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Identifying the neurotransmitters secreted by specific neurons in crustacean
eyestalks is crucial to understanding their physiological roles. Here, we combined
immunocytochemistry with confocal microscopy and identified the neurotransmitters
dopamine (DA), serotonin (5-HT), and acetylcholine (ACh) in the optic neuropils and
X-organ sinus gland (XO-SG) complex of the eyestalks of Paralithodes camtschaticus
(red king crab). The distribution of Ach neurons was studied by choline acetyltransferase
(ChAT) immunohistochemistry and compared with that of DA neurons examined in the
same or adjacent sections by tyrosine hydroxylase (TH) immunohistochemistry. We
detected 5-HT, TH, and ChAT in columnar, amacrine, and tangential neurons in the optic
neuropils and established the presence of immunoreactive fibers and neurons in the
terminal medulla in the XO region of the lateral protocerebrum. Additionally, we detected
ChAT and 5-HT in the endogenous cells of the SG of P. camtschaticus for the first time.
Furthermore, localization of 5-HT- and ChAT-positive cells in the SG indicated that these
neurotransmitters locally modulate the secretion of neurohormones that are synthesized
in the XO. These findings establish the presence of several neurotransmitters in the
XO-SG complex of P. camtschaticus.
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INTRODUCTION

Similar to other arthropods, crustaceans possess a highly developed visual system and exhibit
conspicuous visually guided behaviors (Zeil and Hemmi, 2006; Tomsic et al., 2017) in foraging
(Tomsic et al., 2017), prey and mate recognition (Murai and Backwell, 2006), defensive strategies
(Hemmi, 2005; Hemmi and Tomsic, 2012), spatial orientation, and environmental evaluation
(Medan et al., 2015). The red king crab Paralithodes camtschaticus (Tilesius, 1815) is a commercially
valuable species belonging to the Anomura group of the order Decapoda and inhabits the Bering
Sea, Sea of Japan, and Sea of Okhotsk, as well as the North Pacific from the Kamchatka Peninsula
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to Alaska (Donaldson and Byersdorfer, 2005; Stevens and
Lovrich, 2014). An invasive population of this species occurs
in the Barents Sea (Dvoretsky and Dvoretsky, 2015, 2018).
Additionally, P. camtschaticus is a shelf species found in habitats
at depths of up to ∼300 m (Pavlova et al., 2007; Dvoretsky and
Dvoretsky, 2013, 2015).

The optic lobes of P. camtschaticus and other decapod
crustaceans are located within the eyestalks and connect with the
brain via the protocerebral tract. In the eyestalks of decapods
and insects, primary visual processing is conducted in retinotopic
neuropils referred to as the lamina, medulla, lobula, and lobula
plate (Sinakevitch et al., 2003; Sztarker et al., 2005; Harzsch
and Hansson, 2008; Krieger et al., 2012; Ito et al., 2014). As
observed in insects, optic neuropils in crustaceans are connected
via two chiasmata: one connects the lamina to the medulla, and
the other connects the medulla to the lobula. The optic lobe
also comprises other regions that form the lateral protocerebrum
(Harzsch and Hansson, 2008; Maza et al., 2021; Strausfeld, 2021).
To date, the neural organization and cellular morphologies of
the crustacean optic neuropils have been studied in few taxa,
including entomostracans and malacostracans, in the mysid
Neomysis integer (Strausfeld and Nässel, 1981), euphausiacean
Meganyctiphanes norvegica (Strausfeld and Nässel, 1981), isopod
Ligia occidentalis (Sinakevitch et al., 2003), stomatopods
(Strausfeld and Nässel, 1981; Thoen et al., 2017), and various
decapods (Elofsson and Dahl, 1970; Nässel, 1977; Stowe et al.,
1977; Sinakevitch et al., 2003; Sztarker et al., 2005, 2009; Sztarker
and Tomsic, 2014). Although the neural organization and cellular
morphologies of optic neuropils have been studied in these
crustaceans, those in the optic neuropils of the red kind crab
remain to be elucidated.

The key neuroendocrine center located in the eyestalks is the
X-organ sinus gland (XO-SG) complex (Andrew and Saleuddin,
1978; Fingerman, 1992, 1997; Christie, 2011), which secretes
hormones that regulate blood sugar levels and the molting,
growth, and breeding processes of crustaceans (Cooke and
Sullivan, 1982; Webster and Keller, 1987; Allayie et al., 2011;
Pérez-Polanco et al., 2011; Chen et al., 2020). Furthermore,
it is a crucial regulator of pigment migration in both the
retina and chromatophores (De Kleijn and Van Herp, 1995)
and also regulates the ability of crustaceans to metabolically
adapt to changing environmental conditions (Chung et al.,
2010). Despite progress in elucidating crustacean endocrinology
in the previous decade, the neurochemical organization of the
crustacean eyestalk remains poorly understood. Topographical
data on the neurotransmitters that regulate neurohormone
synthesis and release is important for the development of
aquaculture technology. This is particularly critical for the
adjustment of hormonal regulation in commercially valuable
species, such as king crabs (Dvoretsky et al., 2021).

The expression and release of neurohormones in the XO-
SG complex is regulated by neurons or factors secreted by
peripheral cells and tissues and that relay signals that encode
information about the internal and external environments
(Aréchiga et al., 1985; Christie, 2011). Moreover, studies report
that environmental and endogenous factors, such as light, dark,
stressful stimuli, and circadian rhythms, affect this expression

and release (Aréchiga et al., 1985; García and Aréchiga, 1998).
For example, the expression and release of neuropeptides, such
as the red pigment-concentrating hormone and the crustacean
hyperglycemic hormone (CHH), in the XO-SG complex follows a
circadian rhythm, as the complex is driven by retinal illumination
(Glantz et al., 1983). Furthermore, hormones secreted by
the XO-SG complex regulate the circadian rhythm depending
on the adaptation of the eyes and body to light and the
environment (Aréchiga et al., 1985; Rao, 2001; Aréchiga and
Rodriguez-Sosa, 2002). These effects are reportedly mediated
by various neurotransmitters and modulators (Fingeman and
Nagabushanam, 1992); however, the mechanisms underlying the
interaction between neurons of the visual system and the XO-SG
complex in crustaceans are poorly understood.

The morphology of and relationships between the neural
elements of the optic lobes of crabs have been comprehensively
studied, and the neural elements reportedly demonstrate
a highly ordered retinotopic organization (Sztarker et al.,
2005, 2009). studies on several crustacean species (Harzsch
and Hansson, 2008; Wolff et al., 2012; Krieger et al.,
2015; Maza et al., 2016, 2021; Sayre and Strausfeld, 2019;
Strausfeld et al., 2020; Strausfeld, 2021) report detailed
neuroanatomical descriptions of highly ordered centers in
the eyestalks. In previous decades, a variety of neuroactive
substances, including serotonin (5-HT), dopamine (DA),
GABA, acetylcholine (ACh), and various neuropeptides, such
as enkephalin, substance P, molt-inhibiting hormone, red
pigment-concentrating hormone, and CHH, have been identified
in the crustacean brain and eyestalks by electrophoresis, high-
performance liquid chromatography, and immunocytochemistry
(Hildebrand et al., 1974; Mancillas et al., 1981; Cooke and
Sullivan, 1982; Elofsson et al., 1982; Beltz and Kravitz,
1983; Elofsson, 1983; Nassel et al., 1985; Schueler et al.,
1986; Siwicki and Bishon, 1986; Mangerich and Keller, 1988;
Rudolph and Spaziani, 1990; Beltz, 1999; Sullivan and Beltz,
2004; Polanska et al., 2007, 2012; Santhoshi et al., 2008;
Christie, 2011; Pérez-Polanco et al., 2011; Stewart et al., 2013;
Rajendiran and Vasudevan, 2016).

