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Abstract

Polymorphism in cis-regulatory sequences can lead to different levels of expression for the two alleles of a gene, providing a

starting point for the evolution of gene expression. Little is known about the genome-wide abundance of genetic variation in

gene regulation in natural populations but analysis of allele-specific expression (ASE) provides a means for investigating such

variation. We performed RNA-seq of multiple tissues from population samples of two closely related flycatcher species and

developed a Bayesian algorithm that maximizes data usage by borrowing information from the whole data set and combines

several SNPs per transcript to detect ASE. Of 2,576 transcripts analyzed in collared flycatcher, ASE was detected in 185 (7.2%)

and a similar frequency was seen in the pied flycatcher. Transcripts with statistically significant ASE commonly showed the

major allele in>90% of the reads, reflecting that power was highest when expression was heavily biased toward one of the

alleles. This would suggest that the observed frequencies of ASE likely are underestimates. The proportion of ASE transcripts

varied among tissues, being lowest in testis and highest in muscle. Individuals often showed ASE of particular transcripts in

more than one tissue (73.4%), consistent with a genetic basis for regulation of gene expression. The results suggest that

genetic variation in regulatory sequences commonly affects gene expression in natural populations and that it provides a

seedbed for phenotypic evolution via divergence in gene expression.
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Introduction

The evolution of gene expression is likely to be key to pheno-

typic evolution (King and Wilson 1975; Stern and Orgogozo

2008). However, variation in gene expression and the evolu-

tionary forces behind this variation are much less well under-

stood than the evolution of diversity and divergence in gene

sequences (Wray 2007). One obvious reason for this differ-

ence is that gene expression is itself a phenotype that varies

both because of underlying genetic diversity and environmen-

tal factors (Pastinen 2010; Buil et al. 2015). Moreover, defin-

ing a neutral null hypothesis for the evolution of gene

expression is not straightforward and, as a consequence,

makes inference of selection on gene expression a challenging

task (Gilad et al. 2006; Fay and Wittkopp 2008).

A starting point for addressing gene expression evolution is

to understand the character of variation within species. This

includes quantifying the amount of variation and distinguishing

between the genetic and environmental components. It can

potentially be approached in a quantitative genetic framework

by dissection of the variance components of gene expression

and their interaction (Whitehead and Crawford 2006).

However, to be able to do this on genome-wide scales, exten-

sive amounts of gene expression data from pedigrees would

preferentially be required. This may be difficult in studies of

natural populations, especially in light of the need for sampling

individuals from different generations in the same develop-

mental stage and under similar environmental conditions.

Cis-acting or trans-acting effects may mediate the genetic

basis for variation in gene expression. A trans-factor asserts its

effect on the expression of genes elsewhere in the genome

while a cis-factor regulates the expression of a nearby gene. A

transcription factor regulating the expression of a gene on

another chromosome is an example of the former category

of regulatory sequences, while the transcription factor binding

region upstream of the start site for expression of the gene is

an example of the latter. Disentangling the relative roles of
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these two types of regulatory sequences for gene expression

is important for understanding the genetic architecture be-

hind gene expression evolution (Lemos et al. 2008; Goncalves

et al. 2012; He et al. 2012; Metzger et al. 2016).

It is well documented that gene expression is a plastic char-

acter readily facilitating phenotypic responses to environmen-

tal variation (Morris et al. 2014). Coupled with an unknown

component of experimental error in measuring gene expres-

sion (Whitehead and Crawford 2006; Robinson et al. 2010),

observed variation among individuals from a natural popula-

tion does not easily translate into a picture of the underlying

genetic variation (Oleksiak et al. 2002; Tung et al. 2011). In

essence, the problem boils down to that we are interested in

analyzing genetic diversity and the evolution of sequences

that regulate gene expression, yet in the absence of detailed

information about such sequence, we often have to draw

conclusions from the phenotype that they underlie.

Gene expression is typically measured from the total

amount of RNA, that is, the combined transcription of RNA

from the two chromosomes (alleles) in diploid organisms. This

means that regulatory variation in heterozygous individuals

may be concealed and hence not easily quantifiable.

However, if expression from the two alleles can be distin-

guished, cis-regulatory variation is directly revealed by the

two alleles being expressed at different levels in heterozygous

individuals (Yan et al. 2002; Chen et al. 2016). This forms the

basis for analyses of allele-specific expression (ASE). ASE anal-

yses were initially performed to distinguish between cis- and

trans-regulatory effects in F1 hybrids. This suggested that cis-

regulatory mutations tend to have additive effects on gene

expression and are readily visible by selection (Gibson et al.

2004; Wittkopp et al. 2004; Prud’homme et al. 2007; Wray

2007; Fay and Wittkopp 2008; Graze et al. 2012; Bell et al.

2013). Further studies have detected causal relationships be-

tween cis-regulatory variation and many types of phenotypic

characters including, for example, morphology and mating be-

haviour (Stern and Orgogozo 2008; Linnen et al. 2009; Arnoult

et al. 2013; Santos et al. 2014; Arunkumar et al. 2016).

