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Abstract: Cancers of the digestive tract are among the most prevalent types of cancer. These types
of cancers are often diagnosed at a late stage, which results in a poor prognosis. Currently,
many biomedical studies focus on the role of ion channels, in particular transient receptor potential
(TRP) channels, in cancer pathophysiology. TRP channels show mostly non-selective permeability to
monovalent and divalent cations. TRP channels are often dysregulated in digestive tract cancers,
which can result in alterations of cancer hallmark functions, such as enhanced proliferation, migration,
invasion and the inability to induce apoptosis. Therefore, TRP channels could serve as potential
diagnostic biomarkers. Moreover, TRP channels are mostly expressed on the cell surface and ion
channel targeting drugs do not need to enter the cell, making them attractive candidate drug targets.
In this review, we summarize the current knowledge about TRP channels in connection to digestive
tract cancers (oral cancer, esophageal cancer, liver cancer, pancreatic cancer, gastric cancer and
colorectal cancer) and give an outlook on the potential of TRP channels as cancer biomarkers or
therapeutic targets.

Keywords: TRP channel; cancer; gastrointestinal tract; apoptosis; cell cycle; migration; invasion;
cancer hallmarks

1. Introduction

Digestive malignancies refer to a heterogeneous group of cancers that arise in the gastrointestinal
tract and associated organs. Cancers of the colon and rectum, stomach, liver, esophagus, and pancreas
are among five of the ten most prevalent cancers and cancer-related causes of death [1]. For 2020,
approximately 387,000 new cases of cancer in the digestive system, the oral cavity and the pharynx
and 179,000 related deaths have been estimated in the United States [2]. Successful treatment of
these malignancies largely depends on effective screening tools, such as diagnostic blood, stool
and endoscopic tests [3–5]. Therapeutic approaches include surgery, chemo and radiation therapy,
hormone therapy; as well as tailored and personalized therapies, which are presently undergoing
development [6–13]. To further advance personalized medicine, many research groups have focused
their work on the understanding of the molecular nature of cancer hallmark functions, including
unlimited proliferation, increased viability, migration and invasion of cancer cells, and decreased
ability to induce apoptosis [14]. Ion channels mediate numerous responses in cellular physiology and
are often dysregulated in various diseases, especially in most types of cancer including cancers of the
gastrointestinal tract [15]. Ion channels are often responsible for switching on and off intracellular
signaling pathways, which makes them attractive candidate drug targets. In addition, they are mostly
expressed on the cell surface, and, as a consequence, ion channel targeting drugs do not need to enter
the cell. In recent decades, members of the transient receptor potential (TRP) channel family have been
proposed as potential biomarkers and/or drug targets in cancer therapy.
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TRP genes were first reported in 1969, when a mutation in the genome of a visually impaired
Drosophila melanogaster fruit fly was described. This mutant, called transient receptor potential, had a
transient response to steady light, in opposite to sustained electroretinogram, recorded in the wild-type
flies [16]. However, the trp gene was identified and described 20 years later [17]. Since then, numerous
homologous TRP channel family members have been identified and classified into six human TRP
channel subfamilies, including canonical (TRPC), melastatin (TRPM), vanilloid (TRPV), ankyrin (TRPA),
polycystic (TRPP), and mucolipin (TRPML) channels [18,19]. Most TRP channels have an essential
role in the influx of monovalent and divalent cations, such as Na+, Mg2+ and Ca2+, as well as trace
metal ions [18]. Originally, the TRP channel transduction pathways were described for taste and
pungent compound perception, thermo- and mechanosensation, pain, osmoregulation, as well as
hormone and pheromone signaling [20–24]. Besides their roles in sensory processes, TRP channels
mediate many cellular physiological and pathophysiological functions in cancer and the immune
system [25–34]. One way of how TRP channels contribute to the pathogenesis of different types of
cancer is through (dys)regulation of intracellular ion levels. For example, the switch from a quiescent
cell to a proliferating cell is characterized by global dynamic Ca2+ elevations and the activation of
Ca2+ effectors. Cells progressing through the cell cycle are characterized by Ca2+ oscillations [35–38].
Additionally, Ca2+ can contribute to the activation or inhibition of apoptosis, as well as the ability of
cells to migrate [35–38]. All TRP proteins share a common topology of six transmembrane segments
(S1–S6), with a pore-forming loop between the S5 and S6 segments. The transmembrane segments
tend to share the greatest homology within the particular subfamily, and amino acid sequences in
the pore region of TRP channels are the most highly conserved [18,19]. The amino (N) and carboxyl
(C) terminuses are located intracellularly; they vary in length and sequence, and contain diverse
domains and motifs, which play a role in channel assembly, activation and regulation. These domains
and motifs can include coiled coils, calmodulin-binding sites, lipid interaction domains, EF hands,
or phosphorylation sites, and are highly variable within members of the same subfamily [18,39].
Recent advances in cryogenic electron microscopy (cryo-EM) based structural analysis have provided
insights into the architecture of several TRP channels, including TRPA1, TRPPC, TRPM, and TRPV
channels [40–54]. To date, most changes involving TRP channels in cancer do not involve mutations
in the TRP genes but rather increased or decreased levels of expression of functional TRP proteins,
depending on the cancer’s stage. Here, we focus on TRP channels, especially members of the TRPC,
TRPM, and TRPV subfamilies in digestive malignancies, that are mostly of epithelial origin, including
oral, esophageal, pancreatic, gastric, and colorectal cancer.