Additionally, 5-HT, DA, GABA, FMRFamide, and substance
P have been detected and attributed to single neurons in
the optic neuropils and lateral protocerebrum of Stomatopoda
(Thoen et al., 2017, 2019) and a few anomuran and brachyuran
species (Krieger et al., 2010, 2012; Wolff et al., 2012; Strausfeld
et al., 2020; Strausfeld, 2021). Furthermore, multiple studies
have demonstrated that neurotransmitters can modulate visual
information processing in arthropods (Crow and Bridge, 1985;
Kloppenburg and Erber, 1995; Chen et al., 1999; Cheng and Frye,
2020), and various neurotransmitters reportedly regulate the
release of neuropeptides from the XO-SG complex (Fingerman,
1997; Saenz et al., 1997; Lee et al., 2000; Alvarez Alvarado et al.,
2005; Pitts and Mykles, 2015).

Despite numerous studies, there is little information about
neurotransmitters, especially the Ach lobe of the optic nerve.
The most accurate marker of cholinergic neurotransmission is
antibodies against choline acetyltransferase (ChAT), an enzyme
involved in Ach biosynthesis (Yasuyama and Salvaterra, 1999)
and encoded by the Cha gene (Itoh et al., 1986).
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Moreover, the physiological roles and neuroarchitectures
of cells synthesizing neurotransmitters in the optic and
neuroendocrine centers of crustacean eyestalks are only
partially known. Neurons can be mediated by more than one
neurotransmitter, and a neurotransmitter can exert varying
and even opposing effects on neurons (Nusbaum et al., 2001;
Marder and Thirumalai, 2002; Birren and Marder, 2013).
Thus, mapping neurotransmitters and co-transmitters and
studying their functional interactions and roles in the optic and
neuroendocrine centers is a necessity. Therefore, in this study,
we analyzed the distribution of neurons expressing markers for
5-HT, DA, and ACh in the eyestalks of P. camtschaticus.

MATERIALS AND METHODS

Preparation of Animal Tissue Samples
We captured adult male red king crabs (Tilesius, 1815) measuring
∼150 mm in carapace width in the northwestern Pacific Ocean.
Thereafter, the animals were kept in aerated seawater tanks
at a temperature of 5 ± 0.5◦C, a salinity of 30–31%, and
a water-soluble oxygen concentration of 8.1–8.5 mg/L under
natural light–dark cycles. During the 2 weeks of adaptation,
the water in the tanks was changed three times weekly, and
the animals were fed fresh blue mussels (Mytilus edulis) once
every 2 days. Subsequently, the animals were anesthetized for
at least 1 h on ice, and their eyestalks and supraesophageal
ganglion were immediately dissected and fixed. These procedures
were conducted in accordance with the European Community
Council Directive of November 24, 1986 (86/609/EEC). All
possible efforts were taken to minimize the number of animals
used in this study.

Immunohistochemical Analysis
The eyestalk and supraesophageal ganglion were fixed with
4% paraformaldehyde dissolved in phosphate-buffered saline
(PBS; pH 7.4) for 2 h at 4◦C. The fixed samples were washed
several times with PBS and incubated overnight in 30% sucrose
(prepared in PBS) at 4◦C for cryoprotection. Thereafter, the
specimens were embedded in the optimum cutting temperature
medium Cryomount (Cat. 45830; HistoLab, Espoo, Finland),
frozen, and cut into 25–35-µm serial sections using a Cryo-Star
HM560 MV cryostat (Thermo Fisher Scientific, Waltham, MA,
United States). These sections were mounted on slides and coated
with poly-L-lysine (Sigma, St. Louis, MO, United States), after
which they were air-dried and stored at −20◦C for subsequent
staining. We performed immunohistochemical staining of ChAT,
tyrosine hydroxylase (TH), and 5-HT in the serial transverse
sections through the eyestalks. We used a coordinate system
previously proposed for crabs, wherein the eyestalk was oriented
at 90◦ to the horizontal plane (Sztarker et al., 2005).

For immunohistochemical staining, the freshly frozen sections
were processed, as described previously (Dyachuk et al., 2015).
To eliminate nonspecific binding, the slides were incubated
overnight in a blocking buffer comprising 10% normal donkey
serum, 1% Triton-X 100, and 1% bovine serum albumin (BSA;
Millipore, Burlington, MA, United States) dissolved in 1× PBS at

4◦C. Additionally, we dissolved the following polyclonal primary
antibodies in this buffer: rabbit anti-TH (1:500; Millipore,
Burlington, MA, United States), rabbit or goat anti-5-HT
(1:2000; ImmunoStar Inc., Hudson, WI, United States), and goat
anti-ChAT (1:500; Millipore, Burlington, MA, United States).
Moreover, a primary mouse anti-synapsin antibody (1:500;
clone 3C11; Developmental Studies Hybridoma Bank, Iowa
City, IA, United States) was also used, as previously described
(Krieger et al., 2012). Subsequently, the sections were washed
in 0.01 M PBS (pH 7.4) containing 0.5% Triton X-100 (pH
7.4) prior to incubation with 488-, 555-, or 647-Alexa Fluor-
conjugated donkey secondary antibodies (1:1000; Invitrogen,
Thermo Fisher Scientific, Waltham, MA, United States) along
with the nuclear marker 4′,6-diamidino-2-phenylindole (DAPI;
Sigma-Aldrich) for 2 h at 22◦C. The sections were then washed
with PBS and embedded in glycerol (Merck, Kenilworth, NJ,
United States).

Primary Antibody Specificity and
Immunohistochemical Control
We used polyclonal rabbit or goat antibodies that targeted
BSA-bound 5-HT with paraformaldehyde (Cat. Nos. 20080 and
20079, respectively; ImmunoStar Inc., Hudson, United States).
According to manufacturer instructions, staining with these
antibodies is completely eliminated upon pretreatment with
25 µg of the 5-HT-BSA conjugate per 1 mL of diluted antibody.
We demonstrated that overnight preincubation of the antibody
with 10 µg/mL of the conjugate (Cat. No. 20081; ImmunoStar
Inc., Hudson, United States) at 4◦C completely eliminated 5-HT
immunolabeling in our control tissues. Furthermore, overnight
preadsorption of the diluted antibody with 10 mg/mL BSA at 4◦C
did not affect this staining (i.e., these antibodies recognized 5-HT
alone and not BSA). This 5-HT antibody has been used to detect
5-HT in arthropod brains, including that of crabs, hermit crabs,
and lobsters (Beltz and Kravitz, 1983; Elofsson, 1983; Harzsch and
Waloszek, 2000; Sayre and Strausfeld, 2019).