Studies of cis-regulatory variation by ASE bear the intrinsic

power of utilizing within-sample control; both alleles are ex-

posed to the same environment and trans-acting factors

(Pastinen 2010). Unfortunately, only a limited number of

genome-wide ASE studies have so far focused on natural

populations of nonmodel organisms (Tung et al. 2011), in

part owing to a lack of necessary genomic resources. In this

paper, we report the outcome of an RNA-seq scan for ASE in

wild populations of two flycatcher species of the genus

Ficedula, the collared flycatcher F. albicollis and the pied fly-

catcher F. hypoleuca. They are small, trans-Saharan migrant

songbirds that breed in deciduous and mixed coniferous for-

ests in Europe, have a generation time of about 2 years and an

estimated effective population size (Ne) of about 200,000

(Nadachowska-Brzyska et al. 2016). Four particular aspects

make this avian study system and the experimental design

applied well suited for assessing cis-regulatory variation via

ASE analysis in natural populations. First, a high-quality ge-

nome assembly is available for collared flycatcher, with

Ensembl annotations of coding sequences (Ellegren et al.

2012; Kawakami et al.2014). Second, the very same individ-

uals that we used for measuring gene expression were subject

to whole-genome re-sequencing, meaning that RNA-seq

reads could be directly compared with known coding se-

quence genotypes, which greatly facilitated SNP detection

and genotype calling. Third, we introduce a novel statistical

method, a Bayesian negative binomial (NB) approach, for

modeling variation in ASE. Fourth, in contrast to many previ-

ous studies of ASE, we make use of multiple single nucleotide

polymorphisms (SNPs) per transcript to distinguish alleles and

increase power. The main conclusion of this work is that there

is extensive genetic variation for cis-regulation of gene expres-

sion in these natural bird populations.

Materials and Methods

Polymorphism Data

Whole-genome re-sequencing and polymorphism data for the

same collared flycatcher and pied flycatcher individuals used for

transcriptome analyses were taken from Ellegren et al. (2012).

SNPs were called separately per species against the collared

flycatcher genome assembly version FicAlb_1.4 using GATK

v. 2.2 (DePristo et al. 2011) with standard options. Only SNP

calls that passed the GATK standard quality criteria were used.

SNPs were phased using Beagle v. 3.0.4 with standard options

(Browning and Browning 2007) using genome re-sequencing

data from all 20 flycatcher individuals from Ellegren et al.

(2012), and phased coding SNPs were then extracted.

Transcriptome Data

Five adult male collared flycatchers were collected on the

Swedish island of €Oland and five pied flycatchers were col-

lected in Uppsala, Sweden. RNA was prepared from brain,

kidney, liver, lung, muscle, skin, and testis, and sequenced

for 100 cycles on an Illumina Genome Analyzer IIx.

Sampling, RNA preparation, library construction, and se-

quencing have been described in detail in Ellegren et al.

(2012). RNA-seq reads were mapped to the SNP-masked ge-

nome sequence using TopHat v. 2.0.5 (Kim et al. 2013). The

majority of SNPs in collared flycatcher and pied flycatcher is

shared between species so mapping efficiency is not biased

against pied flycatchers.

Because differential isoform usage could confound our

ability to discover ASE, and because Ensembl gene annota-

tions for flycatchers largely lack isoform annotations, we an-

notated transcripts de novo. Gene models were created using

Cufflinks v. 2.0.2 (Trapnell et al. 2012) per species and

merged into one annotation in order to retrieve unified

gene identifiers using Cuffmerge.
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To ensure independence between SNPs required for mod-

eling, we filtered out closely adjacent SNPs and only consid-

ered SNP pairs separated by more than 200 bp (i.e., the insert

size in our RNA sequencing library). SNPs falling into exonic

regions were extracted and read counts mapping to exonic

SNPs were summarized per SNP, gene, tissue, and individual.

To match our transcript annotations with information from

additional databases, we retrieved Ensembl gene IDs for

Cufflinks gene models by mapping sequences to the

Ensembl-annotated genome assembly.

Statistical Analysis

Variation in coverage among tissues and individuals, and var-

iation in number of SNPs among individuals for a given gene

meant that while we had sufficient information and statistical

power to detect ASE for some tissue/individual combinations,

this was not the case for others. Due to the resulting low

overlap of information for ASE detection in different samples

(i.e., samples from the same individual or the same tissue)

(supplementary fig. S1, Supplementary Material online), data

from each individual and tissue were treated independently

and, accordingly, no normalization method was applied.

Using phased data we estimated the mean allelic coverage

per transcript of individual birds. Mean (l) and variance (r2)

were incorporated into a statistical model to test whether the

observed difference between the frequencies of the haplo-

types was greater than what would be expected by chance.

Modeling of read count data in ASE analyses has so far mainly

employed the Poisson distribution, which is based on an equal

mean-variance assumption. However, it predicts less variation

than what is usually seen in the data (Mortazavi et al. 2008;

Anders and Huber 2010; Robinson et al. 2010; Wang et al.

2010; Anders et al. 2012). To alleviate the assumption and

address the extra variation (overdispersion) issue, quasi-Poisson

and NB distributions can be applied. The quasi-Poisson distri-

bution assumes that the variance increases as a linear function

of the mean, that is, r2¼ul, whereas the NB distribution

assumes that the mean and variance are related via

r2¼ lþul2. The overdispersion parameter u controls the

magnitude of the variance in quasi-Poisson and NB distribu-

tions. These models have been applied to analyses of differen-

tial expression (DE) of genes among individuals and populations

(Anders and Huber 2010; Robinson et al. 2010; Soneson and

Delorenzi 2013). Here we extend their use to the detection of

ASE, as ASE could be seen as DE between two alleles.

