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Abstract

The complex web of macromolecular interactions occurring within cells—the interactome—is the backbone of an increasing
number of studies, but a clear consensus on the exact structure of this network is still lacking. Different genome-scale maps
of human interactome have been obtained through several experimental techniques and functional analyses. Moreover,
these maps can be enriched through literature-mining approaches, and different combinations of various ‘source’ databases
have been used in the literature. It is therefore unclear to which extent the various interactomes yield similar results when
used in the context of interactome-based approaches in network biology. We compared a comprehensive list of human
interactomes on the basis of topology, protein complexes, molecular pathways, pathway cross-talk and disease gene
prediction. In a general context of relevant heterogeneity, our study provides a series of qualitative and quantitative
parameters that describe the state of the art of human interactomes and guidelines for selecting interactomes in future
applications.
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Introduction
Biological processes take place through the dynamic interaction
of different types of molecular entities within highly organized
environments. The characterization of the complex web of
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macromolecular interactions occurring within human cells,
the interactome, is an essential task to explain the genetic
architecture of complex diseases [1]. The interactome is being
used in several approaches as a map to guide our understanding
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of how alterations perturb the system as a whole [2, 3]. Such
interactome-based (or more generally network-based) methods
have been developed to solve problems in all three broad
categories of integrative analyses [4], namely (i) to understand
molecular behaviors, (ii) to find disease subtypes and (iii) to
predict an outcome or phenotype. Indeed, the interactome
represents a powerful framework to understand and inte-
grate omics datasets [5–9]. In these approaches, molecular
interactions are used to capture systems-level patterns (e.g.
active network regions, disease modules) that go beyond the
knowledge attainable by analyzing each individual perturbation
(e.g. mutation, expression change) separately from the others
(i.e. as if they affect the phenotype by acting independently) [2].

In contrast to human genome and transcriptome, a unique
reference model is not available for the interactome, which is still
far from completeness. For example, while the first reference
map for human metabolism has been produced [10], the one
involving protein–protein interactions (PPIs) is still in progress
[11]. At present, different reconstructions of the gene-centered
human interactome are available. In these interactomes, nodes
are genes while edges represent different types of interactions
involving genes and gene products. This representation simpli-
fies the many types of players involved (e.g. DNA sequence, pro-
tein isoforms) and interactions (PPI, protein-DNA) involved, pro-
viding a useful model to integrate many other data types that are
imputable to genes, like the scores (e.g. P-values, fold-changes,
etc.) emerging from omics data analysis. A node represents the
gene itself or any of its products, while edges accommodate
both biophysical (direct) and functional (indirect) interactions.
In gene-centered interactomes, biophysical interactions mainly
include PPI and protein–DNA interactions (PDI). Therefore, a PPI
between genes A and B represents any PPI between any pair
of products of the two genes, while a PDI between A and B
indicates the binding between any protein encoded by A to gene
B. Functional interactions represent any type of biological rela-
tion between two genes that do not involve a direct contact, for
example co-expression relations, genetic interactions and links
between enzymes that catalyze adjacent reactions in metabolic
pathways.

Gene-centered interactomes differ in terms of type of inter-
action included, data sources and assembling procedure. We
can distinguish three classes of interactomes: high-throughput
biophysical (‘HTBP’) interactomes, ‘integrative’ interactomes and
‘integrative–predictive’ interactomes. HTBP interactomes are the
state of the art in terms of reconstructing the interactome in
a biological model (e.g. cell lines) detecting PPIs by means of
a high-throughput assay, like the yeast two hybrid screening,
affinity purification followed by mass spectrometry and co-
fractionation [11]. Integrative interactomes collect interaction
data from both primary databases and meta-databases. Primary
databases collect experimental data from both small- and
large-scale studies, while meta-databases integrate and unify
interactions from multiple primary databases. Integrative–
predictive interactomes contain interactions collected from
multiple sources as well as predicted interactions, hypothesized
on the basis of a series of evidences, like co-expression, co-
participation in molecular pathways and co-occurrence in
scientific publications.

In such a heterogeneous and evolving scenario, which lacks
a reference model, it is not trivial to decide which interactome
or set of interactomes is the most appropriate for a particular
application (e.g. disease gene prediction). In order to guarantee
a good coverage of the totality of the genes, it is common
to perform network-based analysis using interactomes defined
combining multiple sources. In some works, the results obtained

using different interactomes on the same data are compared
assessing the variation of the studied outcome (e.g. [12, 13]) or
joined in a consensus (e.g., [14]). However, quite often, a single
interactome is used.

Recently, a benchmark for the performance of several interac-
tomes on a particular task, namely disease prioritization, found
that the choice of interactome matters greatly [15]. Here, we
characterized 19 interactomes on the basis of topological prop-
erties, protein complexes, molecular pathways, pathway cross-
talk (PCT) and performance in disease gene prediction. Our
study describes the state of the art of the most general purpose,
complete and widely used interactomes, and offers a series of
hints to guide the choice of interactomes in future applications.

Material and Methods
Interactome collection and harmonization

The original genes/protein identifiers chosen by the authors
of each interactome (Entrez Gene, gene symbols, Uniprot,
Ensembl transcript, Ensemble gene, Ensemble protein, iRefIndex
icrogid) were mapped to Entrez gene identifiers. Mappings
between Entrez Gene identifiers and other identifiers were
collected from Entrez Gene FTP site ftp://ftp.ncbi.nih.gov/ge
ne (26 February 2019), Uniprot FTP site https://www.uniprot.o
rg/downloads (26 February 2019), R package biomaRt [16] (26
February 2019) and (where available) by the authors of the
interactomes (STRING [17] https://string-db.org/mapping_files/e
ntrez, iRefIndex [18] https://irefindex.vib.be/wiki/index.php/Pro
tein_identifier_mapping). Some interactomes included a minor
number of interactions involving identifiers from other (non-
human) species. Only interactions between human genes were
considered. All interactomes included a major component, the
so-called largest connected component (LCC), which involved
more than the 99% (median value) of the total genes of the
interactome, and a few minor components: only the LCCs
were considered in our study. Details about the number of
genes and interactions are provided in Supplementary Table S1
available online at https://academic.oup.com/bib and source
of interactions in Supplementary Table S2 available online at
https://academic.oup.com/bib.

