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During development, sensory hair cells (HCs) in the cochlea assemble a stereociliary
hair bundle on their apical surface with planar polarized structure and orientation. We
have recently identified a non-canonical, Wnt/G-protein/PI3K signaling pathway that
promotes cochlear outgrowth and coordinates planar polarization of the HC apical
cytoskeleton and alignment of HC orientation across the cochlear epithelium. Here,
we determined the involvement of the kinase Gsk3β and the small GTPase Rac1 in
non-canonical Wnt signaling and its regulation of the planar cell polarity (PCP) pathway
in the cochlea. We provided the first in vivo evidence for Wnt regulation of Gsk3β

activity via inhibitory Ser9 phosphorylation. Furthermore, we carried out genetic rescue
experiments of cochlear defects caused by blocking Wnt secretion. We showed that
cochlear outgrowth was partially rescued by genetic ablation of Gsk3β but not by
expression of stabilized β-catenin; while PCP defects, including hair bundle polarity and
junctional localization of the core PCP proteins Fzd6 and Dvl2, were partially rescued by
either Gsk3β ablation or constitutive activation of Rac1. Our results identify Gsk3β and
likely Rac1 as downstream components of non-canonical Wnt signaling and mediators
of cochlear outgrowth, HC planar polarity, and localization of a subset of core PCP
proteins in the cochlea.
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INTRODUCTION

Wnt signaling regulates a plethora of developmental processes through the canonical β-catenin-
dependent pathway and the non-canonical β-catenin-independent pathway (Komiya and Habas,
2008; Wiese et al., 2018). Upon Wnt ligand binding to the Frizzled receptor, non-canonical Wnt
signaling controls cell polarity and morphogenetic movements through the Rho family small
GTPases or heterotrimeric G-proteins. In addition, the evolutionarily conserved planar cell polarity
(PCP) pathway is a key regulator of tissue morphogenesis, whereby asymmetric localized core PCP
protein complexes orient cell polarity and drive polarized cell behaviors within the plane of the
tissue (Devenport, 2014). Specifically, two opposing asymmetric protein complexes, one consisting
of homologs of Frizzled (Fzd) and Dishevelled (Dvl), and the other Van Gogh and Prickle, bridged
across cell membranes by Flamingo (homolog of Celsr1-3), generate a polarity vector across the
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tissue plane (Butler and Wallingford, 2017). Because the non-
canonical Wnt and PCP pathways share many components,
including the Fzd receptor, as well as the effectors Dvl and Rho
GTPases, the PCP pathway is often considered to be a branch
of non-canonical Wnt signaling. However, emerging evidence
suggests divergence of, and crosstalk between, the mammalian
non-canonical Wnt and PCP pathways. The mammalian genome
encodes 19 Wnt, 10 Fzd, and 3 Dvl genes. Fzd3/6 are components
of the mammalian PCP pathway (Wang et al., 2006; Chang
et al., 2016); however, to date, their specific Wnt ligands
have not been identified (Sato et al., 2010; Yu et al., 2012;
Voloshanenko et al., 2017). On the other hand, we and others
have recently demonstrated that secreted Wnts are required
for asymmetric localizations of a subset of PCP proteins in
inner ear sensory epithelia, including Fzd3/6 and Dvl2 (Landin
Malt et al., 2020; Najarro et al., 2020). Importantly, we have
shown that asymmetric localization of Fzd6 is controlled
by a Wnt/G-protein/PI3K signaling pathway (Landin Malt
et al., 2020). In this study, we leverage the inner ear sensory
epithelium and genetic tools available to further illuminate the
precise relationship between the mammalian non-canonical Wnt
and PCP pathways.