We defined the model structure to include transcript i, SNP

j ( j¼ 1, . . ., J), and allele p (p¼ 1, 2) (supplementary fig. S2,

Supplementary Material online), with the aim to test whether

the expression level from all J SNPs were different between

alleles p, for each transcript i. We required J> 1 since this is

needed to estimate the variance in a generalized linear mixed

model (GLMM) framework. The read counts from each tran-

script, SNP and allele Yijp was formulated as Yijp� h(lijp, r2
ijp),

where h() was either a Poisson, quasi-Poisson or NB distribu-

tion, decided by the relationship between lijp and r2
ijp.

Supplementary figure S3, Supplementary Material online

shows the relationship between mean and variance estimates.

The quadratic variance function (i.e., the NB distribution) ap-

peared to describe the mean-variance relationship better than

the other assumptions. We thus chose to use the conservative

NB distribution to minimize the rate of false discoveries.

When the same NB model was fitted for each transcript

and a large number of such models were built, it formed the

parallel structure of an overall hierarchical model. Taking ad-

vantage of such a hierarchical structure, the overdispersion

parameter could be estimated precisely and flexibly.

Although it is generally agreed upon that overdispersion

needs to be addressed in studies of differential gene expres-

sion, no consensus on how this should be done has emerged

(Pritchard et al. 2001; Robinson and Smyth 2008; Anders and

Huber 2010; Robinson et al. 2010; Turro et al. 2011; Soneson

and Delorenzi 2013). Basically, three ways have been pro-

posed to estimate overdispersion: local, common and moder-

ate estimation, respectively (supplementary fig. S2,

Supplementary Material online). In the first method, local u
is estimated from each transcript. In this case, the number of

local estimates equals the number of transcripts in the overall

hierarchical model and they are likely to differ considerably

due to the extent of variance in RNA-seq data. The common

estimation utilizes all transcripts to fit one u and then uses this

common u for testing each single transcript. Although the

common estimate makes use of all information in the data

and stabilizes u, it restricts the variability of the dispersion. The

moderate dispersion is an approximate empirical Bayesian ap-

proach that shrinks the local estimates toward the common

estimate using weighted likelihood. The Bayesian prior corre-

sponds to the weight between local and common dispersion,

and thereby controlling the extent of dispersion shrinkage. By

choosing this prior weight, a Bayesian posterior mean estima-

tor of overdispersion can be calculated using an approximate

empirical Bayesian solution. Instead of using a direct estimate

of overdispersion, this approximation method is necessary as

the NB distribution falls outside of the exponential family and

therefore lacks a conjugate prior for overdispersion (Robinson

and Smyth 2007, 2008; McCarthy et al. 2012; Zhou et al.

2014).

Instead of a constant weight for all transcripts, we de-

signed a more flexible and pertinent weight (ci ) for each tran-

script depending on how reliably local dispersion could be

estimated and approximated by the total number of SNPs

(J) within one transcript. Transcripts for which J was compar-

atively large provided more statistical information and local

dispersion was therefore prioritized (overweighted) over com-

mon estimation (smaller ci ). Along with this data-dependent

prior weight and posterior estimate using the approximate

empirical Bayes rule, we employed a weighted quantile-

adjusted conditional maximum likelihood to estimate

Wang et al. GBE

1268 Genome Biol. Evol. 9(5):1266–1279. doi:10.1093/gbe/evx080 Advance Access publication April 26, 2017

Deleted Text: l
Deleted Text: l
Deleted Text: ; Mortazavi, et<?A3B2 show $146#?>al. 2008; Robinson, et<?A3B2 show $146#?>al. 2010; Wang, et<?A3B2 show $146#?>al. 2010
Deleted Text: i.e.
Deleted Text: <xref ref-type=
Deleted Text: <xref ref-type=
Deleted Text: ; Turro, et<?A3B2 show $146#?>al. 2011
Deleted Text: <xref ref-type=


parameters for the NB distribution. Finally, the null hypothesis

that the two alleles were balanced in expression level was

tested for each transcript.

In practice, we adopted the model of Robinson and Smyth

(2007, 2008), as implemented in the EDGER program (Robinson

et al. 2010), but adjusted the weight as described above. This

adjustment was achieved mathematically by relaxing the fixed

residual degree of freedom (d.f.) according to J, that is,

d.f.¼ 2� J � 2 (as we had two groups under comparison,

i.e., two alleles) (supplementary methods, Supplementary

Material online). We employed Goodness-of-fit (GOF) as an

evaluation criterion for assessing which dispersion would best

capture the characteristics of the data. GOF was assessed using

Pearson’s v2 test on a per transcript basis with the null hypoth-

esis that the empirical distribution fits the theoretical distribu-

tion (Lee et al. 2008; Oberg et al. 2012). The number of times

that the null hypothesis got rejected was summed, meaning

that lower GOF values indicate a better fit. Bayesian dispersion

performed the best (GOF¼ 1,954), while common dispersion

had limited flexibility (4,626), and local dispersion (2,858)

underestimated the overdispersion parameter (supplementary

fig. S4, Supplementary Material online).

Simulation

To study the performance of the Bayesian NB approach, we

simulated multiple data sets under a variety of scenarios in-

cluding different allelic imbalance, gene expression levels, and

numbers of SNPs (ranges corresponding to real data). For

each simulation we randomly selected 8% of genes to be

true positive ASE (the same percentage of ASE as observed

in real flycatcher data), and the rest to be true negative genes.

We chose the level of overdispersion to be 0.38, which was

the mean overdispersion in real flycatcher data. One thousand

genes were used in each simulation, which was repeated 100

times. We then applied the Bayesian NB approach on the data

sets and considered genes with an adjusted P< 0.1 (false

discovery rate, FDR, multiple testing correction) to be signifi-

cant. The average true positive rate and FDR was calculated.

