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Abstract

Epithelial-mesenchymal transition (EMT) is a driving force in promoting malignant cancer, 

including initiation, growth, and metastasis. EMT is a dynamic process that can undergo a 

mesenchymal-epithelial transition (MET) and partial transitions between both phenotypes, termed 

epithelial-mesenchymal plasticity (EMP). In cancer, the acquisition of EMP results in a spectrum 

of phenotypes, promoting tumor cell heterogeneity and resistance to standard of care therapy. 

Here we describe a real-time fluorescent dual-reporter for vimentin and E-cadherin, biomarkers 

of the mesenchymal and epithelial cell phenotypes, respectively. Stable dual-reporter cell lines 

generated from colorectal (SW620), lung (A549), and breast (MDA-MB-231) cancer demonstrate 

a spectrum of EMT cell phenotypes. We used the dual-reporter to isolate the quasi epithelial, 

epithelial/mesenchymal, and mesenchymal phenotypes. Although EMT is a dynamic process, 

these isolated quasi-EMT-phenotypes remain stable to spontaneous EMP in the absence of stimuli 

and during prolonged cell culture. However, the quasi-EMT phenotypes can readily be induced 

to undergo EMT or MET with growth factors or small molecules. Moreover, isolated EMT 

phenotypes display different tumorigenic properties and are morphologically and metabolically 

distinct. 3D high-content screening of ~23,000 compounds using dual-reporter mesenchymal 
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SW620 tumor organoids identified small molecule probes that modulate EMT, and a subset of 

probes that effectively induced MET. The tools, probes, and models described herein provide a 

coherent mechanistic understanding of mesenchymal cell plasticity. Future applications utilizing 

this technology and probes are expected to advance our understanding of EMT and studies aimed 

at therapeutic strategies targeting EMT.

Introduction

Malignant cancer develops from the contribution of multiple factors known as the hallmarks 

of cancer, which also promote tumor cell heterogeneity, multi-drug resistance (MDR), and 

evasion of the immune response1. In particular, the epithelial-mesenchymal transition (EMT) 

program is a hallmark that transforms tumor cells into a spectrum of EMT phenotypes 

that have diverse tumorigenic and metastatic properties1–4. This spectrum includes stable 

epithelial (xE) and mesenchymal (xM) states and quasi-states, including the epithelial 

(E), hybrid (E/M), and mesenchymal (M) cell populations5. Notably, the stable xE and 

xM states are less malignant compared to the quasi-states, which are known to be 

transient and reversible between EMT and mesenchymal-epithelial transition (MET)4, 5. 

The ability of carcinomas to readily cross between both states has been termed epithelial-

mesenchymal plasticity (EMP)6, which is implicated as a driving force promoting tumor 

growth, metastasis, and MDR. EMP involves an elaborate network of transcription factors 

and regulatory pathways that complicate its mechanistic study, limiting the development of 

targeted therapies against EMT2.

EMT phenotypes are characterized and distinguished using biomarkers, notably, E-cadherin 

(epithelial) and vimentin (mesenchymal)7. Loss of E-cadherin and gain of vimentin are 

also clinical biomarkers of poor prognosis for many types of cancer8–14. Therefore, to 

address the challenges associated with EMP, we have developed an EMT dual fluorescent 

reporter for the promoter regions of E-cadherin and vimentin (dual-reporter). When the 

dual-reporter is transduced into cancer cells, it functions as an effective tool to measure 

EMP in real time while simultaneously tracking the spectrum of EMT cellular phenotypes. 

Furthermore, EMT phenotypes can be isolated by fluorescence activated cell sorting (FACS) 

based on dual-reporter fluorescence. Herein, we demonstrate the ability to isolate and 

characterize quasi-EMT phenotypes that are morphologically and metabolically distinct15. 

To the best of our knowledge, our studies are the first to demonstrate these metabolic 

differences in isolated EMT cell phenotypes, providing a more accurate picture of EMT 

driven heterogeneity without the addition of external stimuli or genetic manipulation.