The mouse cochlear sensory epithelium, or the organ of
Corti (OC), is a well-established system for studying PCP
signaling (Tarchini and Lu, 2019). Crucial for their function
as sound receptors, hair cells (HCs) in the OC project on
their apical surface a V-shaped hair bundle consisting of
rows of actin-based stereocilia organized in a staircase pattern.
The vertices of all hair bundles are uniformly aligned along
the medial-lateral axis of the cochlear duct. The polarized
structure of hair bundles and other apical cytoskeletal elements
define cell-intrinsic PCP (iPCP), while uniform hair bundle
orientation is a hallmark of tissue-level PCP. Hair bundle
formation is coincident with the migration of the microtubule-
based kinocilium, which migrates to, and anchors at, the
lateral edge of the HC and is tethered to the nascent hair
bundle at its vertex. Thus, kinocilium positioning is crucial
for hair bundle polarity and orientation. This process is
coordinately controlled by intercellular PCP signaling, several
iPCP signaling modules, and a novel, non-canonical Wnt/G-
protein/PI3K signaling pathway (Tarchini and Lu, 2019; Landin
Malt et al., 2020). To shed light on the crosstalk and integration
of these signaling pathways, we sought to identify cochlear
effectors of non-canonical Wnt signaling. Specifically, we focused
on two candidates: the small GTPase Rac1 and the kinase
Gsk3β. Rac1 has been shown to be activated by non-canonical
Wnt signaling in cultured cells and mediate one of the iPCP
signaling modules in the OC (Grimsley-Myers et al., 2009;
Sato et al., 2010; Landin Malt et al., 2019). On the other
hand, Gsk3β activity is inhibited by both canonical Wnt and
PI3K/Akt signaling (Metcalfe and Bienz, 2011; Beurel et al.,
2015). Here, we report that epithelium-secreted Wnts promote
inhibitory phosphorylation of Gsk3β at Ser9 (S9) in the OC
in vivo. We further show that cochlear growth, hair bundle
polarity, and core PCP protein localization defects caused by
blocking Wnt secretion are partially rescued by genetic ablation
of Gsk3β in the cochlear epithelium, and to a lesser extent,

constitutive activation of Rac1. Together, these findings identify
both Gsk3β and Rac1 as effectors of non-canonical Wnt signaling
crucial for hair bundle morphogenesis and cross-regulation of
the PCP pathway.

RESULTS

Wnt Signaling Regulates Gsk3β Activity
via Serine 9 Phosphorylation in the
Cochlea
Conditional deletion of Wntless (Wls) driven by Emx2Cre

(WlscKO) blocked Wnt secretion from the cochlear epithelium,
resulting in stunted cochlear outgrowth and both PCP and
iPCP defects. We have identified PI3K as a key effector of
non-canonical Wnt signaling in the OC; PI3K activity was
decreased in the WlscKO OC, and importantly, PI3K activation
rescued most of the WlscKO cochlear phenotypes (Landin Malt
et al., 2020). However, the downstream targets of PI3K crucial
for cochlear morphogenesis remain unknown. Because PI3K
activation of Akt leads to inhibitory phosphorylation of Gsk3β

at S9 (Beurel et al., 2015), we examined the localization of
pS9-Gsk3β as well as total Gsk3β in WlscKO cochleae, using
commercial knockout (KO)-validated anti-pS9-Gsk3β and anti-
Gsk3β antibodies. In the control cochlea at embryonic day
(E)18.5, pS9-Gsk3β was enriched in the pericentriolar region
(Figures 1A–F, open arrowheads), the tip of the kinocilium
(Figures 1A–F, arrowheads), and the hair bundle in both
inner and outer hair cells (IHCs and OHCs) (Figures 1A–
F). In addition, diffused cytoplasmic staining of pS9-Gsk3β

was detected in HCs, neighboring supporting cells (SCs), and
non-sensory cells surrounding the OC (Figures 1M,N). In
contrast, pS9-Gsk3β staining was greatly diminished at all
subcellular locations in WlscKO cochleae (Figures 1G–L,O,P).
On the other hand, total Gsk3β localization in WlscKO cochleae
was similar to the control; Gsk3β was localized to the hair
bundle (Figures 2A–H), at the adherens junctions in the OC
and in the cytoplasm of both sensory and non-sensory cells
(Figures 2I–L). The specificity of the observed staining patterns
of pS9-Gsk3β and total Gsk3β was confirmed by their absence
in the Gsk3βcKO cochleae driven by Emx2Cre (Supplementary
Figures 1, 2). Thus, we conclude that epithelium-secreted Wnts
regulate Gsk3β activity by promoting S9 phosphorylation in the
developing cochlea.

Wnts Regulate Cochlear Outgrowth in
Part Through Gsk3β Inhibition
Activation of Rac1 by non-canonical Wnt signaling has
been well established in cultured cells; therefore, we
hypothesized that Rac1 mediates non-canonical Wnt signaling
in the cochlea. To test this, we asked whether constitutive
activation of Rac1 was able to rescue cochlear defects of
WlscKO mutants. Specifically, we crossed a Cre-inducible,
constitutively active Rac1-G12V transgene (R26-LSL-
Rac1DA) into WlscKO embryos. We first measured the
length of WlscKO; Rac1DA/+ compound mutant cochleae
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FIGURE 1 | Wnts promote inhibitory phosphorylation of Gsk3β at Ser9 in the cochlea. (A–L) pS9-Gsk3β (green), acetylated-tubulin (red), and phalloidin (blue)
staining at the level of the hair bundle in control (A–F) and WlscKO (G–L) OC at E18.5. Open arrowheads indicate the pericentriolar region. Arrowheads indicate the
tip of the kinocilium. (M–P) pS9-Gsk3β and phalloidin staining at the level of adherens junctions in control (M,N) and WlscKO (O,P) OC and surrounding regions.
Brackets indicate the OC. Lateral is up. Scale bars: (A–L), 6 µm; (M–P), 10 µm.

at E18.5. As a control, expression of Rac1-G12V in the
cochlear epithelium driven by Emx2Cre (Rac1DA/+) did not
significantly alter cochlear length, width, or OC patterning
(Figures 3A,B,G,H,M,N). Moreover, Rac1-G12V expression
in Wls-deficient cochlear epithelia did not rescue the cochlear
length (Figures 3D,E,J,K,M).

