A-opti-

mal-based classification algorithm to show the perfor-

mance difference.

4.2.1 Performance comparison of IA-optimal CNN using
different activation functions

Based on the same dataset, the accuracy of the IA-optimal

CNN using six different activation functions will be com-

pared with each other. The six activation functions are

Sigmoid function, Tanh function, ReLu function, Leaky-

ReLu function, ELU function, and Cube function used by

Yin [51]. The activation functions rð�Þ and the corre-

sponding partial derivative orðwT
k xidki

Þ=owk can be calcu-

lated by the following formula [55, 56]:

r1ðxÞ ¼ SigmoidðxÞ ¼ 1

1 þ expð�xÞ
or1ðwT

k xidki
Þ

owk
¼ 1 � r1ðwT

k xidki Þ
� �

� r1ðwT
k xidki Þ � xidki

8>>><
>>>:

ð41Þ

r2ðxÞ ¼ tanhðxÞ ¼ expðxÞ � expð�xÞ
expðxÞ þ expð�xÞ

or2ðwT
k xidki

Þ
owk

¼ 1 � r2
2ðwT

k xidki Þ
� �

� xidki

8>>><
>>>:

ð42Þ

r3ðxÞ ¼ ReLuðxÞ ¼
0ðx\0Þ

xðx� 0Þ

(

or3ðwT
k xidki Þ

owk
¼

0ðwT
k xidki

\0Þ

xidki ðw
T
k xidki � 0Þ

8<
:

8>>>>>><
>>>>>>:

ð43Þ

r4ðxÞ ¼ Leaky ReLuðxÞ ¼
cxðx\0Þ

xðx� 0Þ

(

or4ðwT
k xidki Þ

owk
¼

cxidki ðw
T
k xidki \0Þ

xidki ðw
T
k xidki � 0Þ

8<
:

8>>>>>><
>>>>>>:

ð44Þ

r5ðxÞ ¼ ELUðxÞ ¼
e � ðe�x � 1Þðx\0Þ

xðx� 0Þ

(

or5ðwT
k xidki Þ

owk
¼

�e � expð�wT
k xidki Þ � xidki ðw

T
k xidki \0Þ

xidki ðw
T
k xidki � 0Þ

8<
:

8>>>>>><
>>>>>>:

ð45Þ

r6ðxÞ ¼ CubeðxÞ ¼ x3

or6ðwT
k xidki Þ

owk
¼ 3ðwT

k xidki
Þ2 � xidki

8><
>:

ð46Þ

The accuracy comparison results are shown in the fol-

lowing table:

According to the results in the table, the following

conclusions can be obtained: (1) When using IA-optimal

CNN for signals recognition, arrange the recognition

accuracy in descending order, the rank is as follows:

arrhythmia signals, English spoken digit signals, bearing

failure signals, gearbox signals, P300 signals; (2)When

classifying P300 signals, arrhythmia signals and bearing

failure signals, the networks using sigmoid activation

function have the highest accuracy. When classifying

English spoken digit signals and gearbox signals, the net-

works using tanh activation function have the highest

accuracy; (3) When using ReLu or Leaky-ReLu activation

functions for classification and recognition, the accuracy

rate is generally low. The possible reason is that the ability

to extract nonlinear features of the signals is insufficient

when ReLu or Leaky-ReLu is used as activation functions

based on the IA-optimal CNN structure.

4.2.2 Performance comparison of different A-optimal-
based classification algorithms

In this section, the algorithm performance of IA-optimal

CNN will be compared with five existing A-optimal-based

classification method. Algorithms used for comparison are

A-optimal subspace learning method proposed by He [36],

the nonnegative matrix factorization method proposed by

Liu [37], the method based on neighborhood regularization

proposed by Li [38], the method based on Hessian energy

Regularization proposed by Yang [50], and the A-optimal

CNN method proposed by Yin [51]. The five metrics to

evaluate networks performance are accuracy, precision,

recall, G-score, and F1-score. The above metrics can be

calculated using following equations:
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Accuracy ¼ TPþ TN

TPþ FPþ FN þ TN
ð47Þ

Precision ¼ TP

TPþ FP
ð48Þ

Recall ¼ TP

TPþ FN
ð49Þ

G� score ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Precision � Recall

p
ð50Þ

F1 � score ¼ 2
Precision � Recall

Precision þ Recall
ð51Þ

where, ‘TP’’ means ‘Ture-Positive’, ‘TN’’ means ‘Ture-

Negative’, ‘FP’’ means ‘False-Positive’, ‘FN’’ means

‘False-Negative’. The experimental results are shown in

the following table:

In order to more intuitively show the performance dif-

ference between the algorithms, the above data are drawn

into the following picture:

