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Abstract. In recent years, Deep Learning research have demonstrated
their effectiveness in digital image processing, mainly in areas with heavy
computational load. Such is the case of aerial photogrammetry, where the
principal objective is to generate a 2D map or a 3D model from a specific
terrain. In these topics, high-efficiency in visual information processing
is demanded. In this work we present a simple methodology to build
an orthomosaic, our proposal is focused in replacing traditional digi-
tal imagen processing using instead a Convolutional Neuronal Network
(CNN) model. The dataset of aerial images is generated from drone pho-
tographs of our university campus. The method described in this article
uses a CNN model to detect matching points and RANSAC algorithm
to correct feature’s correlation. Experimental results show that feature
maps and matching points obtained between pair of images through a
CNN are comparable with those obtained in traditional artificial vision
algorithms.
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1 Introduction

Image stitching produces a mosaic that corresponds to a set of images taken
from one or several cameras which overlap and are joined in a single image [6].
In the generation of this mosaic several computer vision techniques are used.
We worked with aerial images and computer vision strategies combined with
photogrammetry techniques.

The stitching process is usually made with traditional computer vision meth-
ods as shown in Fig. 1a. It begins with a drone flight plan to image acquisition
of a selected area. Then placeholders with georeferenced points are added over
a map as well as flight height and overlapping percentage between each pair of
acquired images. Usually a mobile application is configured with these specifica-
tions to acquire the information autonomously. Some popular free apps to help
in this stage are Pix4D and DroneDeploy.
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Then, an image processing stage is performed. It begins with feature extrac-
tion and continues with the identification and relationship of similar features
between images in overlapping areas [8,17]. Key points operators [18] are mainly
used as feature extraction algorithm. They use radiometric features such as
points, edges, corners, etc. that can be detected in adjacent images under normal
capture conditions. They are not robust to inclination, rotation, scale or lighting
changes, however, in aerial images these conditions does not occur very often. To
deal with these conditions, computer vision techniques are a good option, being
one the most popular Scale Invariant Feature Transform (SIFT) algorithm. SIFT
[19,20] processing has four steps:

1. Scale Space Extrema Detection: identify a location and scales key points
using scale space extrema in the DoG (Difference-of-Gaussian) functions with
different values of standard deviation.

2. Key point Localization: key point candidates are localized and refined by
eliminating low contrast points.

3. Orientation Assignment: orientation of key point is obtained based on local
image gradient.

4. Description Generation: compute the local image descriptor for each key point
based on image gradient magnitude and orientation at each image sample
point in a region centered at key point.

These steps generate a 128-dimension key point descriptor.
Once an interesting group of features have been extracted, the next step

to do is features correlation or features correspondence. It consists of vector
descriptor comparison. Several methods can be used: quadratic search, kd-tree
data structure, etc. Erroneous correspondences (outliers) presented in the corre-
lation are eliminated from estimation through fundamental matrix or essential
matrix (if the internal parameters of the camera are known) [2,4]. This is diffi-
cult because internal parameters of the camera very often are unknow. Therefore,
other strategies are found in the literature such as LMS (Least-Median-Square)
and MAPSAC, however, one the most used strategy is RANSAC (Random Sam-
ple Consensus) [9,16], which is an iterative algorithm to determine a fundamen-
tal matrix. RANSAC is essentially composed of two steps that are iteratively
repeated [27]:

– Hypothesize. First minimal sample sets (MSSs) are randomly selected from
the input dataset and model parameters are computed using only elements
of the MSS. Cardinality of MSS is the smallest sufficient to determine the
model parameters (as opposed to other approaches, such as least squares,
where parameters are estimated using all data available, possibly with appro-
priate weights).

– Test. In the second step, RANSAC checks which elements of the entire dataset
are consistent with the model instantiated using parameters estimated in the
first step. The set of such elements is called consensus set (CS).
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RANSAC terminates when the probability of finding a better ranked CS drops
below a certain threshold. In their original formulation the ranking of CS was
its cardinality (i.e. CSs that contain more elements are ranked better than CSs
that contain fewer elements).

This is the best option to adjust the correspondences and eliminate features
that do not meet a reference value. The final stage is to build an orthomosaic with
all previously performed procedures. In this step, computer vision techniques are
used to join all photographs into one.

It should be noted that the most complex task is orthomosaic generation. It is
extremely complex, however, recent research has demonstrated great efficiency of
convolutional neural networks (CNN) in digital image processing [1,11,22], that
is why this investigation uses a CNN to built an orthomosaic from Technological
University of the Mixteca (UTM) campus with aerial images obtained from an
Unmanned Aerial Vehicle (UAV).