Next, we analyzed the Gsk3βcKO cochleae to determine the
role of Gsk3β in Wnt-mediated cochlear outgrowth. At E18.5,
Gsk3βcKO cochleae had largely normal length and OC patterning
(Figures 3A,C,G,I,M–O), suggesting that the function of Gsk3
in cell fate regulation at earlier stages was spared in Gsk3βcKO

mutants (Ellis et al., 2019). In contrast to Rac1 activation, the
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FIGURE 2 | Similar Gsk3β localizations in control and WlscKO cochleae. (A–H) Gsk3β staining at the level of hair bundle and ZO-1 staining at the level of tight
junctions in control (A–D) and WlscKO (E–H) OC at E18.5. (I–L) Gsk3β staining at the level of adherens junctions and ZO-1 staining at the level of tight junctions in
control (I,J) and WlscKO (K,L) OC and surrounding regions. Brackets indicate the OC. Lateral is up. Scale bars: (A–L), 6 µm; (M–P), 10 µm.

length of the WlscKO; Gsk3βcKO compound mutant cochleae
was partially but significantly rescued, and an intermittent extra
OHC row was present along ∼60% of the total cochlear length
(Figures 3D,F,J,L–O). As Gsk3β inactivation, but not Rac1
activation, partially rescued cochlear outgrowth defects of WlscKO

mutants, we conclude that Wnt signaling promotes cochlear
outgrowth in part through Gsk3β inhibition.

Expression of Stabilized β-Catenin Failed
to Rescue Outgrowth Defects of WlscKO

Cochleae
Gsk3 inhibition is a key step in canonical Wnt signaling;
sequestration of Gsk3 prevents phosphorylation of β-catenin,

thereby stabilizing β-catenin, which translocates into the
nucleus and partners with TCF transcription factors to activate
Wnt target gene expression (Wiese et al., 2018). During
cochlear development, canonical Wnt signaling promotes cell
proliferation of otic precursors in the prosensory domain
(Jacques et al., 2012). To determine whether the partial
rescue of cochlear outgrowth observed in WlscKO; Gsk3βcKO

mutants was due to activation of canonical Wnt signaling,
we induced the expression of a stabilized β-catenin mutant
in the cochlear epithelium by crossing an exon3-floxed β-
catenin (Ctnnb1flox(ex3)) allele into WlscKO mutants. Deletion
of exon3 driven by Emx2Cre generated a mutant form of
β-catenin refractory to inhibitory phosphorylation by Gsk3.
Surprisingly, expression of stabilized β-catenin by itself resulted
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FIGURE 3 | Gsk3β inactivation but not Rac1 activation partially rescued cochlear outgrowth of WlscKO mutant. (A–F) Dissected cochlear ducts from E18.5 wild-type
control (A), Rac1DA/+ (B), Gsk3βcKO (C), WlscKO (D), WlscKO; Rac1DA/+ (E), and WlscKO; Gsk3βcKO (F) mutants. (G–L) Flat-mounted OC from the middle region
(40–60% cochlear length) of wild-type control (G), Rac1DA/+ (H), Gsk3βcKO (I), WlscKO (J), WlscKO; Rac1DA/+ (K), and WlscKO; Gsk3βcKO (L) cochleae stained by
phalloidin. Arrowheads indicate the inner pillar cell row. Lateral is up. Scale bars: (A–F), 1 mm; (G–L), 6 µm. (M–O) Quantifications of cochlear length (M), cochlear
duct width (N), and presence of extra OHC rows (O) in genotypes indicated by the color keys. Cochlear duct width (N) was not significantly different in all pair-wise
comparisons. The number of cochleae analyzed is indicated. Ns, not significant.
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in a shortened cochlea, and cochlear outgrowth was severely
stunted in the WlscKO; Ctnnb11 ex3/+ compound mutants
(Supplementary Figures 3C,D), precluding dissection and
assessment of the OC. These results suggest that Gsk3β regulation
of cochlear outgrowth is not mediated by stabilization of β -
catenin.