According to the results in Tables 2–6 and Figs. 3–7, the

following conclusions can be obtained: (1) The five metrics

of IA-optimal CNN are superior to other A-optimal clas-

sification algorithms. The five metrics measure the per-

formance of different classification methods from different

aspects to ensure that the evaluation metric system is as

comprehensive as possible. It can be seen that IA-optimal

CNN has advantages in all metrics and shows stronger

recognition capabilities; (2) IA-optimal CNN has the best

classification performance on all signals datasets, which

proves that IA-optimal CNN algorithm has good versatility

for a variety of signals classification problems. The five

different signals datasets used in this paper involve dif-

ferent application fields, and the generation mechanism of

signals are also different. Among the existing classification

algorithms based on A-optimal, using five types of datasets,

IA-optimal CNN ranks first in all the classification metrics,

which can show the universality of IA-optimal CNN; (3)

From Table 2–6, it can be found that if the datasets are

arranged according to the classification accuracy of IA-

optimal CNN from largest to smallest, the order is:

arrhythmia signals dataset, English spoken digit signals

dataset, bearing failure signals dataset, gearbox signals

dataset, P300 EEG signals dataset. The accuracy rankings

of other A-optimal-based classification algorithms are

roughly the same. This sort can show the difficulty degree

of distinguishing different types of signals in different

datasets. The quality of the data in the arrhythmia signals

dataset and the English spoken digit signals dataset are

relatively better. For most classification algorithms, dif-

ferent types of signals in these two datasets are easier to

distinguish. The signals in the bearing failure signals

dataset and gearbox signals dataset are more complex and

are easily interfered by noise in the engineering environ-

ment, so the classification accuracy is relatively low.

Compared with the signals in other datasets, the signals

characteristics of P300 EEG are the least obvious, and the

classification accuracy is generally the lowest; (4) The

performances of the two A-optimal-based CNN methods

are better than the other four methods. Both IA-optimal

CNN and A-optimal CNN introduce the A-optimal crite-

rion into the CNN framework. The convolutional layer and

the pooling layer further enhance the nonlinear expression

ability of the network, which can better extract the non-

linear features of the signals; 5) The performance of the IA-

optimal CNN proposed in this paper is better than that of

A-optimal CNN. Compared with A-optimal CNN, the IA-

optimal CNN uses an optimized objective function that has

not been simplified to improve the accuracy. In addition,

A-optimal CNN uses the cube function as the activation

function, while IA-optimal CNN uses the Sigmoid function

and Tanh function as the activation functions, so that the

network can approximate higher-order nonlinear features;

6) In other A-optimal classification algorithms, the per-

formance of algorithms that introduced regularization

improvement methods has generally been improved to a

certain extent.

The accuracy box plots of different algorithms using

different datasets are as follows:

According to the results in the above figures, the fol-

lowing conclusions can be obtained: The accuracy of the

IA-optimal CNN recognition method is generally high. In

addition, the accuracy distribution of IA-optimal CNN is

relatively more stable and the degree of dispersion is low.

5 Discussion: can the A-optimal-based CNN
finally converge strictly to the A-optimal
state?

In the above, the IA-optimal CNN framework is given, the

update strategy of the networks is studied in detail, and the

performance of algorithms is compared with different

methods based on different types of datasets.

In the IA-optimal CNN method, the alternate iterative

optimization method is used to update the convolution

kernel matrix W. The convolution kernel matrix is con-

tinuously updated along the gradient direction, so that

Tr(cov(x)) continues to decrease until it converges. In this

case, the new problem will arise: Can this method make the

trained networks reach a strict A-optimal state? Can

Tr(cov(x)) converge to its theoretical minimum in the end?

According to Sect. 2.2.1, when oðlossðSÞÞ=ox ¼ 0, the

expression of x0 is x0 ¼ ðZZT þ aIÞ�1ZyT . In this for-

mula, only Z is a variable. Set B ¼ ðZZT þ aIÞ�1
, then

formula (12) can be written as:

Tr covðxÞð Þ ¼ r2 TrðBÞ � aTrðB2Þ
� �

ð52Þ
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In order to obtain the matrix B when Tr(cov(x)) takes

the minimum value, the derivative of Tr(cov(x)) with

regard to B is set to 0:

oTr covðxÞð Þ
oB

¼ r2ðI � 2aBTÞ ¼ 0 ð53Þ

The analytical expression of B0 2 Rm�m is:

B0 ¼ 1

2a
I ð54Þ

The matrix Z0Z
T
0 2 Rm�m when Tr(cov(x)) takes the

minimum value can be calculated:

Z0Z
T
0 ¼

a 0 � � � 0

0 a � � � 0

..

. ..
. . .