The two interactomes S04T and S07T, derived from STRING,
were obtained selecting only the links with confidence score
≥0.4 and ≥0.7, respectively, since these are two typical thresh-
olds used for this database to identify significant relationships.
The other two interactomes derived from STRING, S04 and S07,
were obtained recalculating the confidence score excluding the
contribution of text mining, by means of the script provided
at URL http://string-db.org/download/combine_subscores.py
(see https://string-db.org/cgi/help.pl). When multiple pairs of
Ensembl protein identifiers, characterized by different STRING
confidence scores, mapped to the same pair of Entrez gene
identifiers, the highest score was considered as representative
of the interaction between the two genes.

iRefIndex complexes were transformed into a list of binary
interactions following the so-called spoke model (interactions
occur only between the ‘bait’ protein and each of the others)
if the bait protein was indicated, and, otherwise, to the matrix
model (all-pairs interactions) (see https://irefindex.vib.be/wiki/i
ndex.php/README_MITAB2.6_for_iRefIndex_15.0).

Topological analysis

Topological analysis was performed using the R package igraph
[19]. The overall degree distribution of each interactome was
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fitted with a power law distribution using the method proposed
by Clauset et al. [20] (implemented in the R package poweRlaw
[21]), which jointly estimates the power law exponent and the
power law onset threshold Kmin, i.e. the degree above which the
distribution is a power law (see Supplementary Methods avail-
able online at https://academic.oup.com/bib for further details).
Goodness-of-fit was assessed by a semi-parametric bootstrap
procedure. The P-value was defined as the fraction of times the
KS statistics of the fit of the synthetic distributions (bootstrap)
is greater than that for the empirical data fit. Therefore, a low
P-value indicates rejections of the power law hypothesis.

The plausibility of scale-free hypothesis was tested according
to several criteria proposed in a recent comprehensive survey
on scale-free networks [22]. Since our interactomes are all undi-
rected networks, we introduced a simplified version of the tax-
onomy proposed therein. We stratified interactomes in four dif-
ferent levels of plausibility for the scale-free distribution hypoth-
esis:

(i) None: Interactomes for which the semi-parametric boot-
strap has a P-value lower than 0.1, showing that the power
law must be rejected.

(ii) Weak: Interactomes such that power law distribution can-
not be rejected, i.e. semi-parametric bootstrap has a P-value
greater than 0.1, and such that the fitted tail (data points
xi > Kmin) contains at least 200 genes.

(iii) Medium: Interactomes that satisfy weak constraints and
either (a) have power law exponent in the range 2 < α < 3
or (b) such that power law fits better than exponential or
lognormal distribution in the same degree range.

(iv) Strong: Interactomes satisfying both medium constraints.

To compare global measures of interactomes with those of a
scale-free model, 10 instances of the Barabasi–Alberts (BA) model
were generated, for each interactome, using the same number of
genes and links of the considered interactome.

Biological pathways, protein complexes and
disease-associated genes

Pathways and protein complex definitions were derived from
the NCBI Biosystems database [23], considering KEGG [24], Reac-
tome [25] and GO [26]. In addition, protein complexes were
collected from CORUM [27]. Pathways were filtered to keep those
composed of a minimum of 10 genes and a maximum of 500
genes. Protein complexes were filtered to keep those composed
of a minimum of 3 genes and a maximum of 500 genes. Genes
associated with cancer were collected from Cosmic [28], while
those associated with ‘Ataxias, Hereditary’ (ATX), ‘Autistic Disor-
der’ (ASDs), ‘Rheumatoid Arthritis’ (RA) and ‘Parkinson Disease’
(PD) were collected from DisGeNET [29] (Supplementary Table S3
available online at https://academic.oup.com/bib).

Connected component fraction

Given a gene set S and its subset SC ⊆ S, defined by the
genes in S that are connected to at least another gene in S in
the considered interactome, the connected component fraction
(CCF) is as follows:

CCF = |SC|/
|S| .

Network diffusion

Given an input gene list L and a gene network encoded as
the n-by-n symmetrically normalized adjacency matrix W =
D−1/2AD−1/2, obtained as previously described [12, 30, 8], the n-
sized vector X0 was defined as a binary vector with elements
equal to 1 for the genes in L (e.g. disease genes), and null values
for all the other genes. Network diffusion finds the vector X∗

in which the quantities initially available in X0 are subject to
smoothing according to the pattern of interactions W. The vector
X∗ was calculated using the iterative procedure:

Xt+1 = αWXt + (1 − α) X0

X∗ = lim
t→∞

Xt

where α (here set to 0.7 as in previous works [30]) is a parameter
that weights to which extent the initial information is retained
or spread throughout the network.

Pathway cross-talk

To quantify the PCT between two pathways (P1, P2), each com-
posed by a series of genes gi, the score S12 was defined as
the average network proximity of P2 genes from P1 in a given
interactome I:

S12 =
∑

gi∈P2
x∗′

i

| P2 |
where xi

∗′ ∈ X∗′ is the normalized network proximity value of
the gene gi. The normalized network diffusion vector X∗′ was
obtained through network diffusion of the source vector X0, in
which P1 genes are set equal to 1 and other genes to 0, and thus
enables the direct comparison between different pathways:

X∗′ =
[∑

i

x∗
i

]−1

X∗

In other words, S12 quantifies the average proportion of an
hypothetical substance that is found at steady state in P2 genes,
after a network diffusion process in which the substance enters
in the network I through P1 genes. Because the two pathways
correspond to two different subnetworks of interactome I, the
calculation of S21, the average network proximity of P1 genes
from P2 genes, yields a numerically different result. We therefore
defined PCT between P1 and P2 as the average between S12 and
S21:

PCT (P1, P2) = S12 + S21

2

The higher the PCT the shorter the paths among the genes of
the two pathways in I.

Performance assessment in recovering known disease
genes

For each interactome and for each studied disease, the per-
formance in recovering known disease genes was assessed by
means of 5-fold cross-validation. Network diffusion was used to
obtain genome-wide gene prioritizations starting from a pool of
known disease genes. In each trial i, a random sample of 4/5 of
the known disease genes was used to initialize the input vector

https://academic.oup.com/bib
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(set to 1 in X0). The performance in prioritizing the remaining
one-fifth of the known disease genes was assessed calculating
the partial area under the receiver operating characteristic curve
(pAUC) at 20% of false-positive rate (f ):

pAUC =
∫ 0.2

0
ROC(f )df

The performance value used for each (interactome, disease)
pair was the average pAUC over five trials.

Correlation analysis

Unless stated otherwise, correlations were calculated using non-
parametric Spearman rank-based correlation coefficient. The
set of interactome-by-interactome correlation matrices obtained
in each analysis type, i.e. topology (T), protein complexes (PC),
PATHways (PATH), PCT and disease gene prioritization (DGP), was
summarized into five (one per type) interactome-by-interactome
correlation matrices, CT, CPC, CPATH, CPCT and CDGP:

Ct = 1/
nt

∑nt

j
Cj

where t = {T, PC, PATH, PCT, DGP} and nt is the number of correla-
tion matrices generated for each analysis type t. In particular,
nt was equal to: 4, in topological analysis (different types of
centrality measures); 3, CCF analysis of protein complexes (GO,
KEGG and CORUM); 3, in pathway CCF analysis (GO, KEGG and
Reactome); 5, in disease gene prioritization (ATX, ASDs, Can-
cer, PD and RA); 1, in the analysis of PCT (KEGG), due to the
computational burden of this analysis type.

The overall similarity network among interactomes was
defined considering the weight matrix CI = ∑

t Ct and, for
each interactome, only its top four most similar interactomes.
The community structure was assessed using the fast greedy
modularity optimization algorithm [31] implemented in igraph
[19].

The aggregate correlation of an interactome i with all the
others, Ri, was defined as the sum of the average correlations
between interactome i and the other interactomes:

Ri =
∑

t

∑
j 	=i cijt

n − 1

where cijt is an element of matrix Ct and n is the number of
interactomes.

Results
We studied a total of 19 popular interactomes spanning all
the three broad classes: ‘HTBP’ [32–35], ‘integrative’ [18, 36–
43] and ‘integrative–predictive’ [17, 44, 45] (Figure 1, Table 1;
Supplementary Table S1 available online at https://academic.oup
.com/bib). We included four variants of STRING (S04, S04T, S07
and S07T) to explore the effect of different ways of selecting
links in such popular resource.

First of all, we characterized each interactome by a series of
topological measures of local and global nature, including an
assessment of the ‘scale-freeness’. Then, we studied to which
extent interactomes capture known protein complexes and
molecular pathways. We also characterized interactomes on the
basis of the relations among pathways (PCT) and a common task,

disease gene prediction. In each of such analyses, we assessed
the correlation between interactomes. Our characterization of
interactomes offers a description of the state of the art and a
series of criteria that can be used as guidelines for interactome
choice or integration strategy in future applications (Table 2).

Topological properties

The 19 interactomes show relevant variations in terms of genes
and interactions, not only between classes, as expected by the
different designing principles, but also within the same class
(Figure 2A). For example, HTBP interactomes contain a number
of genes ranging approximately from 3000 to 11 000; a number,
this latter, comparable with that of FP60, the smallest interac-
tome of integrative–predictive class. Integrative and integrative–
predictive interactomes are comparable in terms of gene number
(from 11 000 to 19 000), but integrative–predictive interactomes
have a higher link density: in these interactomes, the average
number of links per node is in the interval [20, 49], while it
spans [10, 30] in integrative interactomes and [3, 5] in HTBP
interactomes (Figure 2B).

From the analysis of global measures, that is, diameter, mean
distance between nodes and the mean clustering coefficient (or
transitivity), we can draw the following picture: as expected,
mean distance and diameter are correlated; moreover, higher
density is associated with lower mean distance and higher clus-
tering, with HTBP class on one side and ST04 on the other
(Figure 2C). Clustering coefficient is lower than 0.1 for most of
the interactomes with less than 24 links per node on average
(with the exception of CF and DMND), while for the others it is
in the range 0.2–0.7 (Supplementary Figure S1 available online at
https://academic.oup.com/bib).

As expected, integrative interactomes that share interaction
sources (e.g. NCBI and HP, see Supplementary Table S2 avail-
able online at https://academic.oup.com/bib) have many links
and genes in common; on the other side, HTBP interactomes,
due to their independent derivation and different experimental
techniques, have a small mutual overlap [11] (Figure 2D and E).

To further explore the ‘scale-freeness’ of interactomes, we
compared the values of global measures in interactomes with
those of scale-free networks (BA models) of similar density
and assessed the strength of the evidences in favor of the
scale-free hypothesis. The mean distances and clustering
coefficients of interactomes are always higher than those of
BA nets (Supplementary Figure S2 available online at https://a
cademic.oup.com/bib). Moreover, the clustering coefficient of
interactomes is more variable, from 0.1 to 0.7, than BA networks,
where it is almost constant (Supplementary Figure S2 available
online at https://academic.oup.com/bib). Overall, for most
interactomes, the shape of the degree distribution shows a
power law-like trend in an intermediate range of values (which
depends on network size and density), with a deviation in the
low-degree and right-tail part of the distribution as observed for
many real-world nets [46] (Supplementary Figure S3 available
online at https://academic.oup.com/bib). More in detail, for
six interactomes of the integrative and integrative–predictive
classes, the power law hypothesis must be rejected (P < 0.1)
(Figure 2F), while all other interactomes show at least weak
evidence of scale freeness (Figure 2F, Supplementary Table S4
available online at https://academic.oup.com/bib). Strong evi-
dence (i.e. the power law fitting better than other distributions,
and an exponent plausible with other real scale-free networks)
is satisfied only by two HTBP interactomes: CF and BX. Also
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Figure 1. Characterization of human interactomes. We considered topological properties, protein complexes, molecular pathways, PCT and performance in disease

gene prediction. Our study describes the state of the art and offers a series of hints to guide the choice of interactomes in future applications.

Table 1. Gene-centered human interactomes

ID Name (version) Class No. of interactions No. of genes

BX Bioplex (4a) [29] HTBP 56 401 10 880
CF Cofrac15 [30] HTBP 15 513 3191
HURI HURI [8] HTBPa 27 084 8029
QU QUBIC [31] HTBP 14 696 4379
BN Biana (guildify 2.0) [32] Integrative 339 698 13 246
HINT HINT (April 2019) [33] Integrative 164 255 14 372
HP HIPPIE (2.2) [34] Integrative 404 020 18 038
INCT Intact (2019_07_03) [35] Integrative 174 388 15 539
IR irefindex (15.0) [18] Integrative 476 437 17 522
DMND DMND [36] Integrative 138 045 13 244
NCBI NCBI (15/09/2017) [37] Integrative 326 859 17 655
CP ConsensusPathDB

(guildify 2.0) [38]
Integrative 273 005 16 066

MN MULTINET [39] Integrative 105 573 13 387
FP60 FPCLASS [40] Integrative–predictive 258 107 10 403
IBMP InBio_web (core

2019_02_26) [41]
Integrative–predictive 652 636 17 458

S04 String, CS > 0.4 (11) [17] Integrative–predictive 490 587 15 800
S04T String including TM,

CS > 0.4 (11) [17]
Integrative–predictive 986 054 18 863

S07 String, CS > 0.7 (11) [17] Integrative–predictive 357 054 12 747
S07T String including TM,

CS > 0.7 (11) [17]
Integrative–predictive 417 012 16 721

HTBP, high-throughput biophysical interactome; CS, confidence score; TM, text mining.
aThe interactome contains a minor number of biophysical interactions manually curated from small-scale studies.

HURI, DMND, MN, NCBI and QU have a plausible exponent in
the range [2, 3], but the goodness of exponential fitting is higher.
IR does not have exponent in the interval [2, 3], but the power
law is the most likely fit distribution. The two STRING variants
with confidence score equal to 0.4 show weak evidence, while
the other integrative–predictive interactomes none.

Highly connected genes (hubs) have proved to play relevant
roles in physiological and pathological conditions [46]. We ana-
lyzed to which extent interactome share the same hubs. To do so,
we considered the genes in the top two percentiles (right tail) of
the degree distribution and found that the overlap among hubs

is significantly higher than that observed in permuted versions
of the same degree distributions (Supplementary Figure S4A
available online at https://academic.oup.com/bib). Quanti-
tatively, the number of shared hubs between at least two
interactomes is around 900; this number drops to 32 when
considering at least 12 interactomes, while no hubs are shared
by more than 16 interactomes (Supplementary Figure S4B
available online at https://academic.oup.com/bib), reflecting
differences and complementarity in the interactome panorama.
The most recurrent hub is the histone deacetylase 1 (HDAC1,
<d> = 360), which is included in the first two percentiles of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
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Figure 2. Topological properties of 19 human interactomes. (A) Number of interactions versus number of genes (size). (B) Density versus size. (C) Diameter versus mean

distance; dot size is proportional to the mean gene transitivity (or clustering coefficient, i.e. the fraction of closed triangles in the network). (D) Overlap between genes,

defined as the ratio between the genes shared by each couple of interactomes and the size of the interactome in the corresponding column label; this implies that

a row indicates to which extent the interactome (row label) includes other interactomes, while a column indicates to which extent the interactome (column label) is

included in other interactomes. (E) Interaction overlap, defined analogously to gene overlap. (F) Assessment of the scale-free hypothesis: power law exponent (alpha)

and P-value; circles (exponential): the exponential distribution fits better than power law; triangles (none): power law fits better than other distributions. (G) Average

correlation values of topological measures; the dendrogram was obtained by complete linkage method.

16 interactomes and is available in all of them, followed by
E1A-binding protein p200 (EP300, <d> = 542.5), BRCA1 DNA
repair associated (BRCA1, <d> = 376), heat shock protein 90
alpha family class A member 1 (HSP90AA1, <d> = 433), tumor
protein p53 (TP53, <d> = 553) and heat shock protein family
A (Hsp70) member 8 (HSPA8, <d> = 433), which appear in at
least 17 interactomes and in the top two percentiles of 15
interactomes (Table 3). Interestingly, the median degree of a hub
tends to increase with the number of interactomes in which
the hub appears (Supplementary Figure S4C available online at
https://academic.oup.com/bib); in other words, hub genes with
a higher degree tend to be more shared than hubs with lower
degree.

Finally, in order to test single-node similarities, we compared
four centrality measures, which highlight different quantifica-
tions of node relevance: degree, the number of first neighbors;
betweenness, the fraction of shortest paths passing through a
node; closeness, the inverse of the average length of the shortest
paths between the node and all other nodes in the graph; and
spectral centrality (Pauls and Remondini 2012), which quantifies
the importance of a node in relation to the deformation of
the graph Laplacian. Apart from spectral centrality, the other
three measures are highly correlated independently from the
specific interactome topology (Supplementary Figures S5 and S6
available online at https://academic.oup.com/bib), thus con-
veying very similar information in terms of node ranking.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
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Table 3. The most recurrent hubs

Symbol Description Availability Median (d) SD (d) Occurrence as hub

HDAC1 Histone deacetylase 1 19 360 275.6 16
EP300 E1A binding protein p300 18 542.5 317.5 15
BRCA1 BRCA1 DNA repair associated 17 376 321.6 15
HSP90AA1 Heat shock protein 90 alpha family class A member 1 19 433 457.2 15
TP53 Tumor protein p53 17 553 502.3 15
HSPA8 Heat shock protein family A (Hsp70) member 8 19 433 553.5 15
UBE2I Ubiquitin conjugating enzyme E2 I 19 312 211.5 14
PPP2R1A Protein phosphatase 2 scaffold subunit A alpha 19 324 276.2 14
CREBBP CREB binding protein 18 389.5 278.2 14
CTNNB1 Catenin beta 1 19 363 309.7 14
SRC SRC proto-oncogene, non-receptor tyrosine kinase 17 438 297.0 14
EGFR Epidermal growth factor receptor 17 482 483.0 14
RPS3 Ribosomal protein S3 19 296 215.1 13
RPS2 Ribosomal protein S2 18 291 210.5 13
PLK1 Polo like kinase 1 19 269 218.8 13
H2AFX H2A histone family member X 18 286 224.8 13
MAPK1 Mitogen-activated protein kinase 1 18 351 302.6 13
YWHAZ Tyrosine 3-monooxygenase/tryptophan

5-monooxygenase activation protein zeta
19 356 345.6 13

GRB2 Growth factor receptor bound protein 2 18 591 370.9 13
JUN Jun proto-oncogene, AP-1 transcription factor subunit 18 325 567.9 13
RPS8 Ribosomal protein S8 18 298.5 176.2 12
RPS3A Ribosomal protein S3A 19 277 194.7 12
PIK3R1 Phosphoinositide-3-kinase regulatory subunit 1 18 284 236.0 12
NPM1 Nucleophosmin 1 19 324 277.8 12
CDK1 Cyclin-dependent kinase 1 19 301 297.6 12
MDM2 MDM2 proto-oncogene 17 186 281.6 12
CDC5L Cell division cycle 5 like 19 573 301.8 12
CDK2 Cyclin dependent kinase 2 19 292 320.0 12
HSPA5 Heat shock protein family A (Hsp70) member 5 18 219.5 321.9 12
ESR1 Estrogen receptor 1 17 425 335.3 12
MYC MYC proto-oncogene, bHLH transcription factor 18 483.5 491.1 12
UBC Ubiquitin C 16 1036 2473.4 12

Genes belonging to the top two percentiles of the degree (d) distribution (hubs) of at least 12 interactomes. SD, standard deviation.

We observed a similar distribution of correlation values
(Spearman’s rs) (medians close to 0.43) for such three measures,
while lower values (median of 0.15) for spectral centrality
(Supplementary Figure S7 available online at https://academic.
oup.com/bib).

We quantified the correlation of gene-level centrality scores
among interactomes (Figure 2G, Supplementary Table S5 avail-
able online at https://academic.oup.com/bib). The correlation
analysis of degree, betweenness and closeness revealed that
the four variants of STRING form a group on their own. On
the one hand, they show a high similarity among themselves,
meaning that including text mining-derived interactions and
varying confidence score did not affect significantly the local
structure of the network: gene ranking by centrality is simi-
lar even if the links in S04 are twice as many than S07, an
interesting observation since they have different global prop-
erties. On the other hand, they are much less correlated with
other interactomes meaning that their local topology is differ-
ent, even for interactomes of comparable size. Moreover, NCBI
and HP are highly similar and can be included in a second
group along with CP, IR, HINT. IBMP, despite being integrative-
predictive, is closer to such a group, to which BN and INCT are
also related. The integrative–predictive interactome FP60 forms
a cluster with DMND and MN: this shows indeed a low overlap
with other interactomes in terms of interactions. The four HTBP
interactomes show very different intra-class centrality profiles,
probably reflecting the differences between the experimental
techniques used and the high number of false negatives (i.e. not
identified interactions) of such techniques, as suggested by Luck
et al. [11]. They are also poorly correlated with interactomes of
other classes. Interestingly, the union of HTBP interactomes is
more correlated with integrative interactomes than any single
HTBP interactome (Supplementary Figure S6 available online at

https://academic.oup.com/bib). We obtained a similar picture
analyzing the centrality measures of the 1021 genes shared by
all 19 interactomes (Supplementary Figure S8 available online at
https://academic.oup.com/bib).

Network representation of protein complexes
and biological pathways

To assess how protein complexes and biological pathways are
represented in the interactomes, we defined a simple score,
the CCF. The higher the CCF the higher the number of protein
complex (or pathway) members connected to each other.

Protein complexes tend to form topological modules within
the interactome, that is locally dense subnetworks such that
genes of a subnetwork tend to interact with other genes of
the subnetwork rather than outside of it [47]. Since every
protein complex member is expected to establish a PPI
with at least another protein complex member, the CCF of
protein complex is expected to be 1. We calculated the CCF
of CORUM [13] protein complexes and found average values
across interactomes that span from very low values, indicating
poorly represented complexes, to very high values, standing
for fully captured complexes, with a standard deviation up
to 50% (Figure 3A, Supplementary Table S6 available online
at https://academic.oup.com/bib). For example, none of the
interactions among members of the HOOK2-KCL3-LRGUK1-
RIMBP3 (HKLR) are reported in more than one interactome
(Figure 3A–C). There are complexes for which there is a strong
disagreement: an example is the GPI-GnT (GG) activity complex,
for which the CCFs are equally distributed between the two
extreme values of 0 (not even an interaction) and 1 (all
proteins are connected) (Figure 3A–C). Lastly, we observed a
series of complexes for which there is a strong consensus: an

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
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Figure 3. Protein complexes. (A) Average CCF (<CCF>) and standard deviation of CCF (SD(CCF)) across interactomes. (B) CCFs of three protein complexes: HOOK2-

KCL3-LRGUK1-RIMBP3 (HKLR), GPI-GnT (GG) activity complex and Arp2/3 (Arp) complex. (C) Network visualization of three protein complexes with link colored by their

occurrence in the interactomes. (D) Number of protein complexes (#) with CCF > 0.5 in relation to interactome size. (E) Heatmap of CCF values. (F) Average correlation

values of protein complex CCFs; the dendrogram was obtained by complete linkage method.

example is the Arp2/3 (Arp) complex, a major component of the
actin cytoskeleton, where interaction occurs in more than 10
interactomes (Figure 3A–C).

Integrative interactomes represent from ∼1800 to ∼2800 pro-
tein complexes (out of a total of ∼3000), with more than half of
the proteins connected (CCF > 0.5) (Figure 3D and E). Despite the
four HTBP interactomes capture a lower number of complexes
(from ∼600 to ∼1300) (Figure 3D and E), they are complementary
(Figure 3E): if taken together, they represent ∼1800 complexes.

We assessed the correlation (Spearman) of protein complex
CCFs among all pairs of interactomes and found that they are
all positives with a median of ∼0.5 (Supplementary Table S5
and Supplementary Figures S9 and S10 available online at
https://academic.oup.com/bib). We observed similar results
considering GO cellular components and KEGG structural
components as sources for the protein complex defini-
tion (Supplementary Figures S9 and S10 available online at
https://academic.oup.com/bib). Excluding minor differences, the
similarity among interactomes in terms of CFF of complexes
reflects what we found in the analysis of topological features
(Figure 3F).

Unlike protein complexes, pathway members may or may
not form topological modules. However, pathway members are
expected to lie in network proximity within the interactome,
forming a functional module, that is a group of genes that
interact to fulfill a particular function [3]. Among KEGG pathways
[22], we observed that CCF values vary by pathway category.
In particular, metabolic pathways assume the lowest CCF val-
ues (<CCF> ∼0.36), while those involved in genetic information
processing have the highest values (<CCF> ∼0.75) and are less

variable (Figure 4A) (Supplementary Table S7 available online at
https://academic.oup.com/bib). An example of a pathway with a
low CCF is nitrogen metabolism (NIT) (Figure 4A–C), for which
only a few links occur in more than 2 interactomes and only
one link in more than 10 interactomes. An example of a path-
way with a marked disagreement among interactomes is the
synthesis and degradation of ketone bodies (KET): CCFs are
distributed between 0 and 1, with a median of 0.4 (Figure 4A–C).
On the other hand, DNA replication is the pathway associated
with the highest CCF and a strong consensus (Figure 4A–C).
STRING interactomes cover almost all pathways with CCF > 0.5
(Figure 4D and E). The other integrative interactomes form two
groups (Figure 4D and E): one with a higher coverage and higher
CCF values and the other with lower CCF and coverage. Among
the HTBP interactomes, we observed higher coverage and CCF
values in BX and HURI (Figure 4D and E).

Considering correlation values of pathway CCFs between
interactomes, we found that the majority of correlations assume
positive values with median of 0.54, while negative correla-
tions emerged in a few cases, when comparing STRING with
other interactomes (Supplementary Figures S9 and S10 avail-
able online at https://academic.oup.com/bib). The correlation
analysis on pathways obtained from GO and Reactome lead to
similar results, but with a minor number of negative correlation
(Supplementary Table S5 and Supplementary Figures S9 and S10
available online at https://academic.oup.com/bib). The similarity
among interactomes in terms of CFF of pathways showed some
differences compared to the previous ones: we observed some
rearrangement involving integrative interactomes (e.g. HN is
closer to BN), and FP60 is closer to HURI (Figure 4F).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
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Figure 4. Molecular pathways. (A) Average CCF (<CCF>) and standard deviation of CCF (SD(CCF)) across interactomes; big dots represent median values calculated

for each pathway category. (B) CCFs of three molecular pathways: nitrogen metabolism (NIT), synthesis and degradation of ketone bodies (KET) and DNA replication

(DNAR). (C) Network visualization of three molecular pathways with link colored by their occurrence in the interactomes. (D) Number of molecular pathways (#) with

CCF > 0.5 in relation to interactome size. (E) Heatmap of CCF values. (F) Average correlation values of pathway CCFs; the dendrogram was obtained by complete linkage

method.

Pathway cross-talk

In order to assess to which extent the relationships between
molecular pathways are conserved across interactomes, we
studied the PCT [23]. We defined the PCT as the average
network proximity between the two sets of pathway genes,
quantified by means of a network diffusion process [48].
Intuitively, the shorter the lengths of all-possible paths between
the two sets of pathway genes, the closer the two pathways
and the higher the PCT (Figure 5A). For example, the genes
belonging to ‘glycolysis / gluconeogenesis’ (GG) and those
belonging to ‘alanine, aspartate and glutamate metabolism’
(AAG) are close to each other in DMND interactome and have
a higher PCT than that between GG and ‘Glycosaminoglycan
biosynthesis—heparan sulfate/heparin’ (HEPA), or between GG
and ‘Glycosylphosphatidylinositol GPI-anchor biosynthesis’
(GPI) (Figure 5A and B). The PCT of (GG, AAG) pair is higher
than (GG, HEPA) and (GG, GPI) pairs in all interactomes
(Figure 5C).

Throughout a distribution of average PCT (across interac-
tomes) that spans five orders of magnitudes, we observed a
median signal-to-noise ratio (SNR) of 1.3, with a right tail of con-
served PCT with SNR up to 8 (Figure 5D; Supplementary Table S8
available online at https://academic.oup.com/bib). For example,
the PCTs among cell cycle (CC) and other pathways are more con-
served than those between GG and other pathways (Figure 5D).
Among PCTs of CC, the one with p53 signaling (p53) is similar
in magnitude to that between CC and pancreatic cancer (PC) but
the latter is more conserved than the former (Figure 5D).

Globally, we found that PCTs of different interactomes
are positively correlated (Figure 5E). The correlation between
PCTs revealed similarities among interactomes that are closer
to what we obtained analyzing the correlation of pathway
CCFs (Figure 5F; Supplementary Table S5 available online at
https://academic.oup.com/bib).

Disease gene prioritization

Disease-gene prioritization is one of the main tasks for which
interactomes are used [15, 49]. We studied the impact of using
different interactomes for disease-gene prioritization. As a proof
of principle, we considered five diseases (ATX, ASDs, Cancer, PD
and RA) that differ in terms of the genes involved and with a
sufficiently high number of associated genes to perform a cross-
validation study in all interactomes.

Overall, the coverage of disease-associated genes is above
80% in integrative interactomes. In HTBP interactomes, the cov-
erage decreases to 50% in HURI and BIOPLEX, and to 10% in
COFRAC and QUBIC (Supplementary Table S9 available online
at https://academic.oup.com/bib). Genes associated with can-
cer are more frequently included in interactomes than genes
associated with the other diseases considered.

We obtained genome-wide gene prioritizations by means of
network diffusion [48], a widely used approach [15, 49, 8] that
follows the local hypothesis [2, 3] , that is the closer the proximity
of a gene to known disease genes in the interactome, the higher
the probability of gene–disease association (see Methods).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
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Figure 5. PCT. (A) Network representation of four pathways in GH interactome: GG, glycolysis/gluconeogenesis; AAG, alanine, aspartate and glutamate metabolism;

HEPA, glycosaminoglycan biosynthesis—heparan sulfate/heparin; GPI, glycosylphosphatidylinositol GPI-anchor biosynthesis; only the interactions among the genes

belonging to such pathways are shown. (B) Network proximity (X∗) of genes of pathways AAG, HEPA and GPI from genes of pathway GG in DMN interactome. (C) PCT

between GG–AAG, GG–HEPA and GG–GPI. (D) Average (<PCT>) and SNR of PCT between all-pairs pathways across interactomes. p53, p53 signalling; PC, pancreatic

cancer. (E) Correlations (Spearman) of PCTs among interactomes. (F) Correlation values of PCTs; the dendrogram was obtained by complete linkage method.

We assessed the correlation of gene–disease association
scores across interactomes (Supplementary Table S5 avail-
able online at https://academic.oup.com/bib). We obtained
positive values (Spearman’s correlation) in all five diseases
(Supplementary Figures S11 and S12), despite a high number
of non-overlapping disease genes due to interactome-specific
structural properties. The correlation between interactomes
on the basis of full gene rankings yielded relations of sim-
ilarity very close to those obtained by analyzing the topol-
ogy (Figure 6A; Supplementary Figure S12 available online at
https://academic.oup.com/bib). As gene prioritization is one of
the main goals in disease module discovery, we also focused on
the genes receiving the highest ranking in each interactome. The
analysis of the overlap between the top ranking genes under-
lined relations of similarity differing from the previous ones:
S04 is closer to the group of interactomes that includes NCBI, HP,
CP, IR and IBMP; FP60 is farther from DMND and MN (Figure 6B).
Whether considering full rankings or top ranks only, we found
the highest similarity using cancer data (Figure 6C and D).

We assessed the performance of disease gene prioritization
using 5-fold cross-validation and calculating the pAUC, which
here reflects the recovery of a test set of known disease genes
on the basis of a training set of disease genes. In almost all
interactomes, cancer was the top ranking disease by pAUC, while
ATX the worst (Figure 6E). STRING interactomes with text mining
showed the highest performances, while IR and HURI were at

the top of their class (Figure 6E). We remark that prioritization
performance could not be simply explained by interactome size
(Figure 6F).

Overall similarity

In order to summarize the similarities between interactomes,
we defined a similarity network in which a link between
two interactomes reflects the sum of their correlation coef-
ficients resulting from the analysis of topology, protein
complexes, pathways, PCT and disease gene prioritization
(correlation matrix CI, Supplementary Table S5 available online
at https://academic.oup.com/bib, see Methods). We found
three communities (modularity = 0.34) of interactomes (Table 2,
Figure 7A). The first community (#1) is defined by the four
variants of STRING, which have high mutual correlations. The
two STRING variants that do not include text mining are closer to
IBMP (another integrative–predictive interactome), while those
with text mining are more similar to IR. In the largest community
(#2), we observed a sub-community formed by NCBI and HP and
CP (#2a), a trio of highly correlated integrative interactomes. BN,
HINT and INCT were assigned to the community (#3), which also
includes three HTBP interactomes.

In addition, to further reduce the relations of similar-
ity in a unique quantity (Ri) per interactome, we aggre-
gated the correlation coefficients (see Material and Methods,
Supplementary Table S5 available online at https://academic.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab153#supplementary-data


12 Mosca et al.

Figure 6. Disease gene prioritization. (A) Average correlation values between gene prioritizations. (B) Overlap of top ranking genes between interactomes. (C) Correlation

of disease prioritization results between interactomes by disease. (D) Overlap of the top ranking genes between interactomes by disease. (E) Performance of each

interactome estimated by means of 5-fold cross-validation; for clarity, lines have been added between the points; interactomes are ordered by decreasing average

performance over all diseases considered (from right to left). (F) Average performance over the five diseases in relation to interactome size. (A, B) Dendrograms were

obtained by complete linkage method.

oup.com/bib). The higher the Ri, the higher the correlation of the
interactome with all the others (Table 2, Figure 7B). Members of
group (#2b), as well as IR, obtained the highest values. IBMP and
HURI scored first among, respectively, integrative–predictive and
HTBP interactomes.

Discussion
Currently available models of the human interactomes are
incomplete. Given the increasing importance of network-based
analyses of omics datasets, we compared 19 interactomes,
comprised within three main types: HTBP, integrative and
integrative–predictive. We took into account different criteria for
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Figure 7. Overall interactome similarity. (A) Overall similarity network among interactomes; for each interactome, the arrows point to its four most similar interactomes

(see Methods); yellow colored areas indicate community structure. (B) Aggregate correlation (R), decomposed in the contributions of each analysis type.

their characterization: topological measures (local and global),
coverage of known protein complexes and molecular pathways,
communication among pathways (PCT) and a typical prediction
task, i.e. disease gene prioritization.

Interactomes are topologically heterogeneous. Such hetero-
geneity goes beyond interactome size or density and involves
degree distribution shape and clustering coefficient. While the
debate about the ‘scale-freeness’ of real molecular networks
is still open [22], our analysis showed that for the majority of
interactomes the evidence supporting the scale-free hypothesis
is weak or medium, while strong evidence is associated with only
two HTBP interactomes.

We found a significant overlap of hubs among interac-
tomes (the top 2 percentiles in the right tails of the degree
distributions), when compared to random interactomes with
the same degree distributions. However, considering that the
studied interactomes can be seen as models of the same
underlying reality, the observed overlap might be considered not
satisfactory and indicates some relevant discrepancies on genes
that play the role of hubs. The observation that the most shared
hubs tend to have higher degrees might reflect an association
between the pathological relevance of a gene (e.g. key role in
one or more diseases) and the amount of evidences (studies)
supporting its interactions.

The analysis of the coverage of protein complexes in terms
of CCFs revealed a quite high median value: about 80% of the
maximum possible value. We also found, however, a relevant

variability of about 35% (standard deviation). Despite integra-
tive and integrative–predictive interactomes cover most of the
CORUM protein complexes with high CCF values, there are a
series of protein complexes that are poorly represented in all
interactomes. Interestingly, the coverage of protein complexes
is complemental among HTBP interactomes.

Overall, molecular pathways displayed lower CCF median
values than complexes. This was expected, considering that
members of pathways are not expected to form topological
modules. We observed a clear difference between some path-
way categories: pathways involved in ‘Genetic Information Pro-
cessing’ showed the highest CCFs, while ‘Metabolic’ pathways
had the lowest. This can be explained by observing that most
pathways of the former type are mainly composed of well-
studied protein complexes (e.g. ‘Proteasome’, ‘RNA polymerase’,
‘Mismatch repair’). On the contrary, metabolic pathways are
mostly composed of enzymes: while some of them are known to
form protein complexes, this evidence is not available for many
others. Since this sparseness of metabolic pathway members
would exclude them from computational analyses that require
connected networks, the authors of some interactomes intro-
duced functional links between enzymes that catalyze adjacent
biochemical reactions (e.g. DMND).

The analysis of PCTs revealed relevant correlations among
interactomes. This quantification revealed a striking (rank-
based) similarity in the relative positioning of pathways,
despite topological differences. Moreover, it underlined the
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strongest/weakest PCTs in current interactomes, as well as their
degree of conservation. This knowledge can be useful for PCT-
based approaches, like those that use PCT inhibition as a tool to
develop synergistic drug combinations [50].

Disease gene prioritization performance showed repro-
ducibility across interactomes when applied to cancer or ATX,
which output the best and worst performance results. On the
contrary, the performances obtained for the other three diseases
(ASDs, PD and RA) resulted to be more interactome specific. It is
beyond the scope of this article to deeply investigate the reasons
of such performance variation in relation to the characteristics
of the disease under analysis and the interactome used to carry
out the predictions. Nevertheless, our results, in agreement with
previous studies focused on disease genes [15, 49], reveal the
complexity of choosing an interactome for a given activity such
as predicting disease genes, in which the input dataset (e.g. the
disease) makes a difference in determining which interactome
performs the best.

The four versions of STRING, despite the differences in inter-
action type and confidence, kept a high similarity among them-
selves throughout all the analyses. This similarity reflects a
specificity in local properties in comparison with other inter-
actomes of similar type and size (i.e. FP60 and IBMP). NCBI and
HP and CP form a trio of integrative interactomes with a high
reproducibility across all the analyses. IBMP, despite belonging
to the integrative–predictive class, is closer to such a trio than to
other interactomes from the same class. Another trio of related
interactomes, even if to a less extent, can be identified in DMND,
MN and FP60. Among the four HTBP interactomes, HURI emerged
as the most comparable to integrative and integrative–predictive
interactomes.

While multiple efforts are underway on a medium/long time
span to characterize a first consensus human reference inter-
actome [11, 51], even including tissue specificity [52], guidelines
are necessary to choose the most appropriate interactomes in
computational analyses. Our analysis summarized the state of
the art, characterizing the interactomes by a series of criteria
that provide hints for interactome choice.

Considering the heterogeneity of designing principles and
data sources in the process of interactome assembly, it is
recommended to use multiple interactomes despite a novel
interactome-based analysis. With this aim, it is possible to
consider two data integration strategies. One may consider
to repeat the analysis using different interactomes and, then,
integrate the results. Another possibility is to integrate multiple
interactomes into a meta-interactome and, then, use such
unique interactome for the analysis. In both cases, criteria are
needed for the choice of the interactomes.

A first criteria to bear in mind is interactome construction
method. In general, interactomes that rely on experimentally
verified interactions offer a more reliable body of knowledge,
especially if interactions are scored on the basis of their
reliability. However, integrative–predictive interactomes, like
STRING, revealed interesting performances in disease gene
prediction [15, 49]; in particular, text mining determined
higher performances in such tasks, in which incorporating
the existing knowledge matters [49]. On the other hand,
interactomes that include predicted interactions tend to be
denser than other interactomes, and, for example, when used
to find subnetworks of ‘altered’ genes, this might lead to
particularly dense subnetworks, where interpretation is not
straightforward. The heterogeneity of designing principles
suggests considering a representative interactome for each
class.

The same goes for scale-freeness: considering the struc-
tural difference between a scale-free network and one that does
not show this behavior, it would be interesting to consider a
representative of each type.

Another criteria is interactome size (number of genes). The
previous study of Huang et al. [15] showed that interactome size
matters in disease gene prediction. We observed that bigger
interactomes tend to capture a higher number of protein com-
plexes as connected networks, while in the case of pathways
the association is weaker. Therefore, it can be recommended to
consider at least one of the large interactomes.

Our study provides catalogs of the level of coverage of protein
complexes, pathways and PCT. This knowledge can be used as a
criterion for choosing those interactomes that best match the
molecular processes underlying the disease (or condition) under
study.

The similarity among interactomes provides an interesting
criterion that can be used as a guideline for the selection of
interactomes; for example, one may choose a representative
of each similarity cluster. Moreover, interactome choice can be
inspired by the aggregate reproducibility index: indeed, high
values indicate interactomes that are the most similar to all the
others, while low values point to interactomes that are more
specific.

In developing a meta-interactome, we could consider interac-
tions recurring in more than one interactome. This approach was
used to create a ‘parsimonious composite network’ with both
high efficiency and performance in disease gene prediction [15].
In light of our results, this strategy seems particularly appro-
priate for interactomes that share some degree of similarity.
However, if interactomes are likely to convey complementary
information (e.g. HTBPs), one may also consider a union oper-
ation, which, especially in the case of experimentally verified
interactions, should improve the coverage of the resulting meta-
interactome. Therefore, a mixed strategy can be used, merging
datasets that convey more reliable information and requiring
link recurrence in those interactomes that mix heterogeneous
resources and include predictions.

In conclusion, our comparison study was guided by some of
the typical applications in which interactomes are used, related
to protein complexes, molecular pathways, disease modules or
markers, and the wide class of analyses involving topological
properties of the network. Therefore, our results are influenced
by the chosen analyses, even if we tried to be very exhaustive in
terms of available analysis types.

Despite current limitations, interactome-based approaches
represent a relevant tool to explain the complex (non-linear)
relation between molecular alterations and pathological pheno-
types. This knowledge is essential to translate gene-level find-
ings into clinical practice, by means of more effective strategies
for prevention, diagnosis and treatment [2].

Key Points
• A ‘consensus’ reference human interactome does not

exist.
• Several interactomes, developed following different

principles, are available and interactome choice mat-
ters greatly.

• Our study sheds light on heterogeneity, redundancy
and specificity of interactomes from topological, bio-
logical and application perspectives.
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• Interactomes are topologically heterogeneous, e.g. not
all of them are scale free, and this might reflect
differences in interactome reconstruction strategies.

• We provide catalogues of current coverage of protein
complexes, pathways and pathway cross-talks.

• Almost all interactomes showed the best performance
in disease gene prediction when considering cancer,
rather than other diseases, possibly biased by the large
amount of studies on cancer.

• The knowledge emerging from our analyses summa-
rizes the current situation and can be useful to guide
the choice of interactomes (singularly or in combina-
tion) in future applications.

Supplementary Data

Supplementary Data are available online at Briefings in Bioin-
formatics,.
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