Similarly, we simulated a set where we randomly sampled

overdispersion, the number of SNPs, coverage, and the allelic

imbalance from distributions of flycatcher data and built the

receiver operating characteristic curve accordingly (supple-

mentary fig. S5, Supplementary Material online).

Cut-Off Detection

We initially included all data for evaluation of the methods.

However, for transcripts with low coverage there is essentially

no power to detect ASE, adding noise only. We therefore

investigated different coverage cut-offs (3–16 reads per SNP

site) in terms of the number of transcripts with significant

support for ASE (table 1). The number was highest at a cut-

off of 11, and decreased both at lower and higher cut-offs.

This pattern can probably be seen as a balance between

removing noise in the data and not eliminating significant

transcripts. The overlap among significant transcripts at cut-

offs of 9–13 was 90% so the choice of cut-off seemed robust.

Sharing of ASE across Individuals and Tissues

We constructed a Spearman’s rank correlation matrix be-

tween all pairs of samples to analyze to what extent ASE

was shared among tissues and individuals. For each case of

shared significant ASE between pairs of samples, correlation

was calculated as the percentage of allelic difference (i.e., the

difference between read counts of the two alleles divided by

their sum). The correlation matrix was then partitioned into

correlations (1) between different tissues within an individual,

(2) the same tissue in different individuals, and (3) between

different tissues and different individuals, respectively.

Expression breadth was estimated as the inversion of tissue

specificity index s (Yanai et al. 2005; Liao et al. 2006; Park

et al. 2011), defined as:

si ¼
Pk

t¼1 1� log2 Eitð Þ
log2 Eimaxð Þ

� �

k � 1
;

where

Ei� ¼
PJ

j¼1

P2
p¼1 Yijp

J
;

and Eit was the expression level of transcript i in the tth tissue,

and Eimax was the maximum expression level across the total

number of k tissues under study for the ith transcript. A low

value of s means low tissue specificity or high expression

breadth.

Table 1.

The Effect of Different Coverage Cut-Off Levels for Detection of Significant

ASE Transcripts, Identified by the Bayesian NB Approach

Cut-Off Collared Flycatcher Pied Flycatcher

ASE Total ASE Total

3 145 31,438 62 8,987

4 185 23,055 73 6,688

5 221 18,668 76 5,347

6 253 15,109 90 4,346

7 280 12,805 106 3,626

8 283 10,861 110 3,122

9 294 9,520 117 2,734

10 300 8,324 122 2,413

11 324 7,481 128 2,157

12 305 6,700 116 1,937

13 304 6,074 106 1,754

14 302 5,472 110 1,599

15 296 5,021 103 1,482

16 283 4,581 104 1,362

NOTE.—Bold indicates the chosen cut-off level.
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Gene Ontology Enrichment Analysis

Gene ontology (GO) annotations were retrieved from

Ensembl (www.ensembl.org). Over-representation of GO cat-

egories of ASE genes compared to all other genes were ex-

amined using Fisher’s exact test with classic and elim

algorithms, provided in the topGO package (Alexa et al.

2006; Rivals et al. 2007). In order to get robust significant

GO terms, P-values from both algorithms were considered,

and two different thresholds were used in determining signif-

icance of the test, which were either FDR< 0.1 in both algo-

rithms or P< 0.05 in both.

Total Expression Levels

For transcripts in which at least one sample showed evidence

of ASE, we compared the total expression level per tissue

between individuals with evidence of ASE and individuals

without. Expression levels were first normalized by the total

number of reads per sample and the number of SNPs per

transcript. If data for more than one individual was available

for a particular tissue-transcript combination, mean values

were used. Expression levels were compared by using the ratio

of expression levels in ASE and nonASE individuals.

Results

Using RNA-seq to Investigate ASE

By combining SNP data from whole-genome re-sequencing

and transcriptome data from RNA-seq of the same five male

collared flycatchers we detected 14,858 transcripts with at

least two SNPs (a prerequisite for our method). After filtering

for adequate RNA-seq coverage at SNP positions (see

Materials and Methods), 2,576 transcripts remained, corre-

sponding to 2,418 genes (only 16 transcripts contained over-

lapping SNPs). The number of filtered transcripts per tissue

varied between 328 (muscle) and 994 (skin), and per individ-

ual between 713 and 796 (table 2). The mean read coverage

per SNP was 41.9 and the mean informative read coverage

per transcript was 119.4, with a mean of 3.0 SNPs per tran-

script. There was no systematic difference in read coverage

between the allele corresponding to the genome sequence

(reference allele) and the nonreference allele (t-test P¼ 0.80;

supplementary fig. S6, Supplementary Material online).

A Bayesian NB Approach for the Detection of ASE

To increase the power of detection of ASE, we developed a

novel Bayesian NB approach that alleviates the equal mean-

variance assumption of the Poisson distribution previously

used for modeling read count data in studies of ASE. This

new approach shrinks the local (per transcript) estimates of

overdispersion toward the common (all transcripts) estimate

using weighted likelihood. To evaluate the accuracy of ASE

detection with this approach, we noted that for a transcript

where the two alleles are expressed at different levels, reads

covering different SNPs should be biased toward the same

allele. That is, two or more SNPs should agree on the direction

of imbalance and thus be concordant. In principle, in the ab-

sence of sampling variance and phasing errors, and with ac-

curate detection of ASE, disagreement should be 0%. In

contrast, for a transcript where both alleles are expressed at

equal levels, disagreement should approach 50% due to sam-

pling variance (fig. 1A).