Effects of Rac1 Activation on Hair
Bundle Defects of WlscKO Mutants
Similar iPCP defects were observed in WlscKO and Rac1-
deficient cochleae, including misoriented and misshapen
hair bundles with an off-center kinocilium (Grimsley-
Myers et al., 2009; Landin Malt et al., 2020), consistent
with Rac1 being a downstream effector of Wnt-regulated
hair bundle polarity. To test this, we examined hair bundle
orientation and kinocilium positioning in WlscKO; Rac1DA/+
cochleae at E18.5. Compared with the wild-type control,
Rac1DA/+ had mild but significant hair bundle misorientation
(Figures 4A,B,J and Supplementary Figure 4), consistent
with the crucial role of localized Rac1 activity in hair bundle
orientation (Grimsley-Myers et al., 2009). Interestingly, hair
bundle misorientation in WlscKO; Rac1DA/+ cochleae was
more severe than the WlscKO mutants (Figures 4E,H,J and
Supplementary Figure 4), particularly toward the cochlear
apex where many supernumerary, disorganized OHC rows were
present (Figures 4G,H).

We next assessed the effect of Rac1 activation on kinocilium
positioning within the hair bundle by measuring the kinocilium
index (Landin Malt et al., 2020). In the wild type at E18.5, the
kinocilium is found at the vertex of the V-shaped hair bundle,
with a mean kinocilium index (KI) of 1.16, whereas many hair
bundles in WlscKO cochleae had an off-center kinocilium, as
shown previously (Figures 4A,D, arrows). Rac1 activation by
itself had negligible effect on the KI (mean = 1.24; Figures 4B,K).
In the WlscKO; Rac1DA/+ cochleae, kinocilium positioning was
partially but significantly rescued compared with WlscKO mutants
(Figures 4E,K). Thus, partial rescue of kinocilium positioning
but not hair bundle orientation defects of WlscKO mutants
by Rac1 activation supports the proposed role of Rac1 as a
downstream effector of Wnt-mediated hair bundle polarity.

The Role of Gsk3β in Hair Bundle
Orientation and Kinocilium Positioning
To determine the role of Gsk3β in hair bundle morphogenesis, we
first analyzed hair bundle orientation and kinocilium positioning
in Gsk3βcKO cochleae at E18.5. Interestingly, Gsk3βcKO mutants
had mild but significant hair bundle misorientation, indicating
a requirement of Gsk3β for normal hair bundle orientation
(Figures 4C,L and Supplementary Figure 4). On the other
hand, the normal V-shape of the hair bundle and kinocilium
positioning at the hair bundle vertex were largely intact in
Gsk3βcKO cochleae (Figures 4C,M).

Next, we assessed the effect of Gsk3β inactivation on hair
bundle defects in WlscKO mutants. Interestingly, in WlscKO;
Gsk3βcKO OC at E18.5, hair bundle misorientation was worse
than in either single mutant (Figures 4F,I,L and Supplementary

Figure 4). However, kinocilium positioning at the vertex of the
hair bundle was significantly rescued compared with WlscKO

mutants (Figures 4F,I,M). Taken together, these results indicate
that a normal level of Gsk3β signaling is required for hair bundle
orientation and that Wnts control hair bundle morphogenesis in
part through inhibition of Gsk3β.

Rac1 Activation and Gsk3β Inactivation
Partially Restored Fzd6 and Dvl2
Junctional Localization in the Absence of
Secreted Wnt Ligands
Our results so far suggest that both Rac1 and Gsk3β are
downstream effectors of non-canonical Wnt signaling crucial for
HC PCP. To further elucidate their roles in PCP establishment
in the OC, we sought to determine whether Rac1 and Gsk3β

also play a role in Wnt-dependent asymmetric localization of
core PCP proteins.

We and others previously uncovered a requirement of secreted
Wnt ligands in asymmetric junctional localization of a subset of
core PCP proteins (Landin Malt et al., 2020; Najarro et al., 2020).
Specifically, Fzd6 is normally enriched along the medial border
of HCs (Figures 5A,B, arrows, 7A), and this localization was
abolished in the WlscKO cochleae (Figures 5G,H, 7D). Similar
to the control, we found that Fzd6 was enriched along medial
HC junctions in both the Rac1DA/+ and Gsk3βcKO cochleae
(Figures 5C–F, 7B,C). Interestingly, junctional Fzd6 localization
was significantly recovered in both WlscKO; Rac1DA/+ and
WlscKO; Gsk3βcKO cochleae; however, Fzd6 planar asymmetry
along the medial-lateral axis was not restored in WlscKO;
Rac1DA/+ and only partially restored in WlscKO; Gsk3βcKO

cochleae (Figures 5I–M, 7E,F).
Another Wnt-dependent core PCP protein, Dvl2, is normally