The rabbit anti-TH antibody (Cat. No. AB152; Millipore,
Burlington, MA, United States) targets TH as a key enzyme
involved in tyrosine biosynthesis. The antibody against TH
was previously identified in the eyestalk ganglia of the blue
crab Callinectes sapidus (Wood and Derby, 1996) and also
in that of the crab Neohelice granulata (Klappenbach et al.,
2012; Maza et al., 2021). Previous immunohistological studies
on related crustaceans demonstrated that antibodies against
DA and TH yield highly consistent staining patterns (Cournil
et al., 1994; Wood and Derby, 1996), thereby validating the
use of a TH antibody as a reliable marker of dopaminergic
neurons in crustaceans. Cytoplasmic ChAT, which synthesizes
acetylcholinesterase (AChE), is a more specific marker of
cholinergic neurons than AChE itself. In this study, we
utilized the manufacturer-recommended concentration anti-
ChAT along with a concentrated blocking buffer to eliminate
nonspecific binding. Antibodies against these proteins are used
as phenotypic markers for cholinergic neurons (Salvaterra
and Kitamoto, 2001). We performed anti-ChAT labeling
similar to that for TH and 5-HT, with the exception of
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the primary antibody. Polyclonal goat anti-ChAT (Cat. No.
AB143; Millipore, Burlington, MA, United States) was diluted
to 1:500 in blocking buffer, and we followed a recently
published protocol for ChAT immunostaining (Kotsyuba and
Dyachuk, 2021). To avoid nonspecific immunorecognition, we
performed immunohistochemistry by bypassing the use of
primary antibodies and used only secondary antibodies (1:500–
1000; I5006, I5381, and I5256; Sigma, St. Louis, MO, United
States). We cut and stained at least 30 tissue sections of
the eyestalks for each combination of the immunolabels. To
visualize the neural structures of the eyestalks, these sections
were incubated with mouse monoclonal anti- synapsin, which
targets a presynaptic marker (SYNORF1 or antibody 3C11).
A previous study showed that this antibody detects an epitope
widely conserved in the nervous systems of arthropods, including
that of crustaceans (Harzsch et al., 1997; Beltz et al., 2003; Harzsch
and Hansson, 2008; Krieger et al., 2012, 2015). The sections were
then incubated with 10 mg/mL of the nuclear marker DAPI (in
PBS) following pre-incubation with the secondary antibody.

Microscopy and Imaging
Images for immunohistochemistry were captured with a
Zeiss LSM 700 confocal microscope (Carl Zeiss, Oberkochen,
Germany) and analyzed using ImageJ software (National
Institutes of Health, Bethesda, MD, United States). This software
was used for three-dimensional visualization and analysis of
the confocal stacks. Each section was sequentially scanned
for each fluorophore, and separate and overlaid (of all three
channels) images were obtained, which were subsequently
converted into projected images using subsets of z-stacks. The
converted images were saved as TIFF-images and transferred to
Photoshop CS software (Adobe, San Jose, CA, United States), and
their contrast and brightness were adjusted for optimal clarity.
Negative controls for each fluorochrome were scanned using
the same settings.

Nomenclature
The neuroanatomical nomenclature used in this study is based
on that proposed by Sandeman et al. (1992, 1993), with some

FIGURE 1 | Eyestalks of the red king crab Paralithodes camtschaticus. (A) Photographs demonstrating the position of the eyestalks in P. camtschaticus.
(B) Diagram of the optic neuropils, SG, and LP (dorsal view). (C) SYN detected in the optic neuropils and LP of the dorsal to ventral sections. (D) SYN and TH
detected in optic neuropils, LP, and OT. Green, SYN; magenta, TH. Dashed lines in panels (C,D) indicate cells corresponding to the SG. Scale bars = (A) 1 cm and
(C) 100 µm. La, lamina; Me, medulla; Lo, lobula; LoP, lobula plate; 1, 2, 3, 5, cell clusters; OT, optic tract; LP, lateral protocerebrum; SYN, synapsin; D, dorsal; V,
ventral; L, lateral; M, medial; A, anterior; P, posterior.
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modifications adopted from Harzsch and Hansson (2008) and
Richter et al. (2010). Additionally, we classified the major cell
types and neuropils in the P. camtschaticus eyestalks according
to previously described classifications in the eyestalks of several
decapod species (Wang-Bennett and Glantz, 1987a,b; Sztarker
et al., 2005; Krieger et al., 2010, 2012; Sztarker and Tomsic,
2014). In this study, we did not study the distribution of tested
neurotransmitters in the hemiellipsoid bodies.

RESULTS

General Neuromorphology of
Paralithodes camtschaticus Eyestalks
We determined that the compound eyes of P. camtschaticus were
vertically elongated ellipsoids located on the eyestalks at the front
of the carapace (Figure 1A). The eyestalks had an average height
and width of 12.3 ± 1.1 mm and 6.4 ± 0.5 mm, respectively.

FIGURE 2 | Immunolabeled optic neuropils, SG, and lateral protocerebrum.
Regions were labeled with DAPI (blue) and anti-SYN (green) or anti-5-HT,
anti-ChAT (red), and anti-TH (magenta). (A) Dorsal view of SYN-positive
immunostaining in the Me, Lo, and LoP. (B) Ventral view of immunolabeled
SYN- and ChAT-positive immunostaining in the Me, Lo, and LoP. (C) Tissue
section displaying high TH immunostaining in the LP adjacent to the PT.
Dashed line in panel (B) indicates cells of the SG. Scale bars = 100 µm. Me,
medulla; Lo, lobula; LoP, lobula plate; LP, lateral protocerebrum; OT, optic
tract; PT, protocerebral tract; SYN, synapsin; D, dorsal; V, ventral; L, lateral; M,
medial.

Similar to other decapods (Harzsch and Hansson, 2008; Krieger
et al., 2010, 2012), the eyestalks, optic neuropils (lamina, medulla,
lobula, and lobula plate), SG, and lateral protocerebrum of
P. camtschaticus were arranged from the periphery to the
center beneath the retina, respectively (Figures 1B,C). All
neuropils were identified by detecting immunolabeled synapsin
(Figures 1C,D). In the lamina, immunolabeled synapsin was
detected in a thin layer that corresponded to the plexiform layer
(Figure 1D). The monopolar neuronal somata (cell cluster 1)
were localized above the lamina.

The second optic neuropil (i.e., the medulla) was dome-
shaped (Figures 1C,D, 2A). Most cell bodies (cell cluster 2)
associated with the medulla were located above the neuropil.
Although the third optic neuropil (i.e., the lobula) was also
dome-shaped, it was slightly elongated along the lateromedial
axis (Figures 1C,D, 2A,B). Moreover, cell bodies in cluster 3
were visible in the vicinity of the lobula (Figures 1C,D, 2C).
Consistent with other representatives of anomuran crustaceans
(Krieger et al., 2010, 2012), the lobula plate was located next to
the lobula and is a small neuropil that displayed a high number
of immunolabeled synapsin (Figures 1C, 2A,B). Additionally, the
neurohemal SG was located at the level of the lobula and bordered
cell cluster 3 (Figures 1C,D, 2B). Our observation regarding the
position of the lobula plate near the lobula and immediately
beneath the SG in P. camtschaticus agreed with that in the crab
Chasmagnathus granulatus (Sztarker et al., 2005).