To test the accuracy of the Bayesian NB approach, we

constructed pairwise concordance plots for SNPs within

each collared flycatcher gene following DeVeale et al.

(2012). The rate of discordance was 0.16% (fig. 1B) and de-

creased asymptotically toward 0 with increased threshold of

statistical significance (lowered P) (fig. 1C). This indicates that

the Bayesian NB approach is a valid model and has powerful

control over noise and variation. The approach outperformed

the binomial test and other NB approaches based on local and

common dispersion by having much lower discordance rate.

More specifically, the binomial test was essentially incapable

of removing false positives, as illustrated by close to 50%

discordance rate independent of the significance level (fig.

1D and E). Approaches using NB with local (fig. 1F and G)

or common dispersion (fig. 1H and I) performed better than

the binomial test but showed more disagreement (8.21% and

11.09%, respectively) in the data compared to the Bayesian

NB approach. Moreover, in these cases discordance rate in-

creased with increasing significance threshold because highly

significant yet discordant ASE transcripts were less efficiently

removed from the data.

To further assess the performance of the Bayesian NB ap-

proach we applied it to simulated data sets with varying allelic

imbalance, read coverage, and number of SNPs per gene, and

considered genes with an adjusted (multiple testing correc-

tion) P< 0.1 to exhibit ASE (fig. 2). The true positive rate in-

creased with the number of SNPs, read coverage, and, in

particular, allelic imbalance (fig. 2A–C). Under strong imbal-

ance (frequency of the major allele, FAM, of 0.9), the average

rate of true positives was 0.98 and with a FAM of 0.8 the

Table 2.

Number of Analyzed Transcripts for Each Sample (Tissue/Individual

Combination)

ID #1 ID #2 ID #3 ID #4 ID #5 Total

Brain 85 277 109 99 69 394

Kidney 154 391 308 215 171 741

Liver 100 229 62 91 189 403

Lung 136 421 148 257 152 656

Muscle 86 231 67 75 74 328

Skin 258 597 281 299 243 994

Testis 267 624 277 187 252 940

Total 713 1,700 796 740 723

NOTE.—In total, there were 7,481 analyzed samples. Totals depict the number of
unique transcript per tissue and individual.
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average rate was 0.84. We found that the FDR was below

0.015 across all tested scenarios (fig. 2D–F), indicating that

the model is robust under different settings and that p-value

adjustment is effective. Importantly, the average FDR was

much lower than the testing threshold of 0.1 implying that

the model is conservative. In a simulation of randomly sam-

pled parameters instead of fixed ones, the true positive rate

was 0.61 and the FDR was 0.01 (supplementary fig. S5,

Supplementary Material online).

As an independent validation of the Bayesian NB approach

we applied it to a human lymphoblastoid cell line RNA-seq

data set (Rozowsky et al. 2011), and compared it to the

MBASED (meta-analysis based allele-specific expression de-

tection) method (Mayba et al. 2014). After filtering for min-

imum coverage and number of heterozygous SNPs, there

were 1,014 genes that could be tested. Among them we

found 31 ASE genes by the Bayesian NB approach and 45

ASE genes by MBASED, of which 27 were common to both

methods (supplementary table S1, Supplementary Material

online). The four genes uniquely identified by the Bayesian

NB approach failed to pass the MBASED cut-off, which re-

quired a FAM> 0.7, although three of them were significant.

The 18 genes only detected by MBASED had higher estimated

overdispersion compared to other genes (Welch t-test,

P¼ 0.012), implying inconsistent expression level within these

genes. We conclude that the two methods produced similar

results on this data set. However, since the Bayesian NB ap-

proach focuses on the estimation of ASE on the transcript

level, it is more sensitive to expression variation between iso-

forms of a gene.

ASE Is Prevalent in Wild Ficedula Flycatchers

Using the Bayesian NB approach on collared flycatcher expres-

sion data we found 185 transcripts (7.2%) that showed evi-

dence of ASE in at least one individual and tissue at an FDR of

0.1 (approximately P< 0.001) (supplementary table S2,

Supplementary Material online). The allelic imbalance of

ASE transcripts was highly biased toward extensive skews

(fig. 3A), with 89.5% of all statistically significant samples

showing the major allele in more than 90% of the reads.

Relaxed FDR gave almost the same distribution of the FAM

but with a slightly inflated tail (fig. 3B). To explore the varia-

tion in ASE among tissues we combined data from all individ-

uals. The proportion of transcripts with ASE per tissue varied

between 2.4% (testis) and 6.9% (muscle; fig. 4), with testis

showing a significantly lower (Fisher’s exact test,
FIG. 1.—Concordance analysis of ASE transcripts. A large arrow rep-

resents higher and a small arrow indicates lower expression level, respec-

tively. In concordant transcripts (blue) all SNPs have the same direction of

imbalance, while in discordant transcripts (red) SNPs differ in the direction

of imbalance. (A) Raw data, (B and C) Bayesian NB approach, (D and E)

binomial test, (F and G) NB approach with local dispersion, (H and I) NB

approach with common dispersion. (C), (E), (G), and (I) show the rate of

FIG. 1. Continued

discordance in relation to different thresholds of statistical significance for

the respective models. For the NB approach with local and common dis-

persion, the rate of discordance was 8.21% and 11.09%, and for the

binomial test it was 47.85% at a significance threshold of P ¼ 0.05.
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FIG. 2.—The performance of the Bayesian NB model on simulated data. The simulations are based on the number of SNPs in a gene, the coverage per