2. Oral Cancers

Oral squamous cell carcinoma (SCC) accounts for approximately 90% of cases of oral cancer [55].
The oral cavity comes into contact with several sensory stimuli that are known to activate a number of
TRP channels. Capsaicin, the chemical compound responsible for the burning sensation of chili peppers,
activates TRPV1 channels. Additionally, pungent mustard oil activates TRPA1, and menthol activates
TRPM8. It has been suggested that these compounds might exhibit chemoprotective features [56–58].
In human oral SCC cells, TRPV1–4, TRPV6, TRPA1, TRPM8, and TRPM2 are expressed [59–62].
In 2009, the expression levels of TRPV1 were investigated in the human tongue, in tongue SCC,
and pre-malignant leukoplakia. Under pre-malignant conditions and in SCC, the TRPV1 protein
expression was increased [59]. The expression of TRPV1 protein was also shown in human oral SCC.
Capsaicin, a TRPV1 agonist, was shown to induce cytotoxicity in oral SCC cells. However, this effect
was independent of TRPV1 conductivity, as these cells did not exhibit an increase in intracellular Ca2+

upon stimulation with capsaicin [63]. Furthermore, it was shown that TRPV1–4 expression levels were
elevated on protein level in different areas of the oral cavity, including the tongue, buccal mucosa,
gingiva, and the oral floor, compared to normal oral mucosa. In addition, known risk factors for SCC,
such as alcohol consumption and smoking, increased the expression levels of TRPV1–4 mRNAs [61].
TRPA1 is expressed in oral SCC, and thymol induces an increase in intracellular Ca2+, which is blocked
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when a TRPA1 antagonist is present. However, the anti-cancerous effects of thymol are not mediated
by TRPA1 [64]. Notably, it has been reported that oral SCC cells may secrete certain lipids that activate
TRPA1 and TRPV1 nociceptors and thus mediate SCC-induced neck pain [65]. Cold/menthol-activated
TRPM8 is expressed on protein and mRNA level in oral SCC cell lines. Immunohistochemistry (IHC)
analysis showed that TRPM8 localizes not only in the plasma membrane, but also in the endoplasmic
reticulum (ER) membrane. Menthol activates TRPM8 in the ER plasma membrane, resulting in a
Ca2+ release from intracellular Ca2+ stores and store-operated Ca2+ entry. Menthol-activated Ca2+

entry is also partially mediated by TRPM8, and both of these mechanisms can be blocked by a
TRPM8-specific inhibitor. Functionally, the inhibition of TRPM8 results in a reduction in oral SCC
cell viability, migration and invasion [60]. TRPM2 is another ion channel that contributes to Ca2+

influx and is activated by cADPR, reactive oxygen species (ROS), and 2′-deoxy-ADPR [66,67]. TRPM2
protein expression is significantly increased in tongue SCC compared to non-malignant tongue tissues
(control or papilloma). In two human tongue SCC cell lines, TRPM2 expression was upregulated
compared to a non-tumorigenic oral epithelial cell line. The downregulation of TRPM2 decreased
cancer cell migration and increased ROS induced apoptosis [62]. Table 1 summarizes studies in which
the expression of TRP channels in human tongue and oral tumor samples was described.

Table 1. Expression of transient receptor potential (TRP) channels in human oral cancers.

Type of
Cancer Channel

mRNA/Protein
(+ Assessment

Method)
Sample Size Aim/Outcome + Reference

Oral

TRPV1–4
mRNA (qPCR) 37 oral SCC + tissues samples/

compared to normal adjacent tissue

TRPV1–4 mRNA and protein expression
upregulated in oral SCC tissue samples in

comparison to normal tissue [61]protein (IHC)

TRPV1

Protein
(IHC + WB)

18 tongue SCC +
8 leukoplakia +

7 normal tongue tissues samples

TRPV1 protein and mRNA expression
upregulated in tongue SCC tissue samples in

comparison to normal tissue [59] 1mRNA (qPCR)

Protein (IHC) 3 oral SCC + 3 normal oral mucosa
tissue samples TRPV1 protein is expressed in oral SCC [63]

TRPM2 Protein (IHC)
9 normal tongue +

12 papilloma tongue +
23 tongue carcinoma tissue samples

TRPM2 protein is overexpressed in tongue
carcinoma in comparison to normal and

papilloma samples [62]
1 Only IHC assessment of protein expression showed upregulation of TRPV1 in leukoplakia in comparison to
normal tissue; data not available for qPCR and WB. IHC, immunohistochemistry; SCC, squamous cell carcinoma;
qPCR, quantitative polymerase chain reaction; WB, Western-Blot.

3. Esophgeal Cancer

Esophageal cancer is the eighth most common cancer worldwide [1] and is characterized by a
poor prognosis [68]. This type of cancer is classified into two different cancer entities: esophageal
squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) [1,68–70]. The link between
the pathophysiology of esophageal cancer and TRP channel expression has been exclusively made for
ESCC and includes dysregulation of TRPC6, TRPM7, TRPM8, TRPV1, TRPV2, and TRPV4 expression
levels. Table 2 summarizes studies in which the expression of TRP channels in human ESCC samples
was described.
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Table 2. Expression of TRP channels in human esophageal squamous cell carcinoma (ESCC).

Type of
Cancer Channel

mRNA/Protein
(+ Assessment

Method)
Sample Size Aim/Outcome + Reference

Esophageal

TRPC6
mRNA (in situ
hybridization)

55 paraffin-embedded ESSC
+ 21 fresh ESCC tissue
samples/compared to
normal adjacent tissue

TRPC6 mRNA and protein are
overexpressed compared to
normal adjacent tissue [71]

Protein (IHC)

TRPM8
mRNA (qPCR) 10 ESCC tissue

samples/compared to
normal adjacent tissue

TRPM8 mRNA and protein
are overexpressed compared
to normal adjacent tissue [72]Protein (WB)

TRPM7 Protein (IHC)

52 ESCC tissue
samples/compared to

non-cancerous esophageal
epithelia

TRPM7 protein is
overexpressed compared to
non-cancerous esophageal

epithelia (no TRPM7
expression detected) [73] 1

TRPV2 Protein (IHC) 62 ESCC tissue samples

Analysis of TRPV2 expression
(low/high); worse overall

survival and 5 year survival of
patients with high TRPV2

protein expression [74]
1 The 5 year survival rate of patients with high TRPM7 expression (82.6%) was significantly higher than that of the
patients with low expression (54.6%). ESCC, esophageal squamous cell carcinoma; IHC, immunohistochemistry;
qPCR, quantitative polymerase chain reaction; WB, Western-Blot.

TRPC6 mRNA and protein expression levels are increased in human ESCC tissues compared
to normal esophageal tissues. Furthermore, the inhibition of TRPC6 in ESCC cells led to decreased
Ca2+ signaling and cell cycle arrest via Cdk1. In addition, the inhibition of TRPC6 decreased tumor
formation in a mouse xenograft model [71].

TRPM8 mRNA and protein expression have been reported to be upregulated in ESCC tissues
and ESCC cell lines. The knockdown and inhibition of TRPM8 decrease proliferation of esophageal
cancer cells. Moreover, TRPM8 negatively regulates PD-L1 expression through the calcineurin–NFATc3
pathway, enabling the immune evasion of ESCC cells [72].