The lateral protocerebrum that comprised distinct neuropils,
including the terminal medulla and the hemiellipsoid body, was
located proximal to the lobula (Figures 1C,D, 2C). In fact, the
lateral protocerebrum exhibited significant immunostaining of
synapsin; however, no clear separation between the terminal
medulla and the hemiellipsoid body was detected (Figures 1C,D).
The lateral protocerebrum is a part of the brain that connects
with the optic neuropils via the optic tract (Figure 2C) and with
the anterior medial protocerebral neuropil and other areas of the
brain via the protocerebral tract.

Distribution of Serotonin, Tyrosine
Hydroxylase, and Choline
Acetyltransferase in the Eyestalk
We detected 5-HT, TH, and ChAT in a majority of eyestalk
regions, including the optic neuropils, SG, and lateral
protocerebrum (Figures 3–11).

The Lamina
In the lamina (the first optic neuropil), few of the 5-HT-
and ChAT-positive cell bodies were located in cell cluster 1
(Figures 3A–D,B1–D1). The sizes of these labeled cell bodies
ranged from 15 to 20 µm and contained large nuclei that
were 6–10 µm in diameter. Unfortunately, immunolabeling
did not help in deciphering the processes of these cells.
Notably, double immunolabeling determined that 5-HT and
ChAT co-localized in the cell bodies (Figures 3B1–D1).
Additionally, we identified a high number of similar-sized
5-HT- and ChAT-positive cell bodies in the proximal cell
layer (below the lamina synaptic layer; Figures 3B–D and
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FIGURE 3 | Immunolocalization of 5-HT and ChAT in the lamina of Paralithodes camtschaticus. (A) Horizontal section through an eyestalk showing positive
immunostaining for ChAT and 5-HT in the optic neuropils, SG, and LP. (B–D) Detection of ChAT and 5-HT in cell cluster 1 above and below the plexiform layer of the
La. (B1–D1) Double immunolabeling of ChAT and 5-HT in cell cluster 1 of the La. Arrows indicate the co-localization of 5-HT with ChAT in neurons. (E) 5-HT-positive
immunostaining in varicose processes of the La. Green, 5-HT; red, ChAT; blue, DAPI. Dashed line in panels (A) indicates cells of the SG. Scale bars = (A–D) 100 µm
and (B1–E) 50 µm. La, lamina; Me, medulla; Lo, lobula; LP, lateral protocerebrum; 1, 2, 3 cell clusters; OT, optic tract; PT, the protocerebral tract; D, dorsal; V,
ventral; L, lateral; M, medial.

Supplementary Figure 1B). In fact, we observed co-localization
of 5-HT and ChAT in most of these cell bodies. Furthermore,
numerous 5-HT-positive processes with varicosities were located
in the lamina plexiform layer adjacent to the first optic
chiasma (Figures 3A,B,D,E). Moreover, we found numerous
TH-positive fibers that interconnected the lamina and the
medulla (Figures 4A–C and Supplementary Figures 1A,B, 2A–
C). These fibers displayed varicosities and displayed highly
intense immunostaining of TH in the lamina plexiform layer
and in the first (or the outer) optic chiasma (Figure 4A and
Supplementary Figures 1A,B, 2B).

The Medulla
We detected few associations between certain TH-positive fibers
and TH-positive cell bodies of cluster 2 (Figures 4A–C and
Supplementary Figure 2B). These cell bodies had sizes ranging
from 12 to 18 µm (Figures 4A–C, 5A,B). Interestingly, the

identified TH-positive neuronal populations included a small
group of TH-positive neurons that had somata that were located
in the first optic chiasma (arrows in Figures 4A,A1; large
arrows in Supplementary Figure 1B). Moreover, fibers that
showed intense TH immunolabeling were detected in the distal
portion of the medulla in layers 1 through 4 (Figures 4A, 5A
and Supplementary Figures 2A–C), which comprise ∼27 to
∼34% of the depth of a neuropil that they cover (Sztarker
and Tomsic, 2014). Layers 5 through 11, except for single fine
processes, hardly exhibited any TH-positive immunostaining
(Supplementary Figures 2B,C). Furthermore, we detected 5-HT-
and ChAT-positive cell bodies in cluster 2 (Figures 3A, 5C–E);
however, the TH-positive cells did not co-localize with either 5-
HT- or ChAT-positive cells. Remarkably, double immunolabeling
revealed that ChAT co-localized with 5-HT in most but not all
5-HT-positive perikarya (Figures 5C–E, arrowheads in C1–E1).
Notably, the medulla was innervated by 5-HT-positive fibers.
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FIGURE 4 | Immunolocalization of TH and 5-HT in the medulla. (A) TH- and
5-HT-positive bodies of neurons connecting the La to the Me. (A1)
Localization of TH in neurons at the first Ch and closer to the Me (arrows).
(B) Immunolocalization of TH and 5-HT in neurons and nerve fibers of the Me.
(C) TH localization in neurons and varicose fibers connecting the La and the
Me. Green, 5-HT; magenta, TH; blue, DAPI. Scale bars = (A,B) 100 µm and
(A1,C) 50 µm. La, lamina; Me, medulla; 1, 2, cell clusters; Ch, optic chiasma;
D, dorsal; V, ventral; A, anterior; P, posterior.

Layers 1 through 3 contained thin fibers diffusely projecting
along the columns of the medulla and also contained labeled
tangentially oriented fibers (Figures 5C,E). Thus, the medulla
comprised 5-HT- and ChAT-positive fibers that formed large
bundles of fibers and extended into the lobula and lobula plate
(Figures 6A–C).

The Lobula and Lobula Plate
In the lobula, we detected TH, 5-HT, and ChAT in cell bodies and
fibers (Figures 6A–C, 7A–H and Supplementary Figure 2A).
Additionally, the labeled bodies of neurons that formed cluster 3
ranged from 10 to 18 µm (Figures 7A,B,D–H). Notably, double
immunolabeling indicated that a portion of the ChAT-positive
neuronal population also displayed co-localization of ChAT with
5-HT (Figures 7F–H). The anterior edge of the lobula near the
lobula plate contained solitary TH-positive cell bodies ranging
from 25 to 30 µm in size (Figures 8A,B) and grouped ChAT-
positive neuronal perikarya ranging from 10 to 28 µm in size
(Figures 8B,C).

All layers of the lobula displayed immunostaining
(Figures 6A–C, 7A–C and Supplementary Figure 2A). For
example, the proximal regions of layers 6 through 11, which
are supplied by fibers extending from the medulla, showed
highly intense 5-HT staining. By contrast, the distal region of

layers 1 through 5 exhibited moderately intense 5-HT staining
(Figure 6A). The lobula plate of P. camtschaticus received a thick
bundle of 5-HT- and ChAT-positive fibers corresponding to
the columns of the medulla (Figures 6A,C), and the lobula was
connected to the medulla and lobula plate via a bundle of 5-HT-
(Figure 6A) and ChAT-positive fibers (Figures 6B,C), which ran
through the lobula to the lobula plate. Moreover, the lobula was
invaded by thick 5-HT-positive axons from the central brain and
that ramified in the neuropil (Figure 8D).