enriched along the lateral border of HCs (Figures 6A,B,
arrows, 7A) and lost its junctional localization in the WlscKO

cochleae (Figures 6G,H, 7D). In both the Rac1DA/+ and
Gsk3βcKO cochleae, enrichment of Dvl2 on the lateral HC
junctions was largely intact (Figures 6C–F, arrows, 7B,C).
In WlscKO; Rac1DA/+ and WlscKO; Gsk3βcKO OC, junctional
Dvl2 localization was partially recovered (Figures 6I–L, arrows,
7E,F). However, Dvl2 planar asymmetry was not restored in
either compound mutant (Figure 6M). Together, these results
indicate that both Rac1 and Gsk3β are involved in Wnt-mediated
junctional localization of a subset of core PCP proteins; however,
neither Rac1 activation nor Gsk3β inactivation was sufficient for
generating planar asymmetry of core PCP proteins.

DISCUSSION

The Non-canonical Wnt Pathway Signals
Through Multiple Effectors to Control
Different Aspects of Cochlear
Morphogenesis
In this study, we have further delineated the non-canonical,
Wnt/G-protein/PI3K pathway for cochlear outgrowth and
establishment of iPCP and PCP in the cochlea (Figure 8A). Our
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FIGURE 4 | Partial rescue of hair bundle defects of Wls-deficient mutants by Rac1 activation and Gsk3β inactivation. (A–I) Flat-mounted E18.5 OC stained for
acetylated tubulin (green) and F-actin (magenta). (A–F) Basal or mid-basal regions of wild-type control (A), Rac1DA/+ (B), Gsk3βcKO (C), WlscKO (D), WlscKO;
Rac1DA/+ (E), and WlscKO; Gsk3βcKO OC (F). Arrows in panels (A,D) indicate normal kinocilium position at the hair bundle vertex and an off-center kinocilium,
respectively. (G–I) Apical regions of WlscKO (G), WlscKO; Rac1DA/+ (H), and WlscKO; Gsk3βcKO (I) OC. Arrowheads and the dashed line indicate the inner pillar cell
row. Lateral is up. Scale bars: 6 µm. (J–M) Quantifications of hair bundle orientation (J,L) and kinocilium positioning (K,M). Color keys for genotypes are indicated
on the right. Ns, not significant.
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FIGURE 5 | Rac1 activation and Gsk3β inactivation recovered Fzd6 junctional localization but not planar asymmetry in Wls-deficient OC. (A–L) Flat-mounted E18.5
wild-type control (A,B), Rac1DA/+ (C,D), Gsk3βcKO (E,F), WlscKO (G,H), WlscKO; Rac1DA/+ (I,J), and WlscKO; Gsk3βcKO (K,L) OC stained for Fzd6 and ZO-1 as
indicated. Arrows indicate Fzd6 crescents along the medial borders of OHCs. Arrowheads indicate the inner pillar cell row. Lateral is up. Scale bar: 6 µm.
(M) Quantifications of Fzd6 staining along the medial and lateral junctions of OHCs. Numbers of OHCs scored are indicated on the bottom. Color keys for genotypes
are indicated on the right. Ns, not significant.
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FIGURE 6 | Effects of Rac1 activation and Gsk3β inactivation on Dvl2 localization in Wls-deficient OC. (A–L) Flat-mounted E18.5 wild-type control (A,B), Rac1DA/+
(C,D), Gsk3βcKO (E,F), WlscKO (G,H), WlscKO; Rac1DA/+ (I,J), and WlscKO; Gsk3βcKO (K,L) OC stained for Dvl2 and ZO-1 as indicated. Arrows indicate Dvl2
crescents along the lateral borders of OHCs. Arrowheads indicate the inner pillar cell row. Lateral is up. Scale bar: 6 µm. (M) Quantifications of Dvl2 staining along the
medial and lateral junctions of OHCs. Numbers of OHCs scored are indicated on the bottom. Color keys for genotypes are indicated on the right. Ns, not significant.
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genetic rescue experiments have provided strong evidence that
PI3K, Gsk3β, and Rac1 are all downstream effectors of non-
canonical Wnt signaling in the cochlea. The extent to which
the cochlear defects of WlscKO mutants were rescued varied
among the effectors. Thus, these effectors likely act in parallel and
have non-overlapping functions to mediate non-canonical Wnt
signaling in the cochlea.