The protein expression of the Ca2+/Mg2+ channel TRPM7was reported to be a good independent
prognostic factor for patients with ESCC. Additionally, siRNA-based silencing of TRPM7 in TE6 ESCC
cells increased their proliferation, migration, and invasion [73].

TRPV2 mRNA and protein have been found to be overexpressed in ESCC cell lines. In ESCC
patients, higher expression of TRPV2 protein correlates with a worse 5 year overall survival rate
after surgery. The knockdown of TRPV2 in ESCC cells decreased proliferation, cell cycle progression,
and the ability to invade and migrate. Moreover, the authors found downregulated WNT/β-catenin or
basal cell carcinoma signaling-related genes [74]. TRPV1 and TRPV4 were both found to be expressed
on mRNA and protein level in non-tumorous esophageal squamous cells and overexpressed in ESCC
cells. Furthermore, TRPV1 and TRPV4 are functional in these cells, as shown with calcium imaging
and whole cell patch clamp techniques. Finally, the overactivation of both channels leads to increased
proliferation and migration of ESCC cells [75].

4. Liver Cancer

Liver can be affected by two types of cancer: hepatocellular carcinoma (HCC) or metastases from
colorectal cancer. Liver cancer tissue has been reported to express several TRP channels. El Boustany
and colleagues showed that TRPC1, TRPC6, TRPV1, TRPV2, TRPV4, TRPM4, TRPM6, TRPM7,
and TRPM8 are expressed on mRNA level in both Huh-7 and HepG2 human hepatoma cell lines,
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while TRPV3 and TRPM5 are only expressed in Huh-7 cells [76]. Table 3 summarizes studies in which
the expression of TRP channels in human liver cancer samples was described.

Table 3. Expression of TRP channels in human liver cancer samples.

Type of
Cancer Channel

mRNA/Protein
(+ Assessment

Method)
Sample Size Aim/Outcome + Reference

Liver

TRPV1

mRNA
(RT-PCR)

6 pairs of HCC tissue
samples/compared to
normal adjacent tissue

6 non-tumor tissues showed TRPV1 mRNA
overexpression; HCC tissue samples showed

downregulation in 4/6 tested [77]

mRNA (in situ
hybridization)

15 HCC samples/compared
to normal adjacent tissue

TRPV1 expressed in some HCC and normal
tissue samples; data non-conclusive [77]

Protein (IHC) 62 HCC tissue samples + 62
non-tumor control tissues

High TRPV1 expression was observed in
30/62 HCC samples; high TRPV1 expression

was associated with longer disease-free
survival [77]

TRPV2
Protein (IHC) 55 HCC cancer tissue

samples
Upregulation of TRPV2 on mRNA and
protein levels inversely correlated with

histopathologic differentiation [78]
mRNA (RT-PCR) 13 paired HCC tumor

mRNA extracts

TRPV4 Protein (IHC)
45 HCC tissue

samples/compared to
normal adjacent tissue

TRPV4 protein and mRNA levels higher in
HCC tissues than in normal tissues; positive
correlation between TRPV4 expression; the

histological grade and number of tumors [79]mRNA (qPCR)

TRPC6 Protein (IHC)
150 HCC tissue

samples/compared to
normal tissues

TRPC protein upregulated in HCC tissues in
comparison to normal tissues [80]

IHC, immunohistochemistry; qPCR, quantitative polymerase chain reaction; RT-PCR, reverse transcription
polymerase chain reaction; WB, Western-Blot.

TRPV1 is overexpressed in hepatocarcinoma tissues compared to normal liver tissue. In the
same study, a correlation between TRPV1 protein expression and histopathologic differentiation was
reported. High TRPV1 expression was associated with longer disease-free survival [77]. In addition,
TRPV1 was previously shown to modulate migration of HCC cells [81,82]. Furthermore, capsaicin
induced an increase in intracellular Ca2+ levels, ROS production, and apoptosis in HepG2 cells [83].
The induction of apoptosis in HepG2 cells by capsaicin-induced TRPV1 activation was later further
confirmed [84].

Another member of the TRPV subfamily, TRPV2, is also expressed in hepatocarcinoma tissue.
TRPV2 expression on mRNA and protein level are increased in moderately and well-differentiated
hepatocarcinoma tissues compared to poorly differentiated tumors. Moreover, a correlation between
TRPV2 expression and portal vein invasion was confirmed [78]. Interestingly, the expression of TRPV2
mRNA and protein levels in HepG2 and Huh-7 cells was reported to increase upon exposure to ROS,
specifically H2O2, resulting in an activation of cell death. The elevation of TRPV2 expression led to
an inhibition of pro-survival signals (Akt, Nrf2) and, in the early stage of apoptosis, promoted the
activation of pro-death signals (p38, JNK1) [85]. Another study showed that shRNA-based TRPV2
knockdown in HepG2 cells enhanced spheroid and colony formation, which was restored by the
overexpression of TRPV2. Additionally, the expression of TRPV2 protein was linked to the stemness of
liver cancer cells, as the knockdown of TRPV2 in HepG2 cells induced the expression of liver cancer
stem-like cells (LCSLCs) markers. Moreover, in human hepatoma cell line SMMC-7721, which exhibits
lower TRPV2 protein expression than HepG2, reinforced TRPV2 expression led to the reduction of
the expression of LCSLCs markers and reduced spheroid and colony formation. In line with these
findings, probenecid, a TRPV2 agonist, also reduced LCSLCs markers expression, as well as spheroid
and colony formation. LCSLCs are considered to be good targets for liver cancer therapy, as they
exhibit stem cell properties and are of a highly tumorigenic nature. Therefore, TRPV2 was proposed to
be a potential target in hepatoma therapy [86]. Notably, reduced expression of TRPV2 mRNA and
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protein in poorly differentiated tumors in comparison to higher differentiated hepatoma [78] supports
the idea that reduced TRPV2 expression promotes the stem-cell features of hepatoma cells during the
early stages of tumor development [86].