The Sinus Gland
The SG of P. camtschaticus bordered cluster 3 comprising TH-,
5– HT-, and ChAT-positive neurons (Figures 1C,D, 2B, 3A,
8D, 9A,B and Supplementary Figure 2A). Interesting, only cells
ranging from 8 to 10 µm in size exhibited 5-HT- and ChAT-
positive immunostaining in the SG, with these cells containing
a large nucleus and a narrow rim of cytoplasm (Figures 9B,B1).
Additionally, the ChAT-positive neuronal processes in few of
the sections showed staining in the anterior edge of the SG
(Figures 9C,E). Previous studies observed neuronal processes in
the SG by electron microscopy (Hodge and Chapman, 1958).
Double immunolabeling revealed that ChAT co-localized with
5-HT in few of the SG cells (Figures 9C–E). Although fibers
between cluster 3 and the SG were positive for 5-HT (Figure 8B),
we did not identify TH immunolabeling in SG cells (Figure 9B
and Supplementary Figure 2A).

The Lateral Protocerebrum
Fluorescence labeling revealed the presence of TH, ChAT, and 5-
HT in the lateral protocerebrum (Figures 2C, 9A, 10A–F, 11A–D
and Supplementary Figure 2A); however, it was not dominated
by TH-positive immunostaining. Owing to difficulties in reliable
orientation of the tissue sections, we could only study the
most conspicuous substructures within the lateral protocerebrum
(i.e., the hemiellipsoid body and the terminal medulla) by
combining anti-synapsin with anti-TH immunolabeling. We
did not consider hemiellipsoid neuropils in this study. The
hemiellipsoid body comprised TH-immunolabeled fibers, which
branched into numerous thin fibers (Figure 10A). Moreover,
cells ranging in size from 15 to 45 µm and having large
varicose processes exhibited TH-positive immunostaining in the
caudal part of the lateral protocerebrum (Figures 10A,A1).
Indeed, their processes extended near the hemiellipsoid body
and towards the optic tract (Figure 10A). The sections through
the lateral protocerebrum, dissected at various levels, showed
intense immunolabeling of rather coarse neuritis throughout
the medulla terminalis (Figures 9A, 10B, 11A–B). Remarkably,
some of these fibers projected to the protocerebral and optic
tracts. Furthermore, small groups of neurons of various sizes (10–
35 µm) that were located laterally to the hemielliposoid body in
the terminal medulla displayed positive immunostaining for 5-
HT and ChAT (Figures 10C–F). In fact, double immunolabeling
revealed that 5-HT co-localized with ChAT in some of these
neurons (Figures 10D–F).

We detected high levels of 5-HT and TH near cell cluster
5 (Figures 11A–C). The data also indicated that cells of
various sizes (14–35 µm) contained ChAT (Figures 11C,D),
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FIGURE 5 | Immunolocalization of 5-HT, TH, and ChAT in the medulla. (A) TH- and 5-HT-positive neurons and nerve fibers in the Me. (B) Immunohistochemical
localization of TH in neurons of cell cluster 2. (C–E) Double immunolabeling of 5-HT and ChAT in neurons and nerve fibers of the Me. (C1–E1) Higher magnification
of 5-HT- and ChAT-positive neurons of the Me. Arrows indicate colocalization of 5-HT with ChAT in some of the neurons. Green, 5-HT; red, ChAT; magenta, TH; blue,
DAPI. Scale bars = (A,C–E1) 100 µm and (B) 50 µm. Me, medulla; 2, cell clusters; D, dorsal; V, ventral; L, lateral; M, medial.

whereas single neurons 15–25 µm in diameter contained 5-HT
(Figure 11B1). Furthermore, we observed that numerous nerve
fibers showing intense TH-positive immunostaining were present
lateral to cluster 5 in the XO region (Figures 11A,A1). Notably,
the TH-positive fibers were part of a larger bundle of fibers, some
of which extended to the SG.

DISCUSSION

These results clearly demonstrate the presence of enzymes
involved in DA, 5-HT, and ACh synthesis in the optic lobe of
P. camtschaticus.

The lamina, which was the first optic neuropil, harbored 5-
HT- and TH-positive processes that were distributed throughout
the plexiform layer; however, we observed no co-localization

of 5-HT with TH in these fibers. Most monopolar somata
were unreactive to primary antibodies used in this study.
Nevertheless, some cells that were identical in size and located
above and below the lamina exhibited double immunolabeling
of 5-HT and ChAT. It is possible that amacrine cells with
displaced cell bodies are located in the layer of monopolar
cells above the lamina (Glantz et al., 2000). However, the
double-immunolabeled cell bodies located below the lamina
are most likely those of amacrine neurons, which would be
consistent with previously described observations for several
crayfish species (Nässel, 1977; Glantz et al., 2000; Polanska et al.,
2007) and the crab C. granulatus (Sztarker et al., 2009). There
is evidence that neuroactive substances are possibly released by
amacrine cells under quantitatively varying levels of excitation
(Marder et al., 1995). These neuromodulatory substances may
increase the photoreceptor sensitivity to dark adaptation and/or
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FIGURE 6 | Immunolocalization of 5-HT and ChAT in the lobula and the lobula plate. (A) 5-HT-positive nerve fibers in the Lo and LoP. (B) ChAT-positive nerve fibers
between in the Me and Lo. (C) ChAT-positive nerve fibers in the Lo and LoP. Arrows indicate immunoreactive nerve fibers. Green, 5-HT; red, ChAT; blue, DAPI. Scale
bars = 100 µm. Me, medulla; Lo, lobula; 2, 3 cell clusters; LoP, lobula plate; D, dorsal; V, ventral; L, lateral; M, medial.

circadian rhythms (Aréchiga et al., 1990). Notably, 5-HT is
involved in circadian clock regulation (Ichikawa, 1994; Pyza and
Meinertzhagen, 1996; Chen et al., 1999) and has been identified
in eyestalks of all previously studied crustacean species (Beltz
and Kravitz, 1983; Elofsson, 1983; Nassel et al., 1985; Sandeman
et al., 1988). Additionally, 5-HT reportedly increases the receptor
potential by modulating its K+ conductance in various arthropod
species (Aréchiga et al., 1990; Weckström, 1994; Hevers and
Hardie, 1995), and another study demonstrated 5-HT as a local
modulator of retinal activity (Aréchiga et al., 1990). Moreover, in
insects, voltage-dependent K+ conductivities in photoreceptors
are activated during depolarization, thereby reducing membrane
resistance, adjusting the bandwidth in accordance with functional
requirements, and causing shifts in photoreceptor performance
toward higher contrast gains and lower membrane bandwidths
(Heras et al., 2018).

In this study, fibers in the lamina originated from TH-positive
cell bodies at the dorsal border of the medulla. These cells in
P. camtschaticus can be identified as tangential cells, with their
identification based on the location of their cell bodies at the

distal edge of the medulla. Their location is also dependent on
the presence of lateral processes in the lamina extending over
several cartridges and an axon connecting the lamina with the
medulla (Nässel, 1977; Wang-Bennett and Glantz, 1987a,b). The
morphology of tangential cells has been described in detail for
several crustacean species using Golgi-impregnation techniques
(Nässel, 1977; Strausfeld and Nässel, 1981; Wang-Bennett and
Glantz, 1987a,b; Sztarker et al., 2005, 2009). In P. camtschaticus,
the TH-positive tangential cells exhibited few similarities with
catecholaminergic tangential neurons previously identified in
Pacifastacus leniusculus (Elofsson et al., 1977). Remarkably, the
amacrine and tangential neurons form local circuits within the
lamina in crustaceans (Nässel, 1977; Stowe et al., 1977; Strausfeld
and Nässel, 1981; Sztarker et al., 2005, 2009; Thoen et al., 2017)
and insects (Strausfeld, 1976; Douglass and Strausfeld, 2005).