Cochlear elongation is regulated by multiple developmental
signals from the epithelium and surrounding mesenchyme
and spiral ganglion (Bok et al., 2013; Huh et al., 2015),
suggesting integration of multiple molecular pathways. Within
the epithelium, while PCP signaling is thought to mediate
convergent extension of the OC (Mao et al., 2011; Montcouquiol
and Kelley, 2019), the mechanisms underlying Wnt-mediated
cochlear elongation remain incompletely understood. We
showed that outgrowth of WlscKO cochleae was rescued fully
by PI3K activation and partially by Gsk3β inactivation but not
rescued by Rac1 activation or expression of stabilized β-catenin,
suggesting that Wnt/G-protein/PI3K signaling engages Gsk3β

and additional regulators (“X”; Figure 8A) to promote cell
proliferation and/or cell survival during cochlear outgrowth.

Epithelium-Secreted Wnts Act in Parallel
to and Cross-Regulates the PCP
Pathway in the Cochlea
Our findings suggest that Wnts secreted by the cochlear
epithelium act in parallel and crosstalk with the PCP pathway
in the mammalian cochlea. Of note, WlscKO and core PCP
mutants have distinct hair bundle phenotypes: hair bundle
misorientation in WlscKO cochleae was milder than core PCP
mutants; moreover, WlscKO but not PCP mutants were defective
in kinocilium positioning at the hair bundle vertex (Figure 8B).
Epithelium-secreted Wnt ligands likely act in concert with
additional tissue polarity cues, including non-epithelial Wnts, to
specify the PCP vector and align HC orientation (Figure 8A).
Epithelium-secreted Wnt5a, a prototype non-canonical Wnt, is
dispensable for cochlear PCP (Najarro et al., 2020), suggesting
involvement of other Wnt ligands. In the future, identification
of the relevant Wnt ligands in the cochlea will help determine
permissive versus instructive roles of Wnt signaling in HC
PCP. Importantly, we have uncovered a non-canonical Wnt
pathway that signals through PI3K, Rac1, and Gsk3β to promote
junctional localization of a subset of core PCP proteins, including
Fzd6 and Dvl2, thereby cross-regulating the PCP pathway. This is
in stark contrast to the Drosophila PCP pathway, which operates
independently of Wnt ligands (Bartscherer et al., 2006; Chen
et al., 2008; Ewen-Campen et al., 2020; Yu et al., 2020). Wnt
signaling may regulate the trafficking of PCP proteins or HC–SC
junctional dynamics, which in turn influences asymmetric PCP
protein localization (see below).

Rac1 Integrates Multiple Developmental
Signals During Hair Cell Planar
Polarization
Although Rac1 is activated by non-canonical Wnt signaling
in cultured cells, it remains to be determined whether Wnt
signaling stimulates Rac1 activity in the cochlea. At present,

we have been unable to address this question, as our attempts
to evaluate the localization and levels of active Rac1 by
immunostaining or Western blot using a commercially sourced
Rac1-GTP-specific antibody were unsuccessful. Thus, more
sensitive and specific tools are needed to detect active Rac1
in vivo. PCP defects caused by modest overexpression of Rac1-
G12V expression were mild, likely due to the presence of
wild-type Rac proteins undergoing the normal GTPase cycle.
In the WlscKO; Rac1DA/+ OC, Fzd6 and Dvl2 junctional
localization was partially rescued, consistent with Rac1 being
a downstream effector of non-canonical Wnt signaling. Rac1
may promote Fzd6 and Dvl2 junctional localization through
regulation of junctional and cytoskeletal dynamics (de Curtis
and Meldolesi, 2012). In previous studies, we have shown
that the activity of p21-activated kinases (PAKs), which are
downstream effectors of both Rac1 and Cdc42, are regulated
in the OC by multiple mechanisms, including intercellular PCP
signaling, plus- and minus-end-directed microtubule motors
and the cell polarity protein Par3 (Grimsley-Myers et al.,
2009; Sipe and Lu, 2011; Sipe et al., 2013; Landin Malt
et al., 2019). Therefore, multiple signaling pathways, including
the non-canonical Wnt pathway, likely converge on Rac1
to tightly control its activity in space and time during HC
planar polarization.

Gsk3β Inhibition Is a Key Step of the
Non-canonical Wnt Pathway in the
Cochlea
We show, for the first time, that Wnts secreted by the cochlear
epithelium promote inhibitory Ser9 phosphorylation of Gsk3β

in vivo. This is different from the mode of Gsk3β inhibition
by canonical Wnt signaling, which is thought to occur through
sequestration of Gsk3β and dissociation of the disruption
complex (Metcalfe and Bienz, 2011; Beurel et al., 2015). Previous
studies using pharmacological inhibitors have shown that Gsk3
signaling regulates OC progenitor cell proliferation and fate
decision (Jacques et al., 2012; Ellis et al., 2019). Our genetic
analyses further reveal multi-faceted roles of Gsk3β in PCP and
iPCP regulation in vivo. First, Gsk3β is required for uniform hair
bundle orientation. Second, Gsk3β inhibition is crucial for Wnt-
dependent kinocilium positioning and junctional localization
of Fzd6 and Dvl2. Interestingly, both too little (in Gsk3βcKO

mutants) and too much Gsk3β activity (in WlscKO mutants)
led to hair bundle orientation defects, suggesting that levels
of Gsk3β need to be precisely controlled to achieve uniform
HC orientation. In the future, it would be interesting to assess
earlier roles of Gsk3β in cochlear patterning in vivo by deleting
Gsk3β in the otocyst.