Protein and mRNA levels of TRPV4 are elevated in hepatocellular carcinoma tissue compared
with paired non-tumor tissue. Poorly differentiated HCC tumors displayed stronger TRPV4 expression
and a positive correlation between TRPV4 expression; the histological grade and number of tumors
was described [79]. In addition, with the use of a TRPV4-specific antagonist and agonist, Fang and
colleagues showed that TRPV4 is crucial for HCC cell viability and that its inhibition could cause
anti-tumor effects through modulation of the expression of apoptosis-related molecules. Furthermore,
in a xenograft mouse model system, the blockage of TRPV4 was shown to decrease tumor size and
weight compared to the control group [79].

The downregulation of TRPC1 with shRNA-based interference has been shown to suppress cell
proliferation but not migration of HCC cells. In addition to the anti-proliferative effect of TRPC1
silencing, Selli and colleagues reported an elevation in store-operated Ca2+ entry [87].

TRPC6 is weakly expressed on mRNA and protein level in normal hepatocytes but strongly
expressed in liver carcinoma samples. Moreover, high TRPC6 expression has been suggested to be
associated with a higher Tumor Node Metastasis (TNM) classification of tumors [76,80]. TRPC6
overexpression in Huh-7 cells leads to increased proliferation [76]. In addition, TGF-β has been shown
to induce a formation of the complex between TRPC6 and the type1 Na+/Ca2+ exchanger (NCX1),
leading to an increased migration and invasion of HCC. Moreover, a positive correlation was found
between the severity of HCC progression and the expression of TRPC6 and NCX1 [80]. Both the
inhibition and RNAi downregulation of TRPC6 or NCX1 was able to attenuate TGF-β induced cell
migration or the intrahepatic metastasis of human HCC in an in vivo xenograft mouse model [80].
Moreover, Wen and colleagues recently reported a significantly increased TRPC6 mRNA expression in
HCC cells upon hypoxia stimulation, doxorubicin treatment, or ionizing radiation [88]. The inhibition
or downregulation of TRPC6 significantly decreased drug resistance to all three stimuli, and TRPC6
inhibition could reverse endothelial–mesenchymal transition (EMT), induced by doxorubicin treatment.
In line with these findings, TRPC6 interference in vivo enhanced the sensitivity to doxorubicin and led
to slower growth of the cells compared to the control cells [88].

Another study found that bradykinin can activate TRPM7 in HepG2 cells, leading to an influx
of Ca2+. TRPM7-mediated Ca2+ influx was necessary for the activity of calpains, which play a role
in migration of HepG2 cells. These findings suggest that TRPM7 could be involved in migration of
liver cancer cells. Notably, treatment with bradykinin resulted in an increase in MMP-2 secretion and
enhanced migration [89].

5. Pancreatic Cancer

Pancreatic cancer is usually detected at an advanced stage and, currently, most patients are
diagnosed with distant metastases and, therefore, have a poor 5 year survival rate [90,91]. Detection of
pancreatic cancer at an early stage has a favorable impact on long-term survival, as the 5 year survival
of localized pancreatic cancer is about 25% but is only 2% for distant disease [90,91].

An analysis performed by Lin and colleagues revealed that somatic mutations in the TRPM2
gene exhibit a negative correlation with pancreatic cancer patient survival rates in comparison to
the group without TRPM2 mutations. Additionally, the higher the TRPM2 mRNA expression in the
cancerous tissue, the shorter the survival of the patients. TRPM2 expression was also shown to enhance
proliferation, migration, and invasion of PANC-1 cells, a human pancreatic cancer cell line [92].

In 2007, it was shown that TRPM8 is expressed on mRNA and protein level and mediates
non-selective cation currents in the human pancreatic neuroendocrine tumor (NET) cell line BON, as well
as in primary NET cell lines [93]. TRPM8 protein was found to be upregulated in human pancreatic
adenocarcinoma cell lines and tissues [94,95]. Other studies further confirmed the upregulation of
TRPM8 in pancreatic cancer tissues in human patients compared to adjacent tissues [96,97]. In addition,
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high TRPM8 protein expression was found to be associated with lower overall survival and poor
disease free survival values for pancreatic cancer patients [97], as well as positively correlated with the
tumor size and stage of pancreatic cancer [94]. Furthermore, it was shown that TRPM8 is required for
proliferation of the pancreatic adenocarcinoma cell lines, PANC-1 and BxPC-3, due to the cell cycle
arrest in the G0/G1 phase [95]. Another study showed that TRPM8 protein is expressed in PANC-1 cells
in a non-glycosylated form and is functional. Additionally, TRPM8 knockdown with siRNA resulted in
a decrease in cell migration [98]. TRPM8 expression in a non-glycosylated form was further confirmed
and shown to have an impact on the conductive properties of the channel. Additionally, it was
suggested that the glycosylation patterns in PANC-1 cells could have an impact on proliferation [99].
It was also further shown that TRPM8 mediates Ca2+ influx in PANC-1 and BxPC-3 cell lines and plays
a role in proliferation as well as migration. Additionally, targeting TRPM8 in PANC-1 and BxPC-3
with siRNA resulted in an enhancement of gemcitabine cytotoxicity, which was accompanied by a
change in the expression of apoptosis- and gemcitabine metabolism-related proteins [96]. Another
study further showed that targeting TRPM8 with shRNA in BxPC-3 and MIA PaCa-2 resulted in a
decrease in invasion [94].