.
0

0 0 0 a

2
664

3
775 ð55Þ

Table 2 Algorithm performance

comparison/P300 EEG signals
Method Accuracy Precision Recall G- score F1-score

A-optimal subspace learning [49:He] 0.661 0.515 0.634 0.571 0.568

nonnegative matrix factorization [50:Liu] 0.685 0.535 0.628 0.580 0.578

neighborhood regularization [51:Li] 0.703 0.549 0.649 0.597 0.595

Hessian energy Regularization [52:Yang] 0.673 0.524 0.618 0.569 0.567

A-optimal CNN [53:Yin] 0.741 0.563 0.692 0.624 0.621

IA-optimal CNN 0.778 0.587 0.720 0.650 0.647

Table 3 Algorithm performance

comparison / bearing failure

signals

Method Accuracy Precision Recall G-score F1-score

A-optimal subspace learning [49:He] 0.701 0.489 0.665 0.570 0.564

nonnegative matrix factorization [50:Liu] 0.796 0.627 0.748 0.685 0.682

neighborhood regularization [51:Li] 0.753 0.525 0.750 0.628 0.618

Hessian energy Regularization [52:Yang] 0.724 0.506 0.769 0.624 0.610

A-optimal CNN [53:Yin] 0.827 0.703 0.846 0.771 0.768

IA-optimal CNN 0.851 0.789 0.871 0.829 0.828

Table 4 Algorithm performance

comparison/English spoken

digit signals

Method Accuracy Precision Recall G-score F1-score

A-optimal subspace learning [49:He] 0.711 0.571 0.703 0.634 0.630

nonnegative matrix factorization [50:Liu] 0.778 0.594 0.725 0.656 0.653

neighborhood regularization [51:Li] 0.803 0.652 0.784 0.715 0.712

Hessian energy Regularization [52:Yang] 0.731 0.568 0.691 0.627 0.624

A-optimal CNN [53:Yin] 0.844 0.747 0.850 0.797 0.795

IA-optimal CNN 0.889 0.833 0.900 0.866 0.865

Table 1 Accuracy comparison—six activation functions

rðxÞ P300 EEG signals Bearing failure signals English spoken digit signals Arrhythmia signals Gearbox signals

Sigmoid 0.778 0.851 0.869 0.899 0.836

Tanh 0.765 0.823 0.889 0.879 0.837

ReLu 0.661 0.725 0.811 0.814 0.717

Leaky-ReLu 0.643 0.722 0.784 0.813 0.702

ELU 0.738 0.787 0.830 0.851 0.759

Cube [51] 0.741 0.827 0.844 0.856 0.788
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To satisfy this condition, the matrix Z must have the

following form:

Z0ðk; iÞ ¼
ffiffiffi
a

p
ðk ¼ iÞ

0ðk 6¼ iÞ

(
ð56Þ

According to Sect. 2.3.2, the elements in Z0 are obtained

by maximum pooling, namely:

Z0ðk; iÞ ¼ max
n

j¼1
frðwT

k xijÞg ð57Þ

Obviously, for any input sample Xi, it is almost

impossible to find a convolution kernel matrix W that meets

the formula (57).

Therefore, the answer to the question in this chapter is:

For all the classification algorithms based on A-optimal

including IA-optimal CNN and A-optimal CNN proposed

by Yin [51], Tr(cov(x)) can continuously reduce in the

process of algorithm iterations, but the theoretical mini-

mum cannot be achieved, and the networks cannot strictly

achieve the best A-optimal state. Nevertheless, the classi-

fication algorithm based on A-optimal still makes the value

of Tr(cov(x)) as small as possible when conditions permit,

which can ensure the stability of the optimization model to

a greater extent.

6 Conclusions

This paper proposes an novel IA-optimal CNN method and

test it universality to solve different signals classification

problems. The main contributions of our works include five

aspects: (1) The existing A-optimal-based CNN simplifies

the trace of the covariance matrix of the fully connected

layer weights and uses the simplified calculation formula as

parameter optimization objective function, which affect the

classification accuracy to a certain extent. IA-optimal CNN

did not perform any simplification on the trace of the

covariance matrix and directly used the precise analytical

expression of optimization objective function to complete

the subsequent formula derivation. This approach makes

the results more precise; (2) The A-optimal-based CNN

framework uses gradient descent method for network

training, so it is necessary to calculate the analytical

expression of the partial derivative of the optimization

objective function with regard to the network parameters.