The Medulla
We detected 5-HT, ChAT, and TH in numerous immunoreactive
processes in the medulla of P. camtschaticus. Consistent with our
findings, the source of these processes can be columnar, amacrine,
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FIGURE 7 | Immunolocalization of 5-HT, TH, and ChAT in the lobula. (A) 5-HT- and ChAT-positive cell bodies and nerve fibers in the Lo. (B) TH- and 5-HT-positive
cell bodies and nerve fibers in the Lo with TH-positive fibers running above cell cluster 3. (C) TH-and 5-HT-positive fibers of the Lo. (D) Immunohistochemical
localization of TH in the somata of cell cluster 3. (E) Immunohistochemical localization of 5-HT- and TH-positive neurons of cell cluster 3. (F–H) Double
immunolabeling of ChAT and 5-HT in cell cluster 3 of the distal part of the Lo. Arrows indicate co-localization of 5-HT with ChAT in neurons. Green, 5-HT; red, ChAT;
magenta, TH; blue, DAPI. Scale bars = (A–C) 100 µm and (D–H) 50 µm.

and tangential neurons previously identified by neuroanatomical
methods in crustaceans (Sztarker and Tomsic, 2014). Apparently,
few of the 5- HT-, ChAT-, and TH-positive processes in the
medulla appear to be derived from 5- HT-, ChAT-, and TH-
positive columnar neurons, whose bodies localize along the distal
surface of the anterior medulla. Consistent with our findings,
ChAT-positive columnar neurons with cell bodies along the
distal surface of the medulla were identified in crayfish (Wang-
Bennett et al., 1989) and Drosophila melanogaster (Buchner
et al., 1986). Moreover, the overall distribution of ChAT in the
medulla and lobula follows similar patterns between crustaceans
(Wang-Bennett and Glantz, 1986; Wang-Bennett et al., 1989)
and insects (Buchner et al., 1986). Furthermore, a small number

of neurons in the lobula of P. camtschaticus displayed TH-
positive immunostaining. These neurons are derived from cell
bodies present above the distal surface of the medulla and have
dendrite-like processes at specific levels of the medulla and
terminate in the lobula (Bengochea et al., 2018). The TH- and
ChAT-positive cell bodies observed at the anterior rim of the
medulla in P. camtschaticus may be those of tangential neurons.

The Lobula and Lobula Plate
We identified ChAT-, TH-, and 5-HT-positive processes in the
lobula and lobula plate. The ChAT-positive fibers in the lobula
plate are likely derived from sets of immunoreactive cell bodies
at the anterior rim of the P. camtschaticus medulla. Indeed,
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FIGURE 8 | Immunolocalization of TH, ChAT, and SYN in the lobula, lobula plate, and SG. (A) Photographs demonstrating the position of TH-positive cell bodies
near the Lo and LoP. (B) TH- and ChAT-positive immunostaining in the SG (yellow arrows: ChAT-positive somata). TH-positive fibers running between neurons of
cluster 3 and the SG (white arrows). (C) ChAT-positive neurons localized near the front edge of the Lo and near the LoP. (D) TH-positive nerve fibers connect the Lo
and LP. Green, SYN; magenta, TH; red, ChAT; blue, DAPI. Dashed lines indicate cells of the SG. Scale bars = 100 µm. Lo, lobula; LoP, lobula plate; LP, lateral
protocerebrum; SYN, synapsin; D, dorsal; V, ventral; L, lateral; M, medial; A, anterior; P, posterior.

relationships between the medulla, lobula, and lobula plate
have been described in several crustacean species (Harzsch and
Hansson, 2008; Krieger et al., 2010, 2012). Furthermore, our
observation that the 5-HT- and ChAT-positive fibers connect the
lobula to the lobula plate in P. camtschaticus is consistent with
that of studies on the crab N. granulata and suggests that the
columnar neurons projecting from the lobula convey information
toward the lobula plate (Bengochea et al., 2018).

The Lateral Protocerebrum
Our observation of highly intense TH-positive immunostaining
in neurons and nerve fibers in the lateral protocerebrum in

P. camtschaticus has been validated in studies on N. granulata
that reported intense dopaminergic innervation (Maza et al.,
2021). Similar to previously studied crustacean species, such as
Procambarus clarkii, P. leniusculus, and Scylla olivacea (Elofsson
and Klemm, 1972; Elofsson et al., 1977; Alvarez Alvarado et al.,
2005; Khornchatri et al., 2015; Sayre and Strausfeld, 2019;
Strausfeld et al., 2020; Maza et al., 2021), we detected TH in the
XO of P camtschaticus. The XO is formed by neurosecretory cells
that synthesize various neuropeptides and send axons to the SG
(Andrew et al., 1978; Jaros, 1978; Böcking et al., 2002; Hopkins,
2012). These neuropeptides are transported along the axons for
storage in the SG, from which they are subsequently circulated
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FIGURE 9 | Immunolocalization of 5-HT, TH, and ChAT in the lobula and SG. (A) Tissue section through an eyestalk of Paralithodes camtschaticus displaying the
location of the SG near the Lo. (B) Somata of TH-positive neurons located in cluster 3 near the SG. (B1) Inset (B1) shows 5-HT-positive immunostaining at higher
magnification in the endogenous cells of the SG. (C–E) Double immunolabeling of 5-HT and ChAT in cells of the SG and showing co-localization of 5-HT with ChAT
in few of the cells (arrows). Green, 5-HT; red, ChAT; magenta, TH; blue, DAPI. Dashed line indicates cells corresponding to the SG. Scale bars = (A,B) 100 µm and
(B1–E) 50 µm.

directly into hemolymph (Fanjul-Moles, 2006). We identified
TH-positive neurons and processes on the periphery of the XO
in P. camtschaticus. Interestingly, we identified only individual
TH-positive fibers reaching the SG, although high levels of TH
in processes extending from cells of the XO to the SG have been
previously found in N. granulata (Maza et al., 2021). These data
confirm the role of DA as a neurotransmitter or neuromodulator
in XO neurons (Alvarez Alvarado et al., 2005; Christie, 2011).
To date, DA has been consistently reported as involved in the
differential regulation of activity in neurons that synthesize CHH
(Kuo et al., 1995; Sarojini et al., 1995; Zou et al., 2003; Chen
et al., 2020), pigment-concentrating hormones (Rodriguez-Sosa
et al., 1994; Fingerman, 1997), and the distal retinal pigment

lightness-assimilating hormone (Kulkarni and Fingerman, 1986).
Additionally, experimental studies on the effect of DA on CHH
release show that DA-induced increases in CHH and glucose
levels are absent in eyestalk-ablated animals. These results show
that DA enhances CHH release into hemolymph, which in turn
evokes hyperglycemic responses, and that the predominant site of
DA-induced CHH release is the XO-SG complex located within
the eyestalk (Zou et al., 2003).