TRPM7 was shown to play a role in the development of the pancreas in a zebra fish model,
which was linked to Mg2+ sensitive signaling. These findings could be translated to the pathogenesis
of pancreatic adenocarcinoma, in which TRPM7 protein was shown to be overexpressed and necessary
for Mg2+-regulated proliferation. Targeting TRPM7 with siRNA in PANC-1 and BxPC-3 resulted
in a cell cycle arrest in the G0/G1 phase, accompanied by a change in the expression of p21, cyclin
G1, and cyclin B1. The role of TRPM7 in the regulation of pancreatic cancer cells proliferation was
also connected to Mg2+, as supplementation of the culture medium with Mg2+ reversed the decrease
in proliferation caused by the knockdown of TRPM7 [100]. TRPM7 does not affect apoptosis in
PANC-1 and BxPC-3 [100,101]. However, it plays a role in preventing replicative senescence. Targeting
TRPM7 enhances cytotoxicity of the conventionally used chemotherapeutic, gemcitabine, which is a
pro-apoptotic agent, suggesting that targeting TRPM7 in pancreatic cancer could support standard
chemotherapy [101]. Another group showed that TRPM7 mRNA and protein are overexpressed
in pancreatic ductal adenocarcinoma compared to healthy pancreatic tissue, and TRPM7 staining
intensity is inversely correlated with patients’ survival. Additionally, the study showed that BxPC-3
cells exhibit TRPM7-characteristic non-selective cationic currents and that TRPM7 activity regulates
intracellular Mg2+ levels [102]. Contrary to previous findings [100,101], another study based on the
siRNA targeting of TRPM7 reported no effect on cell viability and proliferation but showed a decrease in
cell migration [102]. The overexpression of TRPM7 protein in pancreatic cancer was further confirmed,
and a correlation was found between TRPM7 expression levels and the size and stage of tumors.
Additionally, TRPM7 is overexpressed in pre-malignant tissue. Therefore, the expression of TRPM7
could be further investigated as a potential biomarker [103]. Furthermore, high TRPM7 staining in
pancreatic ductal adenocarcinoma has been associated with higher TRPM7 protein staining in the
lymph nodes, suggesting that TRPM7 might be involved in invasion of pancreatic cancer cells [104].
Indeed, TRPM7 has been shown to be involved in the invasion of BxPC-3 cells [103]. Another study
showed that in PANC-1 and MIA PaCa-2 cell lines, the TRPM7-mediated cation current regulates Mg2+

homeostasis and cell invasion, as TRPM7 knockdown was shown to reduce invasion along with a
decrease in MMP2, uPA, and Hsp90α secretion [104].

TRPV1 was shown to be expressed on mRNA and protein level and regulate intracellular Ca2+

levels in pancreatic NET BON-1 cells, and its activity triggered secretion of chromogranin A [105].
Furthermore, the TRPV1 agonist, capsaicin, reduced viability and proliferation, and induced apoptosis
in NET cells. The cytotoxicity of capsaicin was shown to be due to the disturbance of mitochondrial
potential and the inhibition of ATP production [106]. Similar to the observations in NET cells,
TRPV1 overexpression in PANC-1 cells inhibited cell proliferation. Either the overexpression or
agonist-induced activation of TRPV1 reduced the expression of epidermal growth factor receptor
(EGFR), due to its ubiquitination. Additionally, TRPV1 reduced mRNA expression of two oncogenes,
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KRAS and AKT2 [107]. Another member of the TRPV subfamily, TRPV6, is expressed in BON-1 cell
line on mRNA and protein level, and it regulates Ca2+ levels. The downregulation of TRPV6 in BON-1
cells, resulted in an inhibition of proliferation and reduced NFAT activation [108]. Furthermore, TRPV6
protein expression is elevated in pancreatic cancer tumors compared to non-tumor adjacent tissues
and its high expression correlated with lower survival of the patients. The knockdown of TRPV6 in
pancreatic cancer cell lines resulted in a reduced proliferation, induced cell cycle arrest in the G0/G1
phase, reduced migration and invasion, as well as increased apoptosis [109].

Table 4. summarizes studies in which the expression of TRP channels in human pancreatic cancer
samples was described.

Table 4. Expression of TRP channels in human pancreatic cancer samples.

Type of
Cancer Channel

mRNA/Protein
(+ Assessment

Method)
Sample Size Aim/Outcome + Reference

Pancreatic

TRPM2

mRNA
(analysis of
previously

published cancer
genome studies)

91 pancreatic cancer patients High TRPM2 expression correlated with
lower overall survival [92]

TRPM8

Protein (IHC)
280 pancreatic

adenocarcinoma tissue
microarrays

Moderate or high level of TRPM8 protein
expression in 92% of pancreatic

adenocarcinoma; the expression levels of
TRPM8 positively correlate with the size of
the primary tumor and tumor stages [94]

Protein (IHC)
5 pancreatic adenocarcinoma
tissue samples/compared to

normal adjacent tissue

TRPM8 protein expression upregulated
compared to normal tissue [95]

Protein (IHC)
mRNA (qPCR)

44 pancreatic adenocarcinoma
tissue samples/compared to

normal adjacent tissue

TRPM8 protein and mRNA upregulated
compared to normal tissue [96]

mRNA (qPCR)

110 pancreatic
adenocarcinoma tissue

samples/compared to normal
adjacent tissue

TRPM8 mRNA upregulated compared to
normal tissue; high TRPM8 protein

expression was found to be associated with
lower overall survival and poor disease free

survival values for pancreatic cancer
patients [97]

TRPM7

Protein (IHC)

5 pancreatic adenocarcinoma
tissue samples/compared to

normal pancreatic tissue
samples

TRPM7 protein upregulated compared to
normal tissue [100]

Protein (IHC)

282 pancreatic
adenocarcinoma tissue

microarrays/compared to
normal pancreatic tissue

microarrays

TRPM7 protein upregulated compared to
normal tissue; TRPM7 expression correlates

with the tumor stage [103]

Protein (IHC)
mRNA (RT-PCR)

8 tumor pancreatic ductal
adenocarcinoma/compared to

6 normal pancreatic tissues

TRPM7 protein and mRNA upregulated
compared to normal pancreatic tissue [102]

TRPV6 Protein (IHC)
76 tumor pancreatic tissue

samples compared to adjacent
normal pancreatic tissues

TRPV6 protein upregulated compared to
normal pancreatic tissue [109]

IHC, immunohistochemistry; qPCR, quantitative polymerase chain reaction; RT-PCR, reverse transcription
polymerase chain reaction.

6. Gastric Cancer

Gastric cancer was the third most common cause of cancer-related deaths in 2018, just after lung
and colorectal cancer [1]. Most patients with early-stage gastric cancer are asymptomatic; therefore,
a diagnosis is often made when the cancer is at an advanced stage and shows metastasis [110]. Several
TRP channels have been proposed to be involved in the pathogenesis of gastric cancer. The TRPC6
channel was shown to be upregulated on protein and mRNA level in human gastric cancer epithelial
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cells in comparison to normal gastric epithelial cells. TRPC6-mediated Ca2+ influx in gastric cancer
cell lines is responsible for regulation of the cell cycle, as the inhibition of TRPC6 resulted in cell cycle
arrest in the G2/M phase and inhibited cell growth. The involvement of TRPC6 conductivity in cell
cycle regulation was further confirmed in experiments where the TRPC6 dominant-negative mutant
was expressed. Moreover, treatment of nude mice with a TRPC6 blocker resulted in the inhibition
of the development of a xenografted human gastric tumor [111]. Another study suggested a role for
TRPC 1/3/6 in the regulation of EMT [112]. Additionally, a newly developed TRPC6 inhibitor showed
an anti-tumor effect in nude mice with a xenografted human gastric tumor [113].