2 Related Work

Aerial photogrammetry is a procedure to obtain plans for large land areas by
means of aerial photographs [3]. The result is a 2D map or a 3D terrain model.
To do this we need to apply computer vision techniques and algorithms.

Research has been carried out with the purpose of perform improvements
such as the work of [13] where SIFT algorithm is used to feature extraction and
digital surface models (DSM) were generated from UAV images in high resolu-
tion. Similarly, in [15], the author proposes to use new algorithms for surface
reconstruction. These approaches demand still high computational complexity.

Nevertheless, recent research has included studies in Deep Learning
approaches such as presented in [5,10,24,26] where they perform image pair-
ing and 3D reconstructions using deep neuronal network techniques. Obtained
results are quite acceptable, however, proposed models are very complex and
often require additional information from external sensors [14].

3 Methodology

Our approach for orthomosaic reconstruction consists in replacing traditional
digital image processing techniques with a Convolutional Neuronal Network.
We propose two stages: feature extraction with a neuronal convolutional network
and correspondences correction. Methodology is shown in Fig. 1. We can see the
main change between both approaches for obtaining an orthomosaic: procedure
shown in (Fig. 1a) involves the use of classical computer vision techniques for
digital image processing, and we propose to change almost all of these complex
processes with a single convolutional neural network as shown in (Fig. 1b).

The process mentioned above for obtaining and correlating features between
images is a complex stage, with the extraction of features being one of the most
difficult. However, Noh et al., and Teichmann et al. presents a proposal for feature
extraction, DEep Local Feature (DELF). This model is particularly useful for
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Fig. 1. Traditional methodology is shown on the left (a). We can see that it consists of
five stages to obtain an orthomosaic. The most complex steps are those of digital image
processing. On the right (b), our proposed methodology replaces the most complex
stages of digital image processing with a CNN model

large-scale instance-level image recognition and to index image regions. This
model detects and describes semantic local features which can be geometrically
verified between images showing the same object instance [21,25]. DELF use a
ResNet50 [12] model trained on ImageNet Dataset [23] as a baseline to feature
extracting layers trained with a classification loss. Features are localized based on
their receptive fields, which are computed by means of convolutional and pooling
layers of a Fully Convolutional Network (FCN). Code is provide in Tensorflow
for building a model which could be used to train models for other applications.

Then, based on the DELF model and Noh’s work, we used our new dataset
including 880 aerial images rescaled to 250 × 250 pixels (Table 1). This dataset
was created by capturing multiple aerial images of the entire university campus.
Due to the terrain conditions of the campus, a minimum safe flight-height of
100 m and a maximum of 150 m were selected. Overlapping percentages among
captured images were considered with two configurations, the first set with 30%
both longitudinally and transversely, and the second 50% in both directions.

Table 1. UTM campus image dataset. This is the way images have been organized, so
that they can be used to adjust the CNN model.

Height\Overlaping 30%× 30% 50%× 50%

100 mts. 200 400

150 mts. 100 180

Total 300 580
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As in Noh’s work, we used the original pre-trained ResNet50 model with
ImageNet as a base, and we performed a fine-tuning procedure to improve our
local descriptors. We employed a FCN at the output of conv4 x convolutional
block of ResNet50. This output was adjusted in a way that it can be considered
like a feature extraction and key points matching machine on aerial images and
also this adjusted model could be a replacement for other key point detectors
and descriptors. Neural model is shown with detail in Fig. 2. We can see a pair
of images supplied to the CNN Pipeline. Internally, DEFL model is truncated
at the output of the feature map to be connected to a FCN for finding vector
descriptors of the input images and with it a geometric correction applied with
the RANSAC algorithm for finally create the orthomosaic.

Fig. 2. CNN Pipeline. It uses the DELF model with ResNet50 trained on ImageNet.

After finding correspondences, outliers must be eliminated from estimation
through the fundamental matrix since internal parameters of the camera are
unknown. However, many of correspondences are faulty and estimating the
parameter set with all coordinates is not enough. Therefore, RANSAC algo-
rithm is used on top of the normal model to robustly estimate the parameter
set by detecting outliers. The main objective is to determine geometric trans-
formation between both images, that is, to define the fundamental matrix that
relates two views of planar target. RANSAC algorithm can help computing the
homography matrix [7,16] starting with acquired correspondences. Then, we use
RANSAC with the feature vectors extracted from images as a set of observed
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data points. Moreover, as the model that can be fitted to data points we used an
affine transform model. We end up having a set of source and destination coordi-
nates which can be used to estimate the geometric transformation between both
images and building an orthomosaic with all previously performed procedures.