SNP site, and the allelic ratio. The average true positive rate and false positive rate were calculated from 100 simulations with each having 1000 genes.
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P¼ 6.9� 10�5 after Bonferroni correction) and muscle a sig-

nificantly higher (P¼ 0.018) proportion of ASE genes than the

other tissues combined. We found no evidence for overall

expression differences of ASE transcripts among tissues (sup-

plementary fig. S7A, Supplementary Material online, Bartlett

test P¼ 0.12, ANOVA P¼ 0.34, Kruskal–Wallis rank sum test

P¼ 0.11) or differences in the number of detected SNPs per

transcript among tissues (supplementary fig. S7B,

Supplementary Material online, Bartlett test P¼ 0.48,

ANOVA P¼ 0.75, Kruskal–Wallis rank sum test P¼ 0.43).

This argues against the possibility that differences in the pro-

portion of ASE genes per tissue would be related to power

issues.

ASE was detected in more than one individual-tissue com-

bination for 64 transcripts. The most common type of multiple

occurrence was in the form of the same individual showing

ASE in two or more tissues (73.4%), followed by transcripts

showing ASE in the same tissue in multiple individuals

(50.0%, with 23.4% of transcripts showing both) (fig. 5).

This was also evident from a significantly stronger correlation

between the degree of allelic imbalance in different tissues for

the same individual and transcript (mean Spearman’s

q¼ 0.73) than between the degree of imbalance in different

individuals for the same tissue and transcript (mean q¼ 0.18;

fig. 6A). This strengthens the interpretation of a genetic basis

for ASE with heterozygous cis-regulatory sequences leading

to unbalanced expression of the two alleles in multiple tissues

of the same individual. However, expression breadth of ASE

transcripts was significantly lower than that of nonASE tran-

scripts (Welch t-test P¼ 1.98� 10�7, fig. 6B), potentially re-

ducing the incidence of ASE across tissues for the same

individual and transcript. We also note that for many of the

transcripts in which ASE was detected in only one tissue, we

had limited power of detection in other tissues due to low

expression levels (fig. 5).

We then analyzed a closely related species, the pied fly-

catcher, again based on whole-genome re-sequencing for

SNP detection and deep transcriptome sequencing of seven

tissues in five males. Of 908 transcripts for which we had

sufficient coverage and SNP information, 77 (8.5%) showed

evidence of ASE in at least one individual and tissue (supple-

mentary table S3, Supplementary Material online; see supple-

mentary fig. S8, Supplementary Material online for

performance of the method). The proportion of genes with

ASE did not differ between the two species (Fisher’s exact test

P¼ 0.18). Only one gene was common to the sets of ASE

genes in the two species—multiple coagulation factor defi-

ciency protein 2 (MCFD2)—providing no evidence for enrich-

ment of shared ASE genes.

FIG. 3.—The allelic imbalance toward the major allele in significant ASE transcripts. (A) is under FDR<0.1 and (B) is under a relaxed threshold of

FDR<0.16 which is the optimal cut-off suggested by the simulations.

FIG. 4.—Proportion of significant ASE transcripts using the Bayesian

NB model at an FDR<0.1 in each tissue. Data points represent the dif-

ferent individuals and medians are denoted with a line.
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There was no clear indication that ASE would be particu-

larly common among certain types of functionally annotated

genes. There were 21 significant GO terms in collared fly-

catcher at P< 0.05 (supplementary table S4, Supplementary

Material online) and 18 in pied flycatcher (supplementary ta-

ble S5, Supplementary Material online). These represented a

variety of functions, for example including nervous, sensory

and immune systems, metabolism, and transcriptional regu-

lation. No GO term was significantly over-represented among

ASE genes in collared flycatcher at FDR< 0.1 and only one

term was significant in pied flycatchers, polysaccharide

binding.

ASE can potentially imply a change in the total amount of

expression from a gene due to segregating polymorphisms in

cis-regulatory sequences. For example, an individual showing

ASE of a gene may carry an allelic variant of a regulatory

sequence that leads to up- or down-regulation of gene

expression compared to other alleles. On the other hand,

feedback mechanisms may counteract any such effects to

maintain similar expression levels across individuals despite

the presence of ASE. To gain some preliminary insight into

these processes we compared the total amount of expression

of ASE genes between individuals that showed evidence of

ASE and individuals that did not (fig. 7). There was no general

trend for ASE genes to have lower or higher total expression

levels compared to the same gene in individuals without ASE.

Moreover, there were examples of both increased and de-

creased total expression following from ASE.

Discussion

We quantified ASE in multiple tissues of population samples

of two closely related flycatcher species using a novel Bayesian

approach. The state of ASE of a gene can be seen as a marker

FIG. 5.—Examples of ASE patterns across individuals and tissues. Green indicates that significant ASE was detected and white indicates that no

significant ASE was detected (even though the minimum requirements for number of SNPs and read coverage were met). Gray indicates that ASE could not

be investigated because of lack of variable SNPs or too low read coverage.
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for polymorphism in cis-regulatory sequences influencing the

expression level of the gene. The overall context of this study

was thus the investigation of within-species diversity of gene

expression, which constitutes the raw material for evolution

of gene expression.