Capsaicin has been shown to induce apoptosis in a normal human epithelial gastric cell line
and the gastric cancer cell line AGS. However, AGS cells were found to be more susceptible to
capsaicin-induced apoptosis, which was induced through an increase in mitochondrial permeability
and activation of Bax and p53. Surprisingly, the capsaicin-induced apoptosis was dependent on Ca2+

influx mediated by TRPV6, rather than TRPV1, a known capsaicin receptor [114].
TRPM2 was found to be expressed on mRNA level in gastric cancer patients, and its high

expression was negatively associated with the overall survival of patients. Functional TRPM2 is
expressed in gastric cancer cell lines AGS and MKN-45, and its shRNA based knockdown results in
the inhibition of proliferation and enhancement of apoptosis. Additionally, TRPM2 knockdown was
shown to alter autophagy in AGS cells, which led to mitochondrial dysfunction. The knockdown of
TRPM2 also sensitized AGS and MKN-45 cells to treatment with paclitaxel and doxorubicin, resulting
in a further reduction in cell viability. These findings suggest that targeting TRPM2 in combination with
standard chemotherapeutic drugs could be beneficial for the treatment of gastric cancer patients [115].

TRPM7 channel was shown to be expressed in gastric cancer cell lines on mRNA and protein
level. AGS gastric cancer cells exhibit TRPM7-like currents, and suppression of these currents by
the unspecific TRPM7 inhibitors, La3+ or 2-APB, resulted in a decrease in cell viability and higher
apoptosis rates. Additionally, Mg2+ was necessary for AGS cells survival and growth [116].

Table 5 summarizes studies in which the expression of TRP channels in human gastric cancer
samples was described.

Table 5. Expression of TRP channels in human gastric cancer samples.

Type of
Cancer Channel

mRNA/Protein
(+ Assessment

method)
Sample Size Aim/Outcome + Reference

Gastric

TRPC6

Protein (IHC)
25 primary gastric cancer
samples/compared to
4 gastritis samples

TRPC6 mRNA and protein
expression upregulated
compared to
gastritis samples [111]mRNA (in situ

hybridization)
10 primary gastric
cancer samples

TRPM2
mRNA (analysis
of online gastric
cancer databases)

896 gastric cancer patients;
analysis of low TRPM2 vs
high TRPM2 expression

High TRPM2 mRNA
expression high expression
negatively associated with
the overall survival of
patients [115]

IHC, immunohistochemistry.

7. Colorectal Cancer

Colorectal cancer (CRC) is one of the most frequent types of cancer and cancer-related cause of
death, both in Europe and in the United States [117,118]. Several TRP channels have been shown to be
dysregulated in CRC. A study investigating mRNA expression levels of the TRP channels in human
CRC tissue versus normal colon mucosa detected an increase in gene expression of TRPM8, TRPV6,
and TRPV1 and a lower expression of TRPV4, TRPM4, TRPV3, TRPC6, and TRPV5 in the tumor tissues



Int. J. Mol. Sci. 2020, 21, 1877 10 of 23

of CRC compared to normal tissues [119]. Table 6 summarizes studies in which the expression of TRP
channels in human gastric cancer samples was described.

Table 6. Expression of TRP channels in human colorectal cancer (CRC) samples.

Type of Cancer Channel
mRNA/Protein
(+ Assessment

Method)
Sample Size Aim/Outcome + Reference

Colorectal (CRC)

TRPC1

mRNA (analysis
of CRC datasets,
available from
public databases)

656 CRC samples
including 47
normal samples

High TRPC1 expression
correlated with poor
prognosis for the patients
[120]585 CRC samples

including 19
normal samples

TRPV1 Protein (IHC)

10 CRC tissue
samples, 10
CRC-adjacent
tissue samples, and
6 normal subjects

TRPV1 protein expression
decreased in CRC tissues
compared to normal tissues
[121]

TRPM4 Protein (IHC)
CRC tumor tissue
microarrays from
379 patients

High TRPM4 protein
expression was associated
with unfavorable tumor
features characteristic for
epithelial-mesenchymal
transition and infiltrative
growth patterns [122]

TRPM6

mRNA (analysis
of CRC datasets,
available from
public databases)

656 CRC samples
including 47
normal samples TRPM6 mRNA expression

decreased compared to
normal tissue [120]585 CRC samples

including 19
normal samples

mRNA (analysis
of CRC dataset,
available from
public databases)

585 CRC samples
including 19
normal samples

TRPM6 mRNA expression
decreased compared to
normal tissue; high TRPM6
mRNA expression positively
correlated with overall
survival [123].

CRC, colorectal cancer; IHC, immunohistochemistry.

TRPC1 ion channel, which displays permeability towards Ca2+ ions, was reported to be upregulated
on mRNA and protein level in CRC cells [124], and its higher mRNA expression in CRC patients
has been correlated with a poor prognosis [120]. The upregulated expression of TRPC1 in CRC has
been shown to contribute to an increased Ca2+ influx via store operated Ca2+ entry and higher Ca2+