Gsk3β is a promiscuous kinase with numerous known
substrates. The crucial Gsk3β targets that mediate kinocilium
positioning and PCP protein localization remain to be
identified. Gsk3β has a well-established role in regulating
neuronal cytoskeletal dynamics through phosphorylation of
microtubule-associated proteins (MAPs) including collapsin
response mediator proteins (CRMPs), APC, Tau, MAP1B, and
doublecortin (Hur and Zhou, 2010; Morgan-Smith et al., 2014).
In the OC, microtubules and microtubule-based motors have
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FIGURE 7 | Linescan analysis of junctional localization of Fzd6 and Dvl2 in outer hair cells. (A–F) Representative linescans of individual OHCs from E18.5 wild-type
control (A), Rac1DA/+ (B), Gsk3βcKO (C), WlscKO (D), WlscKO; Rac1DA/+ (E), and WlscKO; Gsk3βcKO (F) OC stained for ZO-1, Fzd6, and Dvl2. For each genotype,
a line was drawn parallel to the medial–lateral axis bisecting the OHC. Intensity profiles of each image channel were aligned along the distance axis. The lateral and
medial junctions of the OHC were identified by peaks of ZO-1 staining and indicated by the blue and red dashed lines, respectively. Junctional Fzd6 and Dvl2
staining was defined by peaks in close proximity to the lateral or medial borders of the OHC.
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FIGURE 8 | Non-canonical Wnt and PCP pathways act in concert to regulate cochlear morphogenesis. (A) A working model for the concerted actions of the
non-canonical Wnt and PCP pathways in regulating different aspects of cochlear morphogenesis. (B) Schematic diagrams comparing PCP defects in the WlscKO

and core PCP mutant OC. Kinocilium (the red dot) positioning at the hair bundle vertex was disrupted in WlscKO but not core PCP mutants.

been implicated in hair bundle orientation and kinocilium
positioning (Sipe and Lu, 2011; Ezan et al., 2013; Sipe et al.,
2013). In addition, cytoskeletal molecules disrupted in Usher
syndrome and ciliopathies also play a role in hair bundle polarity
(Lefevre et al., 2008; Jagger et al., 2011). Thus, HC microtubule
and other cytoskeletal regulators are potential targets of Gsk3β

during hair bundle morphogenesis.
In other systems, microtubules are also involved in polarized

trafficking of core PCP proteins (Vladar et al., 2012; Matis
et al., 2014). However, asymmetric PCP protein localization was
normal in several mutants affecting HC microtubule organization
or transport (Sipe and Lu, 2011; Kirjavainen et al., 2015; Siletti
et al., 2017), suggesting alternative mechanisms by which Gsk3β

regulates PCP protein localization/trafficking. Interestingly,
Gsk3β has been shown to regulate endocytosis/recycling of
membrane cargos in different cell types (Roberts et al., 2004;
Clayton et al., 2010; Reis et al., 2015; Ferreira et al., 2020).
Future investigations will shed light on the mechanisms by
which Gsk3β influences HC polarity and core PCP protein
trafficking in the OC.

MATERIALS AND METHODS

Mice
Animal care and use was performed in compliance with
the NIH guidelines and the Institutional Animal Care and

Use Committee at the University of Virginia. Wlsflox (Fu
et al., 2011), Gsk3βflox (Patel et al., 2008), and R26-LSL-
Rac1DA (Srinivasan et al., 2009) mice were obtained from
the Jackson Laboratories (Stock #012888, #029592, and
#012361, respectively). Ctnnb1flox(ex3) and Emx2Cre mice
have been described (Harada et al., 1999; Ono et al., 2014).
All mice were maintained on a mixed genetic background. To
generate Wls conditional and compound mutants, Wlsflox/+;
Emx2Cre/+ males were mated with Wlsflox/flox, Wlsflox/flox;
R26-LSL-Rac1DA/+, or Wlsflox/flox; Ctnnb1flox(ex3)/+ females,
and Wlsflox/+; Gsk3βflox/+; Emx2Cre/+ males with Wlsflox/flox;
Gsk3βflox/flox females. For timed pregnancies, the morning of the
plug was designated as embryonic day 0.5 (E0.5), and the day of
birth postnatal day 0 (P0).