4 Experimental Results

In order to evaluate our proposal we analyze qualitative results in two stages.
In the first one, we determine the efficiency of our process for feature extraction
and matching features in the dataset. In the second experiment, we check results
for orthomosaic generation.

Our methodology achieves the goals to obtain a feature map by training
a CNN model that encodes learning to select features for the matching task.
Figure 3 shows feature correspondences between a pair of images from our
database. It successfully matches them in a challenging environment as the UTM
campus. It could include changes in contrast, sharpness, brightness and rotations
in the images. Moreover, results shown that RANSAC algorithm improves cor-
rection of correspondences obtained in (Fig. 3a and 3b). Furthermore, matching
points are acceptable and can be compared to those of SIFT algorithm, show-
ing equivalent results Fig. 3c. It is a good benchmark by the SIFT algorithm
robustness.

The described process permit to obtain acceptable feature maps to pair
aerial images. In Fig. 4, it is shown an example of 2D reconstruction with high-
resolution aerial images. In this experiment we used 100 images to perform an
orthomosaic reconstruction. This images cover approximately an area of 100 km2

from UTM campus (the campus has around 104 hectares). Some areas do not
have constructions (Fig. 4a) and other have buildings (Fig. 4b). Resulting ortho-
mosaics present high-definition details that are acceptable and suitable to be
employed for several purposes.

On the other hand, we analyze the similarity of the resulting orthomosaics
versus a manual reconstruction, an aerial image that covers the same area and an
orthomosaic obtained from Pix4DMapper. We use Euclidean distance to deter-
mine the similarity between each one (smaller distance, greater similarity). The
results are shown in Table 2. It shows that the resulting orthomosaics with our
methodology are similar to those obtained by a traditional or manual process,
but with high-definition details and less processing time.
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Fig. 3. Figures show feature maps obtained with real images. (a) Matching points
without geometric correction. (b) Geometric correction with RANSAC and (c) Results
obtained with SIFT.
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Fig. 4. 2D reconstructions of UTM campus. We present two examples of an orthomo-
saic reconstruction using 100 high definition images at an altitude of 150 m and 50%
of overlapping (a) without buildings and (b) with buildings.

Table 2. Comparison between our resulting orthomosaics and other reconstructions.
This table shows the Euclidean distance as a measure of similarity between orthomo-
saics. Manual reconstruction was performed with images at 50% of their original resolu-
tion. Aerial image was taken at twice the reference height. Pix4DMapper’s orthomosaic
only shows 75% of total established area.

Resulting orthomosaic vs Euclidean distance

Manual reconstruction 11.564167

Image at twice of the reference height 16.99647

Orthomosaic from Pix4DMapper 20.794645

5 Conclusions

In this work a simple methodology to built orthomosaics using aerial images is
presented. This study focuses on verify the methodology that uses a deep neu-
ronal network model. Preliminary results generating orthomosaics have been ver-
ified qualitatively obtaining feature maps and matching points between images
pairs.

Resulting orthomosaics were evaluated using Euclidean distance as a simi-
larity measure. Orthomosaic obtained was compared with: a manual reconstruc-
tion, an image captured at a higher height and a reconstruction obtained with
commercial software. It is showed that our methodology provides similar results
to those obtained as described before but with a high-definition details. Our
results are as well comparable with those obtained with traditional computer
vision algorithms.
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On the other hand, reconstruction of larger areas such as the entire campus
of the university with a high-resolution orthomosaic map is being considered for
future work.
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22. Radenović, F., Tolias, G., Chum, O.: CNN image retrieval learns from BoW: unsu-
pervised fine-tuning with hard examples. In: Leibe, B., Matas, J., Sebe, N., Welling,
M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 3–20. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46448-0 1

23. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

24. Tang, J., Folkesson, J., Jensfelt, P.: Geometric correspondence network for camera
motion estimation. IEEE Robot. Autom. Lett. 3(2), 1010–1017 (2018)

25. Teichmann, M., Araujo, A., Zhu, M., Sim, J.: Detect-to-retrieve: efficient regional
aggregation for image search. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5109–5118 (2019)

26. Weerasekera, C.S., Latif, Y., Garg, R., Reid, I.: Dense monocular reconstruction
using surface normals. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2524–2531. IEEE (2017)

27. Zuliani, M.: Ransac for dummies. Vision Research Lab, University of California,
Santa Barbara (2009)

https://doi.org/10.1007/978-3-319-46448-0_1
https://doi.org/10.1007/978-3-319-46448-0_1

	A Simple Methodology for 2D Reconstruction Using a CNN Model
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experimental Results
	5 Conclusions
	References