signaling, which resulted in an increased proliferation, invasion, and survival of CRC cells [124].
Furthermore, Ca2+ influx through TRPC1 was also linked to an increased migration of CRC cells [125].
Another member of the TRPC subfamily, which conducts Ca2+, TRPC5, was shown to play a role
in the drug resistance of human CRC cell lines. HCT-8 and LoVo cells resistant to 5-fluorouracil
(5-FU), which is a commonly used chemotherapeutic in CRC therapy, showed higher expression of
TRPC5 mRNA and protein in comparison to non-resistant cells. Further investigations revealed that
the TRPC5-mediated Ca2+ influx induces the expression of the ATP-binding cassette subfamily B
member 1 (ABCB1), a pump overproduced in cancer cells, responsible for the export of cytotoxic drugs.
Additionally, TRPC5 promoted nuclear β-catenin localization [126].
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Increasingly, evidence suggests an important role for TRPV1 channel in the physiology and
pathophysiology of the intestine. Increased expression of TRPV1 protein was found in the colon of
patients with inflammatory bowel disease, which was linked to an increased pain sensation [127].
However, several studies suggested that the expression and activity of TRPV1 in the intestine has
a protective role in inflammatory states [128–131]. Consistent with these findings, in a mice model
of colitis-associated cancer (CAC), mice that lacked the expression of TRPV1 had a higher incidence
and higher number of tumors in the distant colon. The lack of TRPV1 was also accompanied by an
increased proliferation of colon cells and higher β-catenin localization to the nuclei. Additionally,
tumors from mice lacking TRPV1 showed an increased infiltration of inflammatory cells into the
tumors, along with an elevated expression of IL-6 and IL-11 and activation of STAT3 and NF-kB
signaling pathways [132]. Further evidence shows that TRPV1 protein expression can have a protective
role against tumor development. De Jong and colleagues showed that functional TRPV1 is expressed
in intestinal epithelial cells and can be activated by capsaicin. TRPV1 activation inhibits EGFR-induced
epithelial cell proliferation via activation of Ca2+/calpain. In a murine model of multiple intestinal
neoplasia (ApcMin/+ mice), TRPV1 deficiency promoted intestinal adenoma formation correlated with
a reduced lifespan [133], which was consistent with previous findings [132]. In this model, mice that
lack TRPV1 showed higher EGFR phosphorylation and proliferation markers in intestinal epithelial
cells, and the deletion of TRPV1 increased the expression of the EGFR-regulated oncogenes, c-Fos
and c-Myc. Furthermore, the administration of dietary capsaicin increased the survival of ApcMin/+

mice in a process that was dependent on TRPV1 [133]. Another study suggested that TRPV1 protein
expression is decreased in CRC tissues. Treatment of HCT116 cell line with capsaicin resulted in an
inhibition of proliferation and induced apoptosis through the activation of the tumor suppressor, p53.
In this cell line, treatment with capsaicin led to an increase in intracellular Ca2+, possibly through
TRPV1 [121]. On the other hand, studies in human CRC cell lines showed that Fibrulin-5, a component
of ECM, is downregulated in CRC tissues and cell lines. Fibrulin-5 induces apoptosis through the
downregulation of TRPV1 and ROS production [134]. Another study in HT-29 cell line showed
that capsaicin induced apoptosis through PPARγ signaling but without the involvement of TRPV1,
since capsazepine, a specific antagonist for the vanilloid receptor, did not inhibit capsaicin induced
apoptosis [135].

TRPM8 is another ion channel responsible for Ca2+ influx into cells and was found to be highly
expressed on protein level in human CRC cell lines, Caco-2, and HCT116. Furthermore, cannabigerol,
a non-psychotropic cannabis-derived cannabinoid, reduces colon cancer progression in vivo and
selectively inhibits the growth of CRC cells via interaction with TRPM8 [136].

TRPM4 is an ion channel, which is directly activated by an increase in intracellular Ca2+

concentration, however, is not permeable towards Ca2+. In non-excitable cells, under physiological
conditions, TRPM4 conducts Na+ into the cell, thereby contributing to plasma membrane depolarization.
This, in turn, reduces the driving force for further Ca2+ entry through store operated Ca2+ channels.
Therefore, TRPM4 is regarded to be a negative regulator of Ca2+ signaling [137–140]. Reports on mRNA
expression levels of TRPM4 in colorectal cancer either found it to be lower in CRC tissue compared to
normal colon tissue [119], or no differences were detected [141]. However, a recent study investigating
TRPM4 protein expression levels in CRC tissues showed that its high expression correlates with high
numbers of tumor buds and an increased percentage of infiltrative tumor border configuration. Both of
these features correlate with an increased frequency of vessel invasion and lymph node metastasis,
which ultimately lead to an increased probability of disease reoccurrence and cancer related death.
TRPM4 protein was also shown to be highly expressed in tumor buds, which were linked to increased
metastasis in CRC. Furthermore, TRPM4-mediated Na+ influx was shown to regulate cell viability and
the cell cycle of HCT116 cells. In the same study, TRPM4 was also linked to the regulation of CRC cells
migration and invasion [122].
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There are two Mg2+ channels in the superfamily of TRP channels, TRPM6 and TRPM7, and their
activity is linked to the pathogenesis of CRC. TRPM6 and TRPM7 are unique ion channels that
mediate Mg2+ homeostasis, as well as proteins, combining an ion channel with a functional α-kinase
domain [29,142–145]. The role of Mg2+ in the pathogenesis of CRC has been reported. Higher Mg2+

intake seems to be associated with a modest reduction in the risk of CRC, in particular, colon cancer [146].
However, studies showed that mice receiving Mg2+-deficient diet had a significant retardation of their
primary tumor growth [147]. Therefore, the relationship between Mg2+ intake and cancer might be
more complex, especially since the relationship of Ca2+:Mg2+ intake is important for the regulation of
cellular responses [148]. At the cellular level, Mg2+ can exhibit either anti- or pro-tumor effects and has
been suggested to contribute to different mechanisms involved in carcinogenesis, such as cancer cell
proliferation, metabolic reprogramming, the ability to metastasize, and neo-angiogenesis [149,150].
Mg2+ was shown to contribute to the regulation of cell proliferation and cell cycle, and Mg2+ deficiency
has been shown to induce cell cycle arrest in the G0/G1 phase [148]. On these bases, TRPM6 and
TRPM7 could be potential players in CRC. Indeed, it was reported that TRPM6 is downregulated
in CRC tissues on mRNA level [120,123], and its higher expression is correlated with an increased
overall survival [123]. On the other hand, TRPM7 was suggested to be upregulated in CRC on mRNA
level [151]. Moreover, a single-nucleotide polymorphism that substitutes TRPM7 threonine 1482 for
isoleucine (T1482I) increases the risk of the development of colon cancer, particularly in patients
with a high Ca2+/Mg2+ ratio [152]. It must be noted that this mutation does not influence kinase
activity, nor the channel’s conductivity, but the channel’s sensitivity to Mg2+ [153]. TRPM7 was also
shown to be overexpressed in CRC cell lines. The downregulation of TRPM7 suppressed CRC cell
proliferation, migration, and invasion, as well as triggered cell cycle arrest in the G0/G1 phase, reduced
the S phase, and promoted apoptosis. Furthermore, the decrease in TRPM7 expression in CRC cells
reversed EMT, which was accompanied by a downregulation in N-cadherin and an upregulation of
E-cadherin expression [151]. Mg2+ homeostasis regulation via TRPM6 and TRPM7 was also linked
to the sensitivity of CRC cells to doxorubicin, a common chemotherapeutic agent. A study in the
CRC cell line LoVo showed that cells resistant to doxorubicin have increased total intracellular Mg2+