Immunohistochemistry
Mouse skulls were dissected and fixed in 4% paraformaldehyde
(PFA) for 45 min at room temperature (RT) or in 10% TCA
for 1 h on ice, then washed three times in PBS. Dissected
cochleae were blocked in PBS containing 0.1% Triton X-100,
5% heat-inactivated horse serum, and 0.02% NaN3 for 1 h at
RT, then incubated with primary antibodies for 16–32 h at
4◦C. After three washes in PBS/0.1% Triton X-100, samples
were incubated with secondary antibodies and phalloidin for
2 h at RT, washed twice in PBS 0.1% Triton X-100, post-
fixed for 15 min at RT in 4% paraformaldehyde and then
washed two more times. Stained samples are flat mounted in
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Antibody Concentration Vendor Catalog No.

Alexa-conjugated phalloidin 1:200 Thermo Fisher Scientific A12379, A12380, A12381, A22287

Alexa-conjugated secondary antibodies 1:500 Thermo Fisher Scientific A11036, A11029, A11057, A11077

Anti-acetylated tubulin 1:1,000 Sigma-Aldrich T6793

Anti-Dvl2 1:100 (TCA) Proteintech 12037-1-AP

Anti-Fzd6 1:100 (TCA) R & D Systems AF1526-SP

Anti-S9-Gsk3β (D85E12) 1:100 Cell Signaling 5558

Anti-Gsk3β (D5C5Z) 1:100 (TCA) Cell Signaling 12456

Anti-myosin VI 1:500 PROTEUS 25-6791

Anti-ZO-1 1:100 (TCA) DSHB R26.4C-c

Mowiol with 5% N-propyl gallate. The table above lists the
antibodies used.

Microscopy and Image Analysis
Control and mutant samples were imaged under identical
conditions. For hair bundle and PCP protein localization, images
were collected using a Deltavision deconvolution microscope
with a 60×/1.35 NA oil-immersion objective controlled by
SoftWoRx software (Applied Precision). Whole-mount cochlear
ducts were imaged using a Leica MZ16F stereomicroscope.
Images were processed using Fiji (National Institutes of Health)
and Photoshop (Adobe).

Quantification of Hair Bundle
Phenotypes
Hair bundle orientation and kinocilium position within the
hair bundle along the entire cochlear length were quantified as
previously described (Landin Malt et al., 2020). In brief, the hair
bundle is labeled by phalloidin staining and the kinocilium by
anti-acetylated tubulin staining. A hair bundle with its vertex
pointing to the lateral or medial edge of the cochlear duct has a
misorientation of 0◦ and 180◦, respectively. The kinocilium index
is the length ratio of the long and short hair bundle “halves” as
bisected by the kinocilium.

Quantification of Protein Localization
Fzd6 and Dvl2 immunostaining along OHC-Deiters cell
junctions from the basal to mid-apical regions was quantified
using Fiji, as previously described (Landin Malt et al., 2020). The
cochlear apex, where HC–SC junctions were more irregular/less
mature, was excluded. In brief, single optic sections with
the strongest junctional staining intensity were chosen for
each imaging channel. In general, lateral Dvl2 crescents are
localized at the level of the tight junction, while medial Fzd6
crescents are localized at a level about 1 µm below the tight
junction. Cell junctions were identified using ZO-1 staining.
A 30 × 10−, 20 × 10−, and 30 × 5-pixel region of interest
(ROI) centered around the medial, lateral, and orthogonal OHC
junctions, respectively, was then selected. Following background
subtraction, mean fluorescence intensity of Fzd6 or Dvl2 staining
for the medial or lateral ROI was normalized to that of
the orthogonal ROI of the same OHC and plotted as the
asymmetry index.

Line scan analysis was performed using Fiji and Excel to
demonstrate the localization of Fzd6 and Dvl2 staining relative
to cell junctions. Specifically, a diametral line was drawn
intersecting the lateral and medial OHC junctions as marked
by ZO-1 immunostaining. Following background subtraction,
fluorescence intensity of each imaging channel was plotted in the
lateral to medial direction of the line.

STATISTICS

Statistical analysis of at least three cochleae from three
different litters was performed using GraphPad Prism. Data
were analyzed using one-way analysis of variance (ANOVA)
followed by a post hoc Tukey’s test. p-Values for statistical
significance are defined as follows: ∗p ≤ 0.0332; ∗∗p ≤ 0.0021;
∗∗∗p ≤ 0.0002, and ∗∗∗∗p ≤ 0.0001. Data were presented as
mean± standard deviation.
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