Another neurotransmitter present in the crustacean eyestalks
is 5-HT (Rodriguez-Sosa et al., 1997). In the present study,
we identified 5-HT in axonal branches and several neuronal
varicosities in the XO. The presence of 5-HT-positive somata
and fibers proximal to the XO has been described in other
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FIGURE 10 | Immunolocalization of 5-HT, TH, and ChAT in the optic neuropils, SG, and lateral protocerebrum. (A) Tissue section showing high levels of TH-positive
immunostaining in the Me, Lo, and LP. (A1) TH-positive cells with large varicose processes in the LP. (B) High levels of TH in processes of both the HE and the TM.
(C) ChAT- and 5-HT-positive immunostaining in the HE and neurons in different regions of the TM. (D–F) Double immunolabeling of 5-HT and ChAT in neurons of the
TM. Green, 5-HT; red, ChAT; magenta, TH; blue, DAPI. Scale bars = 100 µm. Me, medulla; Lo, lobula; HE, hemiellipsoid body; TM, terminal medulla; PT,
protocerebral tract; 2, 3, 5 (ds), cell cluster; D, dorsal; V, ventral; L, lateral; M, medial; A, anterior; P, posterior.

crustacean species, including P. leniusculus (Elofsson, 1983),
Cherax destructor (Sandeman et al., 1988), and the crayfish
P. clarkii (Rodriguez-Sosa et al., 1997).

We identified separate TH- and 5-HT-immunopositive axons
in the optic nerve of P. camtschaticus, suggesting that some
of these axons may be efferent axons running from the
protocerebrum to the XO. The presence of immunopositive
axons close to the neurosecretory cells of the XO and the
effect of 5-HT on the activity of XO somata, as previously
described (Rodriguez-Sosa et al., 1997; Saenz et al., 1997; Basu
and Kravitz, 2003), indicate that 5-HT plays a modulatory role
in neurosecretion (Saenz et al., 1997; García and Aréchiga,
1998; Escamilla-Chimal et al., 2001; Harlıoğlu et al., 2020).
Furthermore, 5-HT involvement in regulating the release of
neuropeptides, including CHH (Basu and Kravitz, 2003; Chen
et al., 2020), gonad-inhibiting hormone (Richardson et al., 1991;
Sarojini et al., 1995; Fingerman, 1997; Chen et al., 2003), and
red- and black-pigment-dispersing hormones (Kulkarni and
Fingerman, 1986), from the SG complex has been experimentally

validated (Saenz et al., 1997). Although a previous study reported
the presence of 5-HT in the SG (Krieger et al., 2010, 2012)
and others confirmed its regulatory role in hormone release
(Cooke and Sullivan, 1982; Beltz, 1988), the endogenous sources
of 5-HT synthesis in the SG remain controversial.

The SG comprises axons and axon terminals of neurosecretory
cells and glial cells present in the XO (Andrew et al., 1978;
Jaros, 1978; Azzouna and Rezig, 2001). Glial cells in the SG have
been previously studied using electron microscopy (Hodge and
Chapman, 1958; Dircksen, 1992; Azzouna and Rezig, 2001), and
single secretory cells having a typical neurosecretory varicosity
filled with elementary granules have been described previously
in the SG of Carcinus maenas (May and Golding, 1983).
Nevertheless, the neurochemical organization and role of glial
cells and neurosecretory neurons in the SG remain poorly
understood. The present study demonstrated the presence of 5-
HT and ChAT in endogenous cells of the SG in P. camtschaticus.
Recent studies discovered that nitric oxide (NO) is synthesized in
the SG of the crayfish P. clarkii (Lee et al., 2000) and the green
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FIGURE 11 | Immunolocalization of 5-HT, TH, and ChAT in the lateral protocerebrum of Paralithodes camtschaticus. (A,A1) Tissue section through the eyestalk of P.
camtschaticus showing TH-positive immunostaining in the Lo and LP. (A1) Regions of the XO showing strong TH immunostaining. (B) TH-positive processes in the
LP near the cells of cluster 5 and regions of the TM. (B1–D) 5-HT- and ChAT-positive neurons and processes near cell cluster 5. TH-positive immunostaining in optic
neuropils and the LP. Scale bars = 100 µm. Lo, lobula; 5, cell cluster; LP, lateral protocerebrum; TM, terminal medulla; HE, the hemiellipsoid body; D, dorsal; V,
ventral; L, lateral; M, medial; A, anterior; P, posterior.

shore crab C. maenas (Pitts and Mykles, 2015). The site of NO
production, storage, and release is confined to supportive tissues
that contain glial cells according to Pitts and Mykles (2015), the
NO produced and released by supportive tissues modulates
the secretion of neuropeptides from axon terminals. In
P. camtschaticus, endogenous cells of the SG contained enzymes
for the synthesis of 5-HT and Ach. Furthermore, the lobula
of P. camtschaticus comprised cells that expressed DA, 5-HT,
and Ach, with these cells positioned near the major hemolymph
sinus that allows these neurotransmitters to be released into
the blood stream. Moreover, the positions of 5-HT- and ChAT-
positive endogenous cells in the SG indicated that 5-HT and

ChAT act as local neuromodulators. Thus, our data suggest that
SG cells regulate neurosecretion via interactions between several
neurotransmitters.

CONCLUSION

In summary, we identified the distribution of neurotransmitters
in the optic neuropils and XO-SG complex of the eyestalks
of P. camtschaticus. The results indicate the presence of
these neurotransmitters in immunoreactive fibers and neurons,
as well as endogenous SG cells, suggesting their roles in

Frontiers in Neuroanatomy | www.frontiersin.org 14 April 2022 | Volume 16 | Article 844654

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroanatomy#articles


fnana-16-844654 April 4, 2022 Time: 12:18 # 15

Kotsyuba and Dyachuk Neurotransmitters in Crustacean Eyestalks

regulating the release of neurohormones, a process that occurs in
several physiological reactions that determine animal behavior.
Hormone levels in crustaceans are mediated by numerous
humoral and neural pathways (Hodge and Chapman, 1958;
Shivers, 1976; Christie, 2011). Although further physiological
analysis is required to validate the presence of 5-HT and ChAT
in endogenous SG cells, the present data provide a broader
understanding of the role of neurotransmitters in the regulation
of neurohormone release. For example, localization of 5-HT- and
ChAT-positive cells in the SG indicates that 5-HT and ChAT
might be local modulators that participate in regulating the
secretion of neurohormones synthesized by the XO.
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Supplementary Figure 1 | Immunolocalization of serotonin (5-HT) and tyrosine
hydroxylase (TH) in the optic neuropil lamina of Paralithodes camtschaticus. (A)
TH-positive nerve fibers between the lamina and the medulla form the first optic
chiasma. (B) Varicose processes of TH-immunoreactivity in the lamina of a
plexiform layer and at the first chiasma. Arrows indicate 5-HT in the amacrine
neurons; large arrows indicate TH-positive neurons localized at the first chiasma.
Abbreviations: La, lamina; 1, cell clusters; D, dorsal; V, ventral; L, lateral; M,
medial; A, anterior; P, posterior. Scale bars = 100 µ m.