levels compared to sensitive LoVo cells. However, mRNA expression of TRPM6 in cells resistant
to doxorubicin was downregulated compared to cells sensitive to doxorubicin. Further, in LoVo
cells resistant to doxorubicin, TRPM7 is downregulated on protein level, but not on mRNA level,
compared to doxorubicin-sensitive LoVo. Therefore, the levels of TRPM6 and TRPM7 are inversely
related to the amounts of total intracellular Mg2+. This could be partially explained by the fact that
TRPM7 was markedly reduced in resistant cells because of the activation of calpains, which are
dependent on intracellular Ca2+ levels. Free Ca2+ levels are higher in cells resistant to doxorubicin [154].
These findings further support the idea that pathogenesis of CRC might be dependent on the Ca2+/Mg2+

ratio [152] and suggest a potential interplay between Ca2+ and Mg2+ transport (dys-) regulation in CRC.
Nevertheless, TRPM7 is involved in the modulation of drug resistance in LoVo cells, as downregulation
of TRPM7, but not TRPM6, expression enhances viability of LoVo cells exposed to doxorubicin [154].

8. Conclusions and Outlook

Recent studies show that digestive malignancies are characterized by different expression patterns
of TRP channels (Figure 1). In general, cancers of the gastrointestinal tract are characterized by a poor
prognosis, largely due to late diagnosis, when the disease is at an advanced stage. Therefore, there is a
need to develop novel biomarkers for the detection of early stage diseases. Whether TRP channels
could play such a role remains under investigation, as recent evidence is limited. For example, TRPM7
is upregulated in pre-malignant pancreatic cancer compared to normal pancreatic tissue [103], and so it
could potentially serve as a candidate for a pancreatic cancer biomarker. Another candidate for a novel
biomarker could be TRPM4, which was shown to be highly expressed in tumor buds in CRC cancer
tissues [122]. Currently, there is a need for the introduction of novel additional biomarkers, which could
support the TNM staging system [155]. Tumor budding has been suggested to be an additional
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prognostic factor, as it is strongly predictive of lymph node metastases, recurrence, and cancer-related
death at 5 years [156,157]. Therefore, the expression of TRPM4 could potentially add to the detection
of tumor buds.

Figure 1. Expression of TRP channels in gastrointestinal tract. Overview of TRP channels expressed in
cancers of the gastrointestinal tract or in the cell lines originating from these types of cancers. ↑Arrows
indicates that the channel is upregulated, while ↓ arrows indicates that the channel is downregulated.
For some channels, there was more than one study, showing that they are either upregulated or
downregulated, which is indicated by ↑↓.

Moreover, TRP channels could be potential candidates for therapeutic targets, especially since they
are usually expressed on the cell surface, which makes them accessible to small-molecule inhibitors
and biological molecules, such as monoclonal antibodies and fusion proteins [158–160]. Given the
fact that some TRP channels are ubiquitously expressed, the delivery of TRP channel inhibitors to
the tumor sites could be supported by cancer cell-specific drug delivery systems that are currently
being developed [161]. TRP channels were shown to regulate cellular responses associated with
tumorigenesis (summary in Figure 2). A number of studies show the anti-tumor properties of capsaicin,
a TRPV1 channel agonist [106,114,121,133,135]. These findings suggest that the activation of TRPV1
could potentially enhance standard therapies. Furthermore, targeting other TRP channels showed an
amplification of the effects of commonly used chemotherapeutics [77,96,101,115,126,154], potentially
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providing an option for the enhancement of current therapeutic strategies. Currently, several clinical
trials evaluating ion channel inhibitors and blockers are ongoing [158,162,163]. Furthermore, phase
1 clinical studies evaluating TRPV6 channel inhibitor, SOR-C13, in patients with advanced solid
epithelial tumors are being evaluated (NCT01578564 and NCT03784677). While the second study is in
the recruiting stage, the results of the first study show that that SOR-C13 was well tolerated. Moreover,
of 22 evaluable patients, 54.5% showed stable disease ranging from 2.8 to 12.5 months, which suggests
an anti-tumor activity of SOR-C13 [164]. This is a proof of principle, showing that, in the future, drugs
targeting TRP channels in cancer could enter clinical use. Future studies will further investigate the
potential of TRP channels as therapeutic targets in cancer.

Figure 2. Overview of the role of TRP channels in cell functions of cancers of the gastrointestinal tract.
TRP channels, which are permeable to monovalent and divalent cations, such as Na+, Ca2+ and Mg2+,
are often dysregulated in cancer cells. These can lead to enhancement/suppression of proliferation,
migration and invasion, cell cycle progression, and apoptosis. Channels with activity promoting a
particular function are marked in green. Channels with activity suppressing a particular function are
marked in red.
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Abbreviations

5-FU 5-Fluorouracil
ABCB1 ATP-Binding Cassette Subfamily B Member 1
Ca2+ Calcium Ions
CAC Colitis-Associated Cancer
CRC Colorectal Cancer
Cryo-EM Cryogenic Electron Microscopy
EAC Esophageal Adenocarcinoma
EGFR Epidermal Growth Factor Receptor
EMT Endothelial–Mesenchymal Transition
ER Endoplasmic Reticulum
ESCC Esophageal Squamous Cell Carcinoma
HCC Hepatocellular Carcinoma
IHC Immunohistochemistry
La3+ Lanthanum Ions
LCSLCs Liver Cancer Stem-Like Cells
Mg2+ Magnesium Ion
Na+ Sodium Ions
NET Neuroendocrine Tumor
ROS Reactive Oxygen Species
SCC Squamus Cell Carcinoma
TNM Tumor Node Metastasis
TRP Transient Receptor Potential
TRPA Transient Receptor Potential Ankyrin
TRPC Transient Receptor Potential Canonical
TRPM Transient Receptor Potential Melastatin
TRPML Transient Receptor Potential Mucolipin
TRPP Transient Receptor Potential Polycystic
TRPV Transient Receptor Potential Vanilloid
WB Western-Blot
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