In line or species crosses, the haplotypes of cis-regulatory

and coding sequences are generally known and can easily be

inferred in F1 individuals. This is not the case in population

samples from species with low levels of linkage disequilibrium

(LD), like in flycatchers (Backström, et al. 2006). We could thus

not treat individuals as biological replicates even if they carried

the same alleles at a particular SNP. To overcome this

limitation and to increase the ability of identifying ASE, we

developed a new computational method, which aggregates

dispersion across multiple SNPs into one measurement and

estimates ASE on a per-individual basis. By modeling several

SNPs per transcript, the method differs from statistical models

that have been used for ASE detection at the level of single

SNPs or that have used summed reads from phased SNPs at

the gene level (Dimas et al. 2009; Zhang et al. 2009; Pickrell

et al. 2010; Rozowsky et al. 2011; Romanel et al. 2015; Van

de Geijn et al. 2015; Edsg€ard et al. 2016).

Using information from several SNPs within a transcript

helps shrinking the variance and thus increases the statistical

power. This way we could efficiently use data from transcripts

with a coverage as low as 11 reads per SNP. Previous studies

that have tested for ASE at the level of single SNPs, or from

summed reads across SNPs, using binomial or v2 distributions

have typically required a read coverage of 20 or higher

(Fontanillas et al. 2010; McManus et al. 2010; Li et al.

2012), limiting the number of genes that have been possible

to include in the analyses. Reducing the minimal coverage

required for statistical testing of ASE is crucial in RNA-seq

experiments since expression profiles are often highly biased

toward a few genes with very high expression levels, whereas

most genes are represented by relatively few reads. If we had

used a coverage cut-off of 20, the number of tested tran-

scripts would have been reduced by approximately a factor

of three, from 2,576 to less than 900. To be fair, given that we

required at least two SNPs per transcript, at least 22 reads per

transcript were needed. Using our Bayesian NB model, we

arrived at a data-driven cut-off that reduced the noise while

keeping informative data.

When comparing the Bayesian NB approach to binomial

test and other NB approaches for use on the flycatcher data, it

FIG. 6.—(A) Box plot of Spearman’s rank correlations between ASE

between all pairs of significant samples in different sample groups (i.e.,

between different tissues within an individual, between individuals within

the same tissues, and between different tissues and different individuals).

(B) Box plot of expression breadth between ASE transcripts and nonASE

transcripts. Whiskers extend to 1.5 times the interquartile range with data

points extremer than that are plotted as outliers.

FIG. 7.—Distribution of the ratio of total expression of ASE genes in

individuals showing evidence of ASE and total expression in individuals not

showing evidence of ASE of such genes.
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outperformed all others in having the lowest rate of discor-

dance. When validating the Bayesian NB approach using a

human data set, there was a considerable amount of overlap

of detected ASE genes with the method of MBASED.

Simulations showed that the Bayesian NB approach can main-

tain a low level of false positives while keeping a reasonably

high level of true positives under most simulated scenarios.

Taken together, this suggests that the Bayesian NB model can

reliably identify ASE. It should be emphasized that studying

ASE in natural populations without pedigree information lacks

many of the convenient features when studying ASE using

hybrids of inbred lines (Cowles et al. 2002; Emerson et al.

2010; Salinas et al. 2016), such as small within- and large

between-population genetic variation, and complete knowl-

edge of the phase in the F1 generation. To compensate for

this, we devised a framework that reliably estimates variance

between the alleles within an individual.

Confounding factors in a study like this include experimen-

tal and technical noise in sequencing, allelic mapping, and

phasing of SNPs. Consequently, strictly controlling for the

false discovery rate is necessary when determining statistical

significance. The Bayesian NB approach accomplishes this by

using information from the whole data set to tune overdisper-

sion estimates to an appropriate minimum per transcript,

thereby increasing statistical power. However, there is a

trade-off between the false positive rate and the false negative

rate where a lower false positive rate inevitably comes at the

cost of a higher false negative rate. In that respect, the Bayesian

NB approach, just like other tests with a low false discovery

rate, has the statistical limitation of a potentially high false

negative rate. In our study, this appears to be the case espe-

cially for genes with less pronounced allelic imbalance (i.e.,

small effect size), leading to a conservative estimate of the

incidence of ASE. Other than by sacrificing a low false positive

rate, the false negative rate can be improved by using biological

replicates but this is not feasible when studying a natural pop-

ulation. Moreover, the approach we used to statistically infer

haplotypes based on population allele frequencies (BEAGLE) has

limitations when sample size is small (Browning and Browning

2007). Incorrect haplotype phasing may lead to inflated vari-

ances and thereby less power, which would result in an even

more conservative estimate of the incidence of ASE.

The fact that the Bayesian NB approach can only be imple-

mented for transcripts with multiple SNPs excludes testing for

ASE in single-SNP transcripts in which calculation of Bayesian

dispersion is precluded. A common dispersion could instead

be used for single-SNP transcripts. However, it results in very

few significant transcripts (<1% detected ASE), likely reflect-

ing an inflated false negative rate and would hinder concor-

dant verification. We therefore only focused on transcripts

with multiple SNPs to achieve reliable and confident

estimation.

Note that allele-specific splice isoform expression is poten-

tially detected as ASE by our approach. Using shot-gun RNA-

seq, it is difficult to disentangle such cases from other forms of

ASE, although it would certainly be interesting to do so. The

expression of different splice isoforms between individuals does

not affect our analyses as we do not compare ASE directly be-

tween individuals. Within any individual, allele-specific isoform

expression can be regarded as one of several forms of ASE.