Supplementary Figure 2 | Immunolocalization of tyrosine hydroxylase (TH) in the
optic neuropils of Paralithodes camtschaticus. (A) Horizontal section showing the
immunohistochemical localization of TH in the optic neuropils (HN) and lateral
protocerebrum; (B,C) Immunohistochemical localization of TH in the neurons and
nerve fibers of the medulla. Abbreviations: La, lamina; Me, medulla; Lo, lobula;
SG, sinus gland; OT, optic tract; LP, the lateral protocerebrum; D, dorsal; V,
ventral; L, lateral; M, medial; A, anterior; P, posterior. Scale bar = 100 µ m.
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Tomsic, D., Sztarker, J., Berón, de Astrada, M., Oliva, D., and Lanza, E. (2017). The
predator and prey behaviors of crabs: from ecology to neural adaptations. J. Exp.
Biol. 220, 2318–2327. doi: 10.1242/jeb.143222

Wang-Bennett, L. T., and Glantz, R. M. (1986). Immunocytochemical visualization
of acetylcholine and glutamate in the brain and eyestalk of crayfish. Sot.
Neurosci. Abstr. 12:243.

Wang-Bennett, L. T., and Glantz, R. M. (1987a). The functional organization of the
crayfish lamina ganglionaris. I. Nonspiking monopolar cells. J. Comp. Physiol.
161, 131–145. doi: 10.1007/BF00609461

Wang-Bennett, L. T., and Glantz, R. M. (1987b). The functional organization of
the crayfish lamina ganglionaris. II. Large field spiking and nonspiking cells.
J. Comp. Physiol. 161, 147–160. doi: 10.1007/BF00609462

Wang-Bennett, L. T., Pfeiffer, C., Arnold, J., and Glantz, R. M. (1989). Acetylcholine
in the crayfish optic lobe: concentration profile and cellular localization.
J. Neurosci. 9, 1864–1871. doi: 10.1523/JNEUROSCI.09-06-01864.1989

Webster, S. G., and Keller, R. (1987). “Physiology and biochemistry of crustacean
neurohormonal peptides,” in Peptides and Amines in Invertebrates, eds M.
Thorndyke and G. J. Goldsworthy (Cambridge: Cambridge University Press),
173–196. doi: 10.1017/cbo9780511752230.011

Weckström, M. (1994). Voltage-activated outward currents in adult and nymphal
locust photoreceptors. J. Comp. Physiol. A. 174, 795–801.

Wolff, G., Harzsch, S., Hansson, B. S., Brown, S., and Strausfeld, N. (2012).
Neuronal organization of the hemiellipsoid body of the land hermit crab,
Coenobita clypeatus: correspondence with the mushroom body ground pattern.
J. Comp. Neurol. 520, 2824–2846. doi: 10.1002/cne.23059

Wood, D. E., and Derby, C. D. (1996). Distribution of dopamine-like
immunoreactivity suggests a role for dopamine in the courtship display
behavior of the blue crab, Callinectes sapidus. Cell Tissue Res. 285, 321–330.
doi: 10.1007/s004410050649

Yasuyama, K., and Salvaterra, P. M. (1999). Localization of choline acetyltransferase
expressing neurons in Drosophila nervous system. Microsc. Res. Tech. 45,
65–79. doi: 10.1002/(SICI)1097-0029(19990415)45:2&lt;65::AID-JEMT2&gt;3.
0.CO;2-0

Zeil, J., and Hemmi, J. M. (2006). The visual ecology of fiddler crabs. J. Comp.
Physiol. A. 192, 1–25. doi: 10.1007/s00359-005-0048-7

Zou, H. S., Juan, C. C., Chen, S. C., Wang, H. Y., and Lee, C. Y. (2003).
Dopaminergic regulation of crustacean hyperglycemic hormone and glucose

Frontiers in Neuroanatomy | www.frontiersin.org 18 April 2022 | Volume 16 | Article 844654

https://doi.org/10.1186/1742-9994-7-29
https://doi.org/10.1242/jeb.200.23.3067
https://doi.org/10.1016/0742-8413(90)90134-u
https://doi.org/10.1242/jeb.200.23.3079
https://doi.org/10.1016/s1567-133x(01)00011-4
https://doi.org/10.1002/cne.902690402
https://doi.org/10.1002/jez.1402650204
https://doi.org/10.1002/jez.1402650204
https://doi.org/10.2307/1542217
https://doi.org/10.1002/jemt.20511
https://doi.org/10.1016/0742-8413(95)00051-o
https://doi.org/10.1002/cne.24678
https://doi.org/10.1002/cne.10925
https://doi.org/10.1002/cne.902430402
https://doi.org/10.1002/jmor.1051500111
https://doi.org/10.1002/jmor.1051500111
https://doi.org/10.1016/j.cbpa.2012.10.029
https://doi.org/10.1007/BF00219572
https://doi.org/10.1007/978-3-642-66907-1_1
https://doi.org/10.7554/eLife.52411
https://doi.org/10.1002/cne.25152
https://doi.org/10.1002/cne.11026
https://doi.org/10.1002/cne.20755
https://doi.org/10.1002/cne.21942
https://doi.org/10.1002/cne.23589
https://doi.org/10.1002/cne.24788
https://doi.org/10.1242/jeb.143222
https://doi.org/10.1007/BF00609461
https://doi.org/10.1007/BF00609462
https://doi.org/10.1523/JNEUROSCI.09-06-01864.1989
https://doi.org/10.1017/cbo9780511752230.011
https://doi.org/10.1002/cne.23059
https://doi.org/10.1007/s004410050649
https://doi.org/10.1002/(SICI)1097-0029(19990415)45:2&lt;65::AID-JEMT2&gt;3.0.CO;2-0
https://doi.org/10.1002/(SICI)1097-0029(19990415)45:2&lt;65::AID-JEMT2&gt;3.0.CO;2-0
https://doi.org/10.1007/s00359-005-0048-7
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroanatomy#articles


fnana-16-844654 April 4, 2022 Time: 12:18 # 19

Kotsyuba and Dyachuk Neurotransmitters in Crustacean Eyestalks

levels in the hemolymph of the crayfish Procambarus clarkii. J. Exp. Zool. Part
A Comp. Exp. Biol. 298, 44–52. doi: 10.1002/jez.a.10273

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Kotsyuba and Dyachuk. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroanatomy | www.frontiersin.org 19 April 2022 | Volume 16 | Article 844654

https://doi.org/10.1002/jez.a.10273
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroanatomy#articles

	Immunocytochemical Localization of Enzymes Involved in Dopamine, Serotonin, and Acetylcholine Synthesis in the Optic Neuropils and Neuroendocrine System of Eyestalks of Paralithodes camtschaticus
	Introduction
	Materials and Methods
	Preparation of Animal Tissue Samples
	Immunohistochemical Analysis
	Primary Antibody Specificity and Immunohistochemical Control
	Microscopy and Imaging
	Nomenclature

	Results
	General Neuromorphology of Paralithodes camtschaticus Eyestalks
	Distribution of Serotonin, Tyrosine Hydroxylase, and Choline Acetyltransferase in the Eyestalk
	The Lamina
	The Medulla
	The Lobula and Lobula Plate
	The Sinus Gland
	The Lateral Protocerebrum


	Discussion
	The Medulla
	The Lobula and Lobula Plate
	The Lateral Protocerebrum

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References