The precise expression of the trace of the covariance matrix

contains the inverse matrix, so it is difficult to directly

write the analytical solution of the partial derivative with

regard to the network parameter. For this reason, a novel

dual function is proposed and the following conclusions are

proved mathematically: the minimum value of this dual

function is exactly equal to the optimization objective

function. According to this conclusion, the original

Table 5 Algorithm performance

comparison/arrhythmia signals
Method Accuracy Precision Recall G-score F1-score

A-optimal subspace learning [49:He] 0.704 0.685 0.698 0.692 0.691

nonnegative matrix factorization [50:Liu] 0.786 0.726 0.754 0.740 0.740

neighborhood regularization [51:Li] 0.793 0.743 0.806 0.774 0.773

Hessian energy Regularization [52:Yang] 0.774 0.700 0.780 0.739 0.738

A-optimal CNN [53:Yin] 0.855 0.813 0.871 0.842 0.841

IA-optimal CNN 0.899 0.880 0.884 0.882 0.882

Table 6 Algorithm performance

comparison/gearbox signals
Method Accuracy Precision Recall G-score F1-score

A-optimal subspace learning [49:He] 0.695 0.524 0.681 0.597 0.592

nonnegative matrix factorization [50:Liu] 0.733 0.665 0.716 0.690 0.690

neighborhood regularization [51:Li] 0.708 0.596 0.740 0.664 0.660

Hessian energy Regularization [52:Yang] 0.717 0.632 0.702 0.666 0.665

A-optimal CNN [53:Yin] 0.807 0.726 0.822 0.773 0.771

IA-optimal CNN 0.837 0.787 0.847 0.816 0.816
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optimization problem is transformed into an equivalent

binary matrix function optimization problem, avoiding the

difficulty of not being able to obtain the analytical solution

of the derivative of the inverse matrix with regard to net-

work parameter; (3) To improve the nonlinear expression

ability of the network, the Tanh function and Sigmoid

function are used as the activation function instead of Cube

function which is used in A-optimal CNN; (4) To further

verify the versatility of the A-optimal-based CNN algo-

rithm on signals classification problems, five different

signals datasets are used as samples to test the algorithm

performance; (5) The following conclusion is proved

mathematically: In the iterative process of A-optimal-based

CNN, the trace of the covariance matrix will continuously

shrink and approach a convergence value, but the theo-

retical minimum cannot be achieved.

The results of algorithm performance test show that

compared with the existing A-optimal classification algo-

rithm, the IA-optimal CNN has the best performance in

classifying five datasets. In addition, the accuracy distri-

bution of IA-optimal CNN is relatively more stable and the

degree of dispersion is low, which verifies the accuracy and

stability of the IA-optimal CNN.

Fig. 4 Algorithm performance comparison/precision

Fig. 5 Algorithm performance comparison/recall

Fig. 6 Algorithm performance comparison/G-score

Fig. 3 Algorithm performance comparison/accuracy

Neural Computing and Applications (2021) 33:9703–9721 9717

123



7 Future works

At present, the research on the A-optimal-based CNN

network architecture and mathematical principles is still in

its infancy, and there are few related theories and appli-

cation results. The A-optimal-based CNN has specific

operating rules, so the further expansion of the network

depth is restricted. According to the principle of A-optimal

CNN, the dimensionality of the data will reduce once after

each round of convolution and pooling. The signals are a

one-dimensional vector. If the depth of the convolutional

layer and the pooling layer increase, the structure of the

input signals must to be changed continuously according to

the network depth. We have not yet found a data input

structure with clear mathematical meaning to ensure the

feasibility of this approach. So, further research is

necessary for the issues such as ‘‘how to expand the net-

work structure to a deeper network,’’ ‘‘how to adjust the

data input format or network architecture to adapt to the

deeper network,’’ and ‘‘how the training time, algorithm

complexity and classification accuracy will change as the

network depth increases.’’ Therefore, the depth expansion

of the IA-optimal CNN network, the time-consuming of

deep network iteration, the computational complexity, and

the accuracy of algorithm will be the focus of the future

research.

In addition, based on the specific application back-

ground, the structure of IA-optimal CNN can be improved

to make it more targeted to solve different types of signals

classification problems. For example, when using vibration

signals for fault diagnosis, based on full research for the
Fig. 8 Accuracy box plots/P300 EEG signals

Fig. 9 Accuracy box plots/bearing failure signals

Fig. 10 Accuracy box plots/English spoken digit signals

Fig. 7 Algorithm performance comparison/F1-score
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structural mechanism and mechanical characteristics of the

equipment, the IA-optimal-CNN-based fault signals diag-

nosis networks for different types of power equipment can

be designed [57, 58]. When classifying signals based on

multiple sensor channels, the signals data from different

sensors can be used as the input of different channels of

CNN to complete the signals classification based on data

fusion[41, 59]. Taking into account the noise interference

and data loss that may occur in the process of sensor sig-

nals transmission, the model for loss data recovery can also

be considered when designing the algorithm. In this case,

multiple structures such as SNN, RNN, GRNN, LSTM and

SGTM can be combined with A-optimal-based CNN

[60–66].
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