The results of this study led to the hypothesis that depletion of the M-phenotype may 

decrease metastasis and sensitize primary tumors and metastatic lesions to clinical therapies, 

and potentially reduce the probability of patient mortality. Prompted by our hypothesis, we 

developed a dual-reporter SW620 M-phenotype colorectal cancer (CRC) tumor organoid 

model that is validated for 3D high-content screening (HCS) of tens of thousands of 

compounds to identify small molecule probes that modulate or reverse EMT. Through this 

HCS model, we discovered and validated lead EMT probes that induce MET and decrease 

malignant properties in isolated quasi-mesenchymal tumor organoids, which shed light on 

Esquer et al. Page 2

Oncogene. Author manuscript; available in PMC 2022 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the mechanisms controlling EMP in CRC. We anticipate that these tools, probes, and models 

can be adapted to a variety of cancers, therefore, facilitating the study of mechanisms 

controlling EMT-driven tumor progression and metastasis, and the discovery of new drug 

therapies.

Results

The isolation of distinct EMT phenotypes in colorectal, lung, and breast cancer.

Vimentin and E-cadherin are established biomarkers of EMT16, 17. We designed a lentiviral 

plasmid that reports on the promoter activity of vimentin (VimPro-GFP) and E-cadherin 

(EcadPro-RFP) with dual expression of two fluorescent proteins (Fig. 1a). We transduced 

three carcinoma lines, SW620 (CRC), A549 (lung), and MDA-MB-231 (breast), to 

identify and assess EMT phenotypes using the dual-reporter. Image-based high-content 

analysis (HCA) revealed that each cancer type possessed three populations with high 

dual-reporter activity, RFP+, RFP+/GFP+, GFP+, and one population that had low dual-

reporter activity (<100 RFU) that we define as RFP−/GFP− (Fig. 1b–d). Because the 

RFP−/GFP− represented approximately half of the cell population in each cancer type, 

we evaluated the success of our transduction using PCR analysis (Fig. S1a–c). The PCR 

results demonstrate that the RFP−/GFP− population was successfully transduced with the 

dual-reporter. Intrigued by the low reporter activity, we next evaluated the difference 

between low and high dual-reporter activity populations using Integrin-β4 (aka CD104) 

positive and CD44 high expression (CD104+/CD44+), which is reported as an effective 

marker in a variety of cancer types that distinguishes the more malignant quasi-EMT states 

from the stable-EMT states5, 18. The dual-reporter transduced cell lines were stained with 

antibodies for CD104 and CD44 and analyzed by flow cytometry (Fig. S2). The results 

demonstrate that the high dual-reporter activity cell populations (RFP+, RFP+/GFP+, and 

GFP+) are higher in CD104+/CD44+ expression compared to the dual-reporter low activity 

(RFP−/GFP−) cell population. This result indicates that the RFP−/GFP− cell population 

likely harbors the stable EMT-populations, described by Kröger et al. to be less tumorigenic 

compared to the quasi-EMT population5. Importantly, higher CD104+/CD44+ expression 

definitively marks EMT positive cells with increased mesenchymal character and cancer 

stem cell (CSC) stemness5, 18. Therefore, we prioritized the CD104+/CD44+ quasi-EMT 

dual-reporter active populations moving forward. Next, we enriched and isolated the three 

distinct dual-reporter active quasi-EMT cell populations based on dual-reporter fluorescence 

by FACS, which we define as E (RFP+), E/M (RFP+/GFP+), and M (GFP+) (Fig. 1e–

g). The protein expression of the epithelial and mesenchymal biomarkers is consistent 

for the E, E/M, and M phenotypes, respectively (Fig. 1h–j). Notably, the expression of 

these biomarkers is also consistent with EMT populations displaying higher expression of 

CD104+/CD44+5.

Isolated quasi-M-phenotypes have increased tumorigenic potential.

In Fig. 1 and Fig. S2, we demonstrate that the dual-reporter activity high cell population has 

increased mesenchymal traits. To further characterize the mesenchymal character of isolated 

EMT phenotypes we examined the expression ratio of CD44 and CD24 surface markers, 

which are widely used markers to distinguish epithelial from mesenchymal carcinoma 
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cells18. In addition, high CD44 surface marker expression is a marker for increased tumor 

initiating cell properties (also referred to as CSCs) such as stemness and invasiveness19–22. 

As determined by flow cytometry, the mean CD44/CD24 fluorescence ratio was highest 

in MDA-MB-231 cells, followed by A549 and SW620 cells (Fig. 2a). Interestingly, the 

levels of CD44high/CD24low expression correlates with the magnitude of the difference of 

the number of M- to E-phenotype cells, as sorted by the dual-reporter expression. MDA-

MB-231 cells have the highest CD44high/CD24low expression and both the highest number 

of M-positive cells and the largest difference between percent of populations of E- and 

M-phenotypes (Fig. 2b and Fig. S3). We assessed the stemness potential of the cell lines 

by their ability to form clonogenic colonies23, 24. The clonogenic assay further supported 

that the vimentin high M-phenotypes have a significant increase in stemness compared to 

the E- and E/M-phenotypes (Fig. 2c and Fig. S4). Notably, CD104+/CD44+ and CD44high/

CD24low were effective markers indicating more malignant quasi-EMT states and increased 

mesenchymal stemness character, respectively (Fig. 2 and Fig. S2). The M-phenotype also 

displays a higher invasive potential compared to the E-phenotype (Fig. 2d). These results 

demonstrate that the dual-reporter is an effective tool to enrich for quasi-EMT phenotypes 

that vary in their mesenchymal character and tumorigenic potential.

Isolated EMT phenotypes are stable to spontaneous EMP but readily undergo induced 
EMP.

Recently, CD104+/CD44+ expression was used to mark quasi-EMT cells that proved to 

be stable to spontaneous EMT and MET, yet these cells could be induced through EMT 

and MET by genetic manipulation5. Likewise, dual-reporter quasi-EMT cell populations 

also displayed higher expression of CD104+/CD44+. To determine the stability of isolated 

phenotypes in long-term sub-culture, we performed HCA of the fluorescent phenotypes 

and of their morphology, through supervised machine learning (Fig. S5 and Tables S1 

and S2). The dual-reporter fluorescent activity of each phenotype showed that the isolated 

EMT phenotypes are stable under long-term culture in the absence of external stimuli 

measured by dual-reporter activity (Fig. S5a,d,g). Supervised machine learning quantitated 

the morphologies of the different phenotypes revealing that the E- and M-phenotypes are 

dominated by a cobble-shaped or spindle-shaped morphology, respectively (Fig. S5c,f,i). 

These morphologies align with the common morphological distinctions between these 

two phenotypes25. Interestingly, the E/M morphology appears to be a close representation 

of the parental cell line’s relative expression of E-cadherin and vimentin (Fig. S5c,f,i). 

Furthermore, culturing cells as monolayers (2D) or tumor organoids (3D) with extracellular 

matrix (ECM) does not alter dual-reporter activity (Fig. S5b,e,h). Finally, the supervised 

machine learning results were analyzed by principal component analysis (PCA) using 400 

different morphological parameters to distinguish between the different morphologies of the 

E, E/M, and M phenotypes (Fig. S5j–l). The results demonstrate that the dual-reporter can 

isolate distinct EMT phenotypes that remain stable to spontaneous EMP in long-term cell 

culture.

To determine if dual-reporter quasi-EMT cell populations can be induced through EMP, we 

treated unsorted dual-reporter transduced PMC42LA cells with epidermal growth factor 

(EGF) (Fig. S6)26, 27. EGF induces EMT, based on dual-reporter activity and protein 
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expression, decreasing the E- and E/M-phenotypes while increasing the M-phenotype 

compared to control. We previously described the development and characterization of 

TOP2A ATP-competitive inhibitors and their ability to prevent Wnt/TCF/LEF-transcription 

(denoted as TCF-transcription) thereby inducing MET and reversing the tumorigenic 

potential in CRC28, 29. Using the TOP2A inhibitor compound 7, we tested the ability to 

induce MET in SW620 M-phenotype tumor organoids measuring dual-reporter activity. 

Compound 7 effectively induced MET compared to DMSO control measured by 3D HCA 

time-lapse imaging over 3-days (Video S1). In conclusion, the dual-reporter is an effective 

tool to quantify spontaneous or induced EMP in real-time.

Isolated EMT populations are metabolically distinct.

While the dual-reporter proved to be useful in isolating distinct E, E/M, and M phenotypes 

we sought to further characterize and distinguish these differences using a MS-based 

metabolomics approach to determine metabolic characteristics (metabotypes) of isolated 

quasi-EMT phenotypes (Supplementary Metabolomics Table). In line with the distinct 

morphological characteristics (Fig. S5), unsupervised PCA of metabolite abundance 

similarly determined unique, independent clustering patterns for isolated E, E/M, and 

M dual-reporter tumor organoids derived from SW620, A549, and MDA-MB-231 cell 

lines (Fig. 3a–c). These observations were further emphasized by hierarchical clustering 

analysis, which also distinguished these EMT phenotypes based on the relative abundance 

of metabolites (Fig. 3d–f). Interestingly, while E- and M-phenotypes could be similarly 

distinguished by principal component 1 in all cell lines, which explained between 32.5% and 

48.8% of the metabolic variability, the relative clustering of the hybrid E/M population was 

cell line-dependent. In line with recent observations of unique metabotypes across various 

cancer cell lines30, the metabolites that contributed to clustering patterns observed in our 

study were also cell-line specific (Fig. 3, Fig S7, and Supplementary Metabolomics Table). 

For example, while lactate was highest in the M-phenotype of SW620 cells, it was the E-

phenotype in A549 cells, and E/M-phenotype in MDA-MB-231 cells that appeared to have 

an upregulation of glycolysis. In addition, the MDA-MB-231 M-phenotype had significantly 

higher TCA cycle metabolites relative to the E-phenotype while this relationship was only 

partially recapitulated in the SW620 and A549 cells.

Small molecule induced MET in the M-phenotype measured by metabolomics.

To determine the metabolic underpinnings of these observations, we treated SW620 tumor 

organoids comprised of M-phenotype cells with Compound 7 (M+7) and compared the 

subsequent metabotype with that of the E-phenotype tumor organoid using metabolomics 

that had been previously collected. To control for batch variability in the mass spectrometer 

as these datasets were collected separately, we normalized metabolite levels in each dataset 

(SW620 M vs E; SW620 M vs M+7) to the median M value in the respective dataset, 

as these tumor organoids were cultured for both sets of experiments. We then employed 

PCA to identify metabolites in M cells that return to the relative levels in E-phenotype 

cells when treated with Compound 7 (Fig 4a). While Component 1 primarily described 

cumulative differences between E and M+7 cells and accounted for 31.1% of the variability, 

Component 2 accounted for 24.4% of the variability and predominantly described shared 

differences between E and M+7 organoids compared to their M-phenotype counterparts, 
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while Component 3 (11% of the variability) related to intragroup technical variability. 

PCA of metabolomics data demonstrated that E- and M+7 tumor organoids clustered 

independently of M-phenotype tumor organoids along the Component 2 axis and were 

statistically indistinguishable from one another. Analysis of the top 25 metabolites that 

influenced this clustering pattern highlighted multiple metabolites that are centrally involved 

in energy homeostasis, including nucleotide levels, glycolysis, and the TCA cycle (Fig. 

4b). We also observed that M-phenotype cells have enhanced glycolysis (lower glucose and 

higher lactate), as well as altered PPP utilization (lower oxidative phase 6-phosphogluconate 

and higher non-oxidative phase erythrose-4-phosphate) (Fig. 4c). Significant higher levels of 

TCA cycle intermediates α-ketoglutarate (α-KG) and fumarate, and overall higher energy 

status (ATP/AMP ratio) indicate alterations in substrate preference between the E- and 

M-phenotype cell populations (Fig. 4c). Mesenchymal cells also possess higher levels of 

acylcarnitines, including decanoylcarnitine (AC C10), dodecenoylcarnitine (AC C12:1), and 

tetradecanoylcarnitine (AC C14) that are essential for fatty acid oxidation (Fig. 4b)31. 

Because fatty acid oxidation yields a higher overall amount of ATP compared to glucose, a 

specific preference for fatty acid oxidation in M-phenotype cells would be consistent with 

the observed higher overall levels of ATP in the absence of isotope tracing analysis. In 

view of observations that the plasticity of CSCs may depend on the ability to import fatty 

acids for oxidation32, 33, these data support increased stemness observed to correlate with 

vimentin expression in the M-phenotypes (Fig. 2c). Strikingly, treatment with Compound 

7 appears to reverse the levels of each of these metabolites back towards or below 

relative levels observed in the E-phenotype tumor organoids (Fig. 4b,d). These observations 

highlight that E- and M-phenotype tumor cell populations are metabolically distinct but can 

be manipulated through pharmacological intervention at the level of transcriptional changes 

that drive EMT and EMP.

3D high-content screening targeting EMP in quasi-M-phenotype CRC tumor organoids.

The quasi-M-phenotype is known to be more malignant compared to other EMT 

phenotypes4, and our results with the different isolated EMT phenotypes are consistent 

with this scientific premise. In addition, Kröger et al.5 recently reported the isolation of 

a quasi-EMT phenotype (which they termed E/M) with increased mesenchymal character 

(marked by increased CD104+/CD44+ expression) and tumorigenic properties in breast 

cancer cells. This E/M phenotype also displayed significantly higher TCF-transcriptional 

activity, regulated through the canonical Wnt pathway. Similarly, we and others have 

reported that TCF-transcription functions as a master regulator of EMT in CRC29, 34. 

To further investigate the role of TCF-transcription in promoting the quasi-M-phenotype 

in CRC we transiently transfected unsorted and sorted dual-reporter SW620 cells with 

the luminescent TCF-transcriptional reporter (TOPflash)28, 29. Comparatively, the isolated 

M-phenotype displayed 3-to-4-fold higher TCF-activity than the isolated E, E/M, and 

RFP−/GFP− phenotypes (Fig. S8). This result is consistent with the enhanced stemness 

and invasive potential observed with the M-phenotype (Fig. 2c,d), further validating the 

M-phenotype as having increased tumorigenic potential. Thus, we used FACS-sorted SW620 

M-phenotype cells to conduct HCS with small molecules to discover probes regulating EMP 

in CRC with the goal of identifying compounds that reverse the M-phenotype to the more 

benign E-phenotype35.
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Sorted M-phenotype SW620 cells were used to generate a single tumor organoid per well 

in the presence of ECM (Fig. S9 and Video S1). The dual-reporter activity was monitored 

over 3-days, including a negative control (0.5% DMSO, vehicle) and a positive control 

(compound 7 at 10 μM) (Fig. S9)28, 36, 37. We conducted two separate pilot screens at 

CU AMC (Spectrum Library) and NCATS (Epigenetics library) (Fig. S10 and Table S3), 

which identified numerous hits that modulate EMT. However, only 9 hits (1 from Spectrum 

and 8 from Epigenetics) induce MET. Next, we conducted 3D HCS using the biological 

interrogation cassette (BIC) consisting of 20,799 compounds, obtained from Eli Lilly and 

Company’s Open Innovation Drug Discovery (OIDD) program (Fig. S11 and Table S3). 

There were significantly more hits that modulate EMT (667 upregulate E-cadPro-RFP, while 

902 downregulate VimPro-GFP) with a small subset of compounds that induce MET (27 

hits). We prioritized probes that induce MET to more effectively target EMP. Combined, 

HCS yielded 36 hits that induce MET. Dose response studies validated 10 probes that induce 

MET in a dose dependent manner (Fig. 5a,b and Fig. S12). Finally, validated hits were 

prioritized as lead probes based on their ability to inhibit stemness (clonogenicity) and 

invasive potential (Fig. 5c,d and Fig. S12). These compounds included two Protein Kinase 

C (PKC) inhibitors (RO-31-8220 and RO-32-0432), one Aurora Kinase A/B/C (AURK) 

inhibitor (SNS-314), a Proviral Integration site for Moloney murine leukemia virus-1-Kinase 

(Pim) 1/2/3 inhibitor (CX-6258), a lysine methyltransferase / Cyclin-dependent Kinase 4 

(KMT5A / CDK4) inhibitor (Ryuvidine), a Jumonji histone demethylase (JMJD2) inhibitor 

(ML324), and a Macrophage Migration inhibitory Factor / Vesicular Glutamate Transporter 

(MIF / VGLUT) inhibitor (Chicago Sky Blue, or CSB). In addition, three probes with no 

known molecular targets were validated from the BIC library, including W112130-B17, 

W111768-M14, and W112152-C05.

Discussion

Herein, we present a unique dual-reporter of EMT as a powerful biological tool that 

allows for the isolation, interrogation, and real-time tracking of EMP and of distinct EMT 

phenotypes in well-established cancer cell lines. The results of this work demonstrate 

the inherent heterogeneity in cancer cells with respect to EMT states4, which can be 

exploited to study shifts in these populations driven by EMP. After sorting, EMT biomarker 

protein expression is maintained and correlates with promoter activity, demonstrating that 

isolated EMT phenotypes are stable to spontaneous EMP. Furthermore, the results illustrate 

unequivocal differences morphologically and metabolically between EMT phenotypes (Fig. 

3 and Fig. S5). For example, by isolating subpopulations of MDA-MB-231 cells based on 

dual-reporter expression, we found that the E/M- and M-phenotypes had increased levels of 

lactate in MDA-MB-231 and SW620 cells, respectively, compared to the E-phenotype (Fig. 

S7). Notably, other groups have shown lactate as a marker that distinguishes metabolic states 

and as an oncometabolite that increases stemness38, 39–44.

Our results suggest that vimentin drives the stemness and invasive potential (Fig. 2). Thus, 

we pursued pharmacological reversion of the M-phenotype to its less stem-like and invasive 

E-phenotype. Indeed, treatment of CRC M-phenotype tumor organoids with compound 

7 induces MET based on real-time dual-reporter activity and by metabolomics (Fig. 4 

and Video S1). We validated this CRC tumor organoid model for 3D HCS of ~23,000 
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compounds. This screen identified hundreds of probes that modulate EMT but only a 

subset that induce MET, which were used to generate a coherent mechanistic understanding 

of mesenchymal cell EMP (Fig. 6). In particular, our metabolomics studies found that 

L-glutamate, α-KG, and fumarate are significantly downregulated in the E-phenotype 

compared to the M-phenotype, and these metabolites fuel the TCA cycle. Intriguingly, these 

metabolites are linked to EMT probes via α-KG, including CSB (VGLUT) and ML324 

(JMJD2) (Fig. 5). CSB is an inhibitor of L-glutamate transport and loss of glutamate can 

alter the production of α-KG. Moreover, these metabolites are utilized in many cellular 

processes as substrates for enzymatic activity, notably, the hypoxia response45. HIF-1α 
is regulated in the cytoplasm via α-KG dependent prolylhydroxylase (PHD) mediated 

proteasomal degradation. However, fumarate is a direct