Positional biases affecting SNP identification and quantifi-

cation within a transcript, such as transcript edge effects (im-

paired read mapping in transcript) should not affect our

analyses since we only compare the expression of alleles at

the same position within the same transcript. The edge effect

will reduce our power to identify ASE when SNPs reside near

the edge of transcripts, but should not introduce a bias.

The Biology of ASE

We found that 7.2% (collared flycatcher) and 8.5% (pied

flycatcher) of the analyzed transcripts showed ASE in at least

one tissue. Tissues differed in their amount of ASE, with mus-

cle having the highest and testis the lowest prevalence, re-

spectively. Similar observations of differences among tissues

have been made in humans (Ardlie et al. 2015). When tran-

scripts showed ASE in more than one sample, they more often

did so in different tissues within the same individual than

within the same tissue in different individuals. This is consis-

tent with a strong genetic basis of ASE with some, but not all,

individuals being heterozygous in regulatory sequences for

particular genes. The fact that there was hardly any overlap

in ASE transcripts between the two investigated species

speaks in favor of that ASE is the result of transient polymor-

phism in regulatory sequences where segregating variants will

eventually get fixed or lost. Furthermore, ASE transcripts were

generally less broadly expressed than nonASE transcripts. This

could potentially be related to that broadly expressed genes

are on average more pleiotropic than tissue-specific genes;

mis-regulation resulting from ASE may thus more often lead

to detrimental effects (Aguet et al. 2016; Shen et al. 2012;

Uebbing et al. 2016).

The estimated proportions of ASE transcripts in these bird

populations are likely to be underestimated, for several rea-

sons. Most importantly, we lacked power to detect ASE for

many individual/tissue combinations of the 2,576 transcripts

included in the study. This was primarily a combined effect of

too low read coverage (preventing ASE detection in lowly

expressed genes) and that SNPs were homozygous in some

individuals. Moreover, when we had power, the detection

was biased toward pronounced differences in expression level

of the two alleles (fig. 3A). Many cases of more subtle differ-

ences in expression level are therefore likely to have remained

undetected by not reaching statistical significance.

Furthermore, with only five individuals per species analyzed,

many regulatory variants segregating at rare to moderate fre-

quencies in the studied populations are likely to have been

absent from these relatively small population samples. We
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therefore suggest that the frequency of ASE in these species is

higher, and perhaps significantly higher, than the observed

frequency of 7–8%. A larger number of sampled individuals

can help to detect rarer alleles and greater sequencing depth

can help to detect instances of ASE with smaller effect size.

Decreasing sequencing costs and an increasing sequencing

throughput will facilitate both in future studies. This study

nevertheless yields interesting insight in that transcripts show-

ing strongly allele-biased expression patterns, are more likely

to have strong phenotypic effects than less biased transcripts.

As such, they will be most interesting to explore in more detail

using larger sample sizes and more powerful techniques. It

had been interesting to find certain types of genes to be more

prone to ASE than others, indicating that such genes would

be more amenable to variation in gene expression level, po-

tentially indicating the absence of selection for a specified

expression level. Instead, the absence of an enrichment of

particular gene ontology categories among ASE transcripts

may indicate that ASE occurs widely across the genome and

across genes categories. It will be interesting to revisit this ques-

tion with more powerful sampling schemes that are able to

detect smaller differences in ASE which may uncover traits or

categories of traits among which small-scale natural variation in

gene expression levels is more prevalent than in others.

Studies like this in other natural population are rare. Most

previous analyses of ASE have focused on F1 crosses of closely

related species or inbred lines to estimate the degree of cis-reg-

ulatory divergence (Cowles et al. 2002; Emerson et al. 2010;

Gaur et al. 2013; Salinas et al. 2016). Naturally, these latter

estimates will depend on the overall divergence of the investi-

gated taxa as well as the precise statistical models used, and

observed frequencies of ASE genes have varied widely in studies

of Arabidopsis (Zhang and Borevitz 2009; He et al. 2012),

Capsella (Josephs et al. 2015; Steige et al. 2015), Drosophila

(Graze et al. 2012; Coolon et al. 2014), mice (Lagarrigue et al.

2014; Crowley et al. 2015), and cows (Chamberlain et al. 2015).

For population-based studies like ours, ASE frequencies between

6% (Ardlie et al. 2015) and 20% (Serre et al. 2008; Zhang et al.

2009) have been reported in humans and Tung et al. (2015)

found a frequency of 23% in wild baboons. Taking into account

that we likely underestimated the incidence of ASE in fly-

catchers, our results are roughly comparable to those obtained

in primate studies. More generally, they indicate that polymor-

phisms in regulatory sequences commonly affect gene expres-

sion in natural populations. Our study also demonstrates that

RNA-seq analysis of population samples provides a simple and

cost-effective means to analyze regulatory variation in a popu-

lation by observing the phenotype resulting from genetic varia-

tion in the ignorance of the genotypic basis itself. While

sequencing and assembly of whole genomes still represents a

prohibiting cost factor in many vertebrate species (Majewski and

Pastinen 2011; Sun and Hu 2013; Verta et al. 2016), RNA-seq

can readily be used to make inference about the presence of

natural gene regulatory variation.

The demonstration of pervasive ASE in natural populations

has implications for the evolution of gene expression. ASE can

be regarded as a first step in the divergence of expression

levels as it results from genetic variation in regulatory se-

quences upon which selection can act. Given the observed

rich source of regulatory diversity, adaptation via changes in

the regulation of gene expression may thus play an important

role to phenotypic evolution in this and other systems.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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