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Abstract: Secondary metabolite production by plants is influenced by external environmental factors
that can change depending on the seasons, which makes it important to know how the plant, through
its metabolism, is able to adapt to these variations. Mentha x villosa and Plectranthus amboinicus present
in their chemical composition polyphenols, and through previous studies, it has been seen that these
two species present promising in vitro photoprotective activity. The aim of this study was to evaluate
seasonal alterations in photoprotective and antioxidant activities and the influence of factors such as
precipitation levels and sun radiation incidence. Thus, polyphenol quantification, cromatographics
(HPLC-DAD) and multivariate (PCA) analyses of extracts of the two species through twelve months
were done. It was observed that the best months for photoprotective and antioxidant activities were
September for M. villosa and July for P. amboinicus (SPF = 14.79). It was possible to conclude that solar
radiation more clearly influences the production of phenolics and the increase of SPF in M. villosa, in
addition to favoring the antioxidant activity of the two species, while precipitation seems to have
no influence.

Keywords: photoprotection; M. villosa; P. amboinicus; ultraviolet radiation; PCA; seasonality

1. Introduction

Seasonal variations of secondary metabolites produced by plants, both qualitatively
and quantitatively, can occur throughout the year in response to modifications in plant
environmental conditions, including climatic [1,2]. This variation can also modify the
biological activity that plant extracts have, since samples of the same plant collected in
different months will present, or not, some compounds, as well as their concentration can
also be different, thus, the extract can even present different pharmacological properties
throughout the year [3,4].

It is known that an increase of UVB radiation incidence and a decrease of precipitation
can cause an increase in the production of free radicals, causing cellular damage that
forces the plant to respond to this stimulus, altering morphological characteristics until the
content of metabolites produced change, i.e., the increase of polyphenols [5]. Therefore, by
evaluating environmental factors such as temperature, water availability, solar radiation
incidence, among others, we can better understand the metabolic alterations happening in
plants [6–8].

Mentha x villosa Hudson and Plectranthus amboinicus (Lour.) Spreng are two species
from the Lamiaceae Family that, in Brazil, that are popularly called “hortelã da folha miúda”
and “hortelã da folha grossa”, respectively. They are used in folk medicine mainly as antimi-
crobials, but M. x villosa is also used in the form of infusion or decoction of its leaves to treat
stomach problems and menstrual cramps, in addition to being used as a sedative [9] and an
antiparasitic [10]. Scientifically, its endothelium-dependent hypotensive and vasorelaxant
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effects have been demonstrated [11], as well as its antimicrobial, antinociceptive [12], antitu-
mor [13], anti-inflammatory [14] and antioxidant activities [15,16]. P. amboinicus is used for
the treatment of colds, coughs, asthma, and diseases of the respiratory tract in general, as
well as to treat headaches, fever, skin diseases, and gastrointestinal disorders [17–19]. Thus,
because it is a well-known species and used by the population, many studies on its effects
already exist and demonstrate its antimicrobial and antiviral activities in vitro [20,21], ac-
tivity against respiratory and gastrointestinal disorders, anticonvulsant, antitumor [22,23],
analgesic, anti-inflammatory, and antioxidant activities [24,25]. These two species are also
used in culinary as flavorings and in the preparation of some foods [17,26].

Many of the biological activities presented by M. villosa and P. amboinicus are due to
the presence of essential oils that are widely studied and have monoterpenes and sesquiter-
penes in their composition [17,27]. However, its nonvolatile extracts also have a large
amount of biologically interesting compounds, such as phenolic compounds. In M. villosa,
several phenolic acids have been identified, such as rosmarinic acid, quinic acid, and
chlorogenic acid, as well as several flavonoids, such as luteolin and apigenin derivatives,
hesperidin, kaempferol-3-O-glucuronide, eriocitrin and chrysoeriol-7-O-rutinoside [28].
In P. amboinicus, many polyphenols have also been identified, such as caffeic acid, gal-
lic acid, rosmarinic acid, crisimaritin, luteolin, and apigenin derivatives, p-cumaric acid,
taxolifin, among others [29].

Therefore, these species present in their chemical composition an interesting quantity
of phenolic compounds, that are a secondary metabolite class mainly known because of
their anti-inflammatory, antioxidant and photoprotective properties [30–32]. Their an-
tioxidant properties are closely linked to their stable chemical structures, making them
capable of neutralizing reactive oxygen species (ROS), inhibiting lipid peroxidation, and
even preventing the production of free radicals [33].

A relevant property attributed to this metabolite class is the solar protection activity,
since they are capable of filtering the incident ultraviolet radiation. Therefore, when UVB
and UVA rays intensity is high, plants can be stimulated to produce phenolic compounds so
they can absorb or disperse solar energy and make it harder to damage plant tissues [34,35].

M. villosa and P. amboinicus have rosmarinic acid (RA) as the majority compound in
their ethanolic extracts. Studies related to photoprotective activity of this acid have showed
a favorable future for this metabolite, since its photoprotective capacity has been observed,
besides having good antioxidant activity and contributing to lipid peroxidation inhibi-
tion [36–38], which places it in a relevant position in the development of new sunscreens.

Thus, based on the extensive literature demonstrating M. x villosa and P. amboinicus
therapeutic aspects, these two species deserve attention, mainly in areas where they are
not well explored, such as in photoprotection and seasonality of nonvolatile extracts, since
plants employ many mechanisms to adapt themselves to its environmental conditions in
order to regulate its metabolism [39] and it can directly impact in secondary metabolites
production. Therefore, understanding the annual variations of secondary metabolites
of these two species can help us to better use them in terms of pharmaceutical product
development. A previous study by Terto et al. [40], as well as unpublished data [41], showed
that these two species have promising photoprotective activity in vitro since they presented
a sun protection factor (SPF) of around 13. Thus, we evaluated the seasonal variations that
occurred in M. x villosa and P. amboinicus, by monitoring the quantitative production of
polyphenols, flavonoids, and rosmarinic acid month by month, the role of solar radiation,
and precipitation in the production of these metabolites and their implications for the SPF
and antioxidant activity of these extracts.

2. Materials and Methods
2.1. Plant Material

Aerial parts of Mentha x villosa Hudson and Plectranthus amboinicus (Lour.) Spreng.,
Lamiaceae, were collected at 8 am on the 20th of every month, from January to December
2019, where they were cultivated at the Federal University of Paraiba, Institute of Pharma-
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ceuticals Research (coordinates 7◦8′29.875” S/34◦50′48.757” W), Campus I, João Pessoa,
PB. A specimen of M. villosa was placed in the Herbário Prisco Bezerra, from the Federal
University of Ceará, Fortaleza—CE, under n 14.996. This plant is registered at the SISGEN
(National System of Genetic Heritage Management and Associated Traditional Knowl-
edge) platform under reference number A3BA60D. A specimen of P. amboinicus species
is deposited at Lauro Pires Xavier Herbarium (JPB/UFPB) under number identification
JPB0047239 and its register at SISGEN is under reference number AAB0FA6.

2.2. Preparation of Crude Ethanol Extracts

Fresh aerial parts (500 g) of M. villosa and P. amboinicus were crushed and submitted
to maceration in 96% ethanol for three consecutive days; this process was repeated three
times. 4 l of ethanol was used in the maceration process of M. villosa and 3 l of ethanol for
P. amboinicus. After maceration, extracted solutions were concentrated using rotary evapo-
rator equipment at 40 ◦C to obtain the crude ethanolic extracts (CEE) of the two species,
weighing approximately 11.5 g for M. villosa and 12.37 g for P. amboinicus. The maceration
process was repeated every month of 2019 right after aerial parts harvest, resulting in
12 M. x villosa ethanolic extracts and 12 P. amboinicus ethanolic extratcs. All of these extracts
were used in every test made.

2.3. Reagents and Equipment

Solvents used were HPLC-grade methanol (Tedia®, Rio de Janeiro, Brazil), formic acid
(J. T. Baker®, Aparecida de Goiânia, Brazil), acetic acid (J. T. Baker®, Aparecida de Goiânia,
Brazil), phosphoric acid (Proquimios®, Rio de Janeiro, Brazil), and type I water obtained
by a purification system (Milli-Q-Millipore®), besides absolute ethanol (Neon®, Suzano,
Brazil), Polawax® cream (João Pessoa, Brazil), Folin-Ciocalteu reagent, 1-1-diphenyl-2-
picrylhydrazyl (DPPH) (Sigma-Aldrich, São Paulo, Brazil), aluminum chloride (AlCl3) and
Rosmarinic acid (RA) obtained from Sigma Aldrich®, São Paulo, Brazil, with 96% of purity.

The used equipments were a UV-visible spectrophotometer (UV-2550, Shimadzu®,
Barueri, Brazil) and an HPLC system from Shimadzu® (prominence) equipped with LC-
20AT quaternary solvent pumping module, SIL-20A HT auto-injector, DGU-20A5R de-
gassing system, CTO-20A column oven, detector SPD-M20A diode array and CBM-20A
controller. The column used was Kromasil® C18 (250 mm× 4.6 mm a.i. filled with 5 µm par-
ticles) (Sigma Aldrich®, São Paulo, Brazil), with SecurityGuard Gemini® C18 pre-column
(4 mm × 3.0 mm a.i. filled with 5 µm particles). The LC Solution® software (Shimadzu®,
Barueri, Brazil) was used for equipment control, data acquisition, and analysis.

2.4. HPLC Analytical Chromatographic Methods

The method used for quantification of RA in M. villosa begins at 38% of solvent B,
reaching 42% in 5 min and remains at this concentration until 9 min. From 9 to 12 min,
the gradient is altered from 42 to 45% of solvent B and it reaches 50% in 15 min. From 15
to 17 min, the gradient returns to 45%, and it remains unchanged until 20 min, when it
returns to the initial condition at 38% of mobile phase B, and the run stops at 24 min at this
concentration. The flow rate used was 1 mL/min, oven temperature at 26 ◦C, the injection
volume of 20 µL, the detection was performed at 330 nm by a diode array UV (DAD).
In addition, extract and standard samples were made in triplicate and filtered with the
diluent solution at a concentration of 50% : 50% MeOH : acidified water (0.1% of H3PO4).

For extract samples of P. amboinicus, a diluent solution used was MeOH:acidified
water (0.1% of formic acid) 1:1, the run starts at 50% of solvent B and reaches 60% in 20 min,
returning to 50% in 21 min and remaining at this concentration until the end, at 26 min.
In this case, the flow rate used was 0.6 mL/min [40].

2.5. Solar Radiation and Precipitation Treatments

The exposure consisted of submitting plants to naturally occurring solar radiation
and precipitation during 2019 at their harvest place at the Institute of Pharmaceuticals
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Research—UFPB and collecting adult plants to observe changes in the content of investi-
gated compounds among each month of harvest. Solar radiation incidence and precipi-
tation data were collected on the website (https://portal.inmet.gov.br/) of the National
Meteorologic Institute of Brazil (INMET).

2.6. Total Polyphenol Content Determination

In this assay [42], 120 µL of samples (from the two plants, for each month) at a
concentration of 1 mg/mL were treated with 500 µL of Folin–Ciocalteu (10%) reagent
and gallic acid was used as standard. Time reaction was 8 min, and at this moment, the
reaction was maintained at rest. Later, 400 µL of sodium carbonate (7.5%) was added to
neutralize the mixture. Then, triplicate samples were kept at room temperature, in the
dark for 120 min. Meanwhile, they were transferred to 96 well plates for later reading on a
UV-visible spectrophotometer (UV-2550, Shimadzu) at 765 nm.

Linear regression was used to calculate the total phenolic content of samples, it was
made through gallic acid calibration curve (25, 50, 75, 100, 150 and 200 µg/mL), and results
were expressed as mg GAE/g of the sample.

2.7. Rosmarinic Acid Quantification

RA quantification was made through the construction of a calibration curve using the
standard concentrations of 5.6, 11.25, 22.5, 45 and 90 µg/mL for extracts of both species.
Samples of each month were prepared in triplicate, at a concentration of 1 mg/mL and
were injected in HPLC according adequate analytical method described.

2.8. Flavonoids Total Content Determination

Flavonoids content was evaluated by the spectrophotometric method proposed by
Schmidt and Ortega, [43] with adaptations, using aluminum chloride (AlCl3) as a reagent.
Thus, 0.1 mL of AlCl3 (2.5%) was added to 0.1 mL of samples (1 mg/mL) in 96 well plates.
The mixture was kept away from light for 30 min, and later, absorbance was measured at
410 nm, using a spectrophotometer UV-Visivel (UV-2550, Shimadzu) [44]. The assay was
made in triplicate and flavonoids total content was calculated through a linear regression
equation obtained from the quercetin calibration curve (5; 25; 50; 100 and 200 µg/mL).
Results were expressed as mg of quercetin/g of sample.

2.9. Determination of Antioxidant Activity

DPPH method was applied for this assay [45], using methanol as a solvent. Thus,
in 96 well plates, DPPH solution at 0.3 mM (100 µL) was added to 100 µL of different
concentrations of extracts of both plants studied (usually 10, 20, 40, 80, and 160 µg/mL
were used, but in certain samples, it was also necessary to use 320 µg/mL). This reaction
remained at rest and away from light for 30 min and subsequently, the reading was done on
a spectrophotometer UV-Visivel (UV-2550, Shimadzu) at 518 nm. This assay was performed
on samples of all months in triplicate and, free radical scavenging activity (SA) of each
concentration used was calculated by the following Equation (1). After calculating SA,
calibration curves were done and results were expressed as CE50.

SA (%) = (Anegative control − Asample)/Anegative control × 100 (1)

Equation (1) Free radical scavenging activity formula.
where,

SA (%) = percentage of free radical scavenging activity
Anegative control = negative control absorbance
Asample = sample absorbance

https://portal.inmet.gov.br/
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2.10. In Vitro Determination of Sun Protection Factor (SPF)

SPF was determined according to an in vitro method [46], known for being practi-
cal and presenting a good correlation with in vivo methodologies. Thus, formulations
were prepared using polawax® cream as a cosmetic base and extracted samples from all
months harvested of both species, separately, were incorporated at a concentration of 10%.
For spectrophotometric analyses, liquid samples of each formulation were prepared at
0.2 mg/mL, using absolute ethanol as solvent. Subsequently, a scan was made between
the wavelengths of 200–400 nm using a spectrophotometer UV-Vis, UV-2550 Shimadzu,
with a 1 cm optical path length quartz cell, analyses was done in triplicate and absolute
ethanol was also used as blank. SPF was calculated by Equation (2), and an assay was
made in triplicate.

SPF = CF × Σ320−290 × EE(λ) × I(λ) × ABS(λ) (2)

Equation (2) SPF formula.
where,

CF = 10 (correction factor)
EE(λ) = erythematogenic effect
I(λ) = Sun intensity
ABS(λ) = absorbance

2.11. Statistical Analyses

The data were obtained in triplicate, calculating the mean, standard error, and relative
standard error. The statistical analysis was performed by comparison established through
the analysis of variance (ANOVA one way), where the results were considered statistically
different when p < 0.05, the level of significance adopted was 95% and also the post-test
Tukey, using Graphpad Prism 6.01 software, San Diego, CA, USA. The calibration curves
and correlation coefficients (r) were obtained and calculated by linear regression using
Excel® 2010. Principal component analysis (PCA) was used to obtain the correlation
between the different data sets and a more distinct view of the relationship between the
variables, as well as the variability of antioxidant activity and SPF. This analysis was
performed with the Orange statistics 3.4 program.

3. Results
3.1. Seasonality Effects on Polyphenols, Flavonoids, and RA Content

In a seasonal analysis of polyphenol content between M. villosa and P. amboinicus,
statistical difference (p < 0.05) was found between the two species in every month of the
year, except in August, November, and December, as shown in Figure 1. The best month
for M. villosa harvest producing the highest total polyphenols content was September
(147 mg GAE/g of crude extract). In P. amboinicus case, it was observed that the best month
for its harvest was July (164.7 mg GAE/g of crude extract).

When the two species were evaluated individually, it was possible to observe that
there was no statistical difference in total polyphenols content in several months of different
seasons of the year in both M. villosa and P. amboinicus, showing that their production does
not obey a specific trend for each season, e.g., January, which belongs to summer season did
not show statistical difference (p > 0.05) when compared to April (autumn), August (winter),
or October (spring). Thus, these results added to the fact that there are no well-defined
seasons at the region where plants were collected, justified by their geographical location
close to the equator line, seasons seem to have less influence in the variation of these
metabolites concentration. Similar results were observed in a study by Woźniak et al. [47],
where the concentrations of most polyphenols remained constant during different seasons,
showing that they did not influence the variation of these metabolites.
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In the evaluation of flavonoids content, statistical difference (p < 0.05) was found
among every month of the year between M. villosa and P. amboinicus, as shown in Figure 2.
It was also observed that P. amboinicus presented the highest values of these metabolites
during the whole year, when compared to the other studied species. The best month for
M. villosa harvest was April (28.72 mg querc/g of crude extract) and for P. amboinicus,
December (49.82 mg querc/g of crude extract).
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As observed for total polyphenols content, when the two species are evaluated indi-
vidually, it was seen that there was no statistical difference of flavonoids concentration
in several months of different seasons in M. villosa and P. amboinicus, indicating that their
production also did not obey a specific trend to each season, which shows that seasons
seem to have less influence in variation of flavonoids quantitatively production.

According to a previous study by Terto et al. [40] and unpublished data [41], it was
seen that RA was the most produced compound in CEE of aerial parts of M. villosa and
P. amboinicus, and so because of this, its variation was also evaluated. Thus, it was observed
that P. amboinicus had the highest concentrations of this metabolite in a good part of the
year and the only month that there was no statistical difference in RA content between
the two species was August, when they showed statistically equal production, as shown
in Figure 3. The best month for M. villosa harvest was September (39.28 mg/g) and to
P. amboinicus, it was observed that in six months of the year, RA concentrations remained
practically constant, and it did not show statistical difference among them. These months
were January, May, June, July, October, November, and December. Absolute values ranged
from 39.46 to 44.24 mg/g, tables containing values of polyphenols, flavonoids and RA
content of all months can be found in Supplementary Material.
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Figure 3. RA content of M. villosa and P. amboinicus extracts throughout 12 months and their statistical
differences. ns = nonsignificant. * statistical difference.

As observed to polyphenols and flavonoids content, when the two plants are evaluated
individually, no statistical difference was found in RA concentrations in several months
of different seasons of the year, indicating that seasons seem to have less influence on RA
content variation in both species, although P. amboinicus has shown to be more stable in
this metabolite production.

Thus, according to obtained results, it is possible to observe that other factors may
have a better influence on the production of polyphenols, flavonoids and RA than only
seasons of the year, and it was possible to conclude that the best month to harvest M. villosa
is September and July for P. amboinicus.

3.2. Seasonality Effects on Antioxidant Activity

Samples antioxidant activities were evaluated by DPPH test, and results were ex-
pressed as EC50. From Figure 4, a statistical difference is seen among all months, except
for November, when samples of both plants showed statistically similar EC50. The month
in which M. villosa extract showed better action against DPPH radicals is December
(75.09 µg/mL) and for P. amboinicus is October (85.04 µg/mL), other results can be found
in Supplementary Material.
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3.3. Seasonality Effects on SPF

From Figure 5, it was possible to evaluate monthly variations occurred on SPF. It was
observed that January, February and December did not presented statistical difference
between the two species, while in the rest of the year, this difference is significant. The best
month for M. villosa harvest aiming the highest value of SPF was September (SPF = 13.73).
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Regarding P. amboinicus, it was observed that April, May, June and July showed the
best values of SPF, what may indicate that autumn favors photoprotective activity of
this plant, and SPF reaches its maximum of 14.79, other results can also be found in
Supplementary Material.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 8 of 17 
 

 

CE 5 0

M o n th s

µ
g

/m
l

J
A

N

F
E

B

M
A

R

A
P

R

M
A

Y

J
U

N
J
U

L

A
U

G

S
E

P
T

O
C

T

N
O

V

D
E

C

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

P . a m b o in ic u s

M .  v i l lo s a

*

*

*

*
*

*

*
*

*
n s*

*

 

Figure 4. CEE of M. villosa and P. amboinicus EC50 in µg/mL and their statistical comparations 

throughout 12 months. ns = nonsignificant. * statistical difference 

3.3. Seasonality Effects on SPF 

From Figure 5, it was possible to evaluate monthly variations occurred on SPF. It was 

observed that January, February and December did not presented statistical difference 

between the two species, while in the rest of the year, this difference is significant. The 

best month for M. villosa harvest aiming the highest value of SPF was September (SPF = 

13.73). Regarding P. amboinicus, it was observed that April, May, June and July showed 

the best values of SPF, what may indicate that autumn favors photoprotective activity of 

this plant, and SPF reaches its maximum of 14.79, other results can also be found in Sup-

plementary material.  

F P S

M o n th s

F
P

S

J
A

N

F
E

B

M
A

R

A
P

R

M
A

Y

J
U

N
J
U

L

A
U

G

S
E

P
T

O
C

T

N
O

V

D
E

C

0

5

1 0

1 5

2 0
M . v i l lo s a

P . a m b o in ic u s

*
*

*
* *

*

*

n s * *

n s

n s

 

Figure 5. SPF of CEE of M. villosa and P. amboinicus and their statistical comparations throughout 

12 months. ns = nonsignificant. * statistical difference 

When is considered that in this test were only used plant extracts of the two studied 

species incorporated at 10% in Polawax®  cream, it is possible to suggest that these results 

are promising in the photoprotection area, since reaching SPF levels close to 15 without 

the addition of any synthetic sunscreen is not easy, as shows the study made by Oliveira 

et al. [48], that evaluated the SPF of Schinus terebinthifolius Raddi ethanolic extracts and 

none formulation composed only but extracts had SPF above 5.08. In another study made 

by Mota et al. [49], it was evaluated SPF of Psidium guajava ethanolic extract and they 

found SPF = 1. Similarly, Mota et al. [50] evaluated SPF of Nephelium lappaceum L ethanolic 

extract (peels) and its SPF = 0.4. 

Thus, the two studied plants show significant values of SPF throughout the year, 

which are higher than what is required by the Brazilian Regulatory Agency (ANVISA) in 

Figure 5. SPF of CEE of M. villosa and P. amboinicus and their statistical comparations throughout
12 months. ns = nonsignificant. * statistical difference.

When is considered that in this test were only used plant extracts of the two stud-
ied species incorporated at 10% in Polawax® cream, it is possible to suggest that these
results are promising in the photoprotection area, since reaching SPF levels close to 15 with-
out the addition of any synthetic sunscreen is not easy, as shows the study made by
Oliveira et al. [48], that evaluated the SPF of Schinus terebinthifolius Raddi ethanolic extracts
and none formulation composed only but extracts had SPF above 5.08. In another study
made by Mota et al. [49], it was evaluated SPF of Psidium guajava ethanolic extract and they
found SPF = 1. Similarly, Mota et al. [50] evaluated SPF of Nephelium lappaceum L. ethanolic
extract (peels) and its SPF = 0.4.

Thus, the two studied plants show significant values of SPF throughout the year,
which are higher than what is required by the Brazilian Regulatory Agency (ANVISA) in its
Resolution of the Collegiate Board of Directors of June, the 30th (2012) [51], that determines
that only photoprotective formulations with SPF ≥6 are valid.

3.4. Principal Components Analysis (PCA)

To assess the relationship among all existing variables, multivariate analysis of main
components was used, which made it possible to observe several correlations between the
concentration of RA, phenolic and total flavonoid content, SPF and EC50, as well as the
relationship of these variables with the rainfall index and solar radiation during the year.

As shown in Figure 6, the correlation between PC4× PC1 of the PCA explained 80% of
the existing groups. For a better understanding of the results, SPF values were categorized
through colors to differentiate the value of this parameter in each species. In this figure, it
is possible to observe that samples that showed the highest SPF values were grouped more
to the left in green, for both M. villosa and P. amboinicus, in addition, it is possible to observe
that something beyond the SPF influence in these groups and it is the phenolic content.

According to the linear projection in four axes represented in Figure 7, it is possible
to observe blue and red circles, that represents M. villosa (MV) and P. amboinicus (PA),
respectively. Larger and smaller circles represent higher or lower SPF values. Thus, it is
seen that the greater the amount of phenolics and flavonoids, the greater the diameter
of the blue circles and, consequently, the greater the SPF of M. villosa extracts. It is also
observed that RA presence favors a lower EC50, indicating better antioxidant activity, when
it occurs.
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When it comes to P. amboinicus, in general, it is seen that flavonoids and RA presence
keep SPF values similar and low polyphenols concentrations do not favor this factor as
much, however, when they reach the maximum concentration found in the species, the
highest SPF (14.79) value observed in the present study was found.
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Another parameter observed was the influence of the solar radiation on the concentra-
tion of studied secondary metabolites and its consequences to SPF. Thus, evaluating the
linear projection presented in Figure 8, it is seen that the solar radiation has great influence
on increasing or decreasing SPF in M. villosa. In months when both solar radiation and
polyphenols production are higher, SPF of M. villosa extracts increases. However, in months
when production of flavonoids and RA is high, but the level of solar radiation is lower,
SPF is also lower, suggesting that production of specific components with photoprotective
properties is stimulated by solar radiation.
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These results are corroborated by Dolzhenko et al. [52], who evaluated the influence
of UVB radiation on polyphenols production in Mentha x piperita L. species. In their study,
it was seen that polyphenols content increased after irradiation of the plant with UVB radi-
ation, and it stimulated the production of flavonoids with light-absorbing properties at the
wavelength corresponding to UVB radiation, such as eriocitrin, hesperidin, and kaempferol
7-O-rutinoside, and it also caused production decrease of narirutin, 4′-methoxykaempferol
7-O-rutinoside, suggesting a possible transformation of these latest flavonoids cited in
those with increased production. The same study also showed that there is a decrease in
essential oils production in M. piperita and an increase on polyphenols production and
suggests a correlation between these results, showing that UVB radiation may favor one
biosynthetic path over another.

In P. amboinicus samples, different observations were made. Through Figure 8, it is
seen that the solar radiation does not seem to have an influence as directed as in M. villosa,
because although SPF was high in samples when solar radiation was higher compared to
others, the same observation was made when RA and flavonoids concentrations are higher,
and the sample with the highest SPF is found when polyphenols content is higher, but
radiation level is lower.

In a study by Takshak et al. [53], it was seen that supplementation of UVB radiation
in Coleus forskohlii (or P. barbatus) favored phenylpropanoid paths generating production
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of flavonoids, for example. On the other hand, it was seen on the same study, that UVB
radiation also induced an increase of carotenoids production in the leaves of this species,
such as lycopene and β-carotene for its protection. So, although it is necessary more studies
to confirm UV radiation role in secondary metabolites production in P. amboinicus, it is
possible to suggest that another biosynthetic path may be favored to increase its SPF.

On the other hand, it is seen in Figure 9, that radiation is an important factor in
P. amboinicus antioxidant activity since it is showed that when solar radiation levels are
higher, EC50 (represented by sample circles size) decreases, which means a better antioxidant
activity. This result is corroborated with both Takshak et al. [53] and Takshak et al. [54]
that showed an increase of antioxidant activity of Coleus forskohlii extracts when it was
supplemented by UVB radiation. A similar result was observed to M. villosa through Figure 9.
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In addition, it is also important to highlight that as seen in a review made by Gobbo-
neto and Lopes [8], certain polyphenols may have their production increased, as in the
case of Marchantia polymorpha in which the proportion of luteolin glycosides/apigenin
glycosides increases by the influence of exposure to UVB radiation. In this situation,
although the absorption capacity of UVB rays does not increase, because luteolin derivates
are more efficient in disperse observed energy, it causes an increase of defense antioxidant
levels in the plant. The same observation was made in the flavonoids/hydroxycinnamates
ratio, with an increase in this proportion being seen by induction of UVB radiation. So,
it is seen that the ability to act as an antioxidant and not only as an absorber of UVB
radiation, it is important to define which metabolites will be produced to act against UVB
rays. Thus, more studies need to be done to better understand the metabolic changes
mainly in P. amboinicus.

In the case of precipitation levels, it was observed in Figure 10, that in general, it does
not favor both SPF and antioxidant activity increase (Figure 11) of extracts of both plants
studied, since the lower precipitation levels, the higher SPF and lower EC50, indicating a
better antioxidant activity.
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According to Gobbo-neto and Lopes [8], there are controversies about what can occur
in polyphenol production depending on environmental levels of precipitation, showing
that its production can be increased or decreased, with no trend or pattern to be followed,
suggesting that there is no clear correlation between these metabolites concentrations and
hydric stress, but short periods of dryness can lead to an increase of phenolic compounds
production. Studies such as Gomes et al. [55] showed a predominance of flavonoids during
summer in Lippia alba leaves. A similar result was found by Ribeiro et al. [1], where it
was found that the highest concentration of total phenolic compounds in the inner bark of
Secondatia floribunda A. DC. during the dry season.

Thus, biological activities such as antioxidant activity can be affected since several
studies confirm a direct correlation between this activity with phenolic compounds. Be-
cause of that, more studies are necessary to establish a better knowledge about what occurs
in M. villosa and P. amboinicus metabolism.

4. Conclusions

In agreement with all obtained results, it was possible to conclude that, in general,
seasonality did not directly affect polyphenols, flavonoids, and RA quantitative production
in both species. The best month to harvest M. villosa was September and P. amboinicus was
July. It could also be concluded that higher concentrations of polyphenols and flavonoids
favor the increase of SPF in M. villosa and concentration of RA influences the antioxidant
activity of this species, while in P. amboinius, the presence of flavonoids and RA maintained
SPF values similar and when the phenolic compounds reached the maximum concentration
in this species, the highest SPF value of the study was found (SPF = 14.79). Moreover, it
was observed that solar radiation has a clearer influence in phenolic compound production
and in the increase of SPF in M. villosa than in P. amboinicus, and it favors the improvement
of antioxidant activities of both species. In the case of precipitation, it does not seem to
favor either photoprotective or antioxidant activities of both species studied.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-492
3/13/1/110/s1, Figure S1: Calibration curve of Quercetin, Figure S2: Calibration curve of Gallic acid
standard, Figure S3: Rosmarinic acid stardand linear regression for its quantification in M. x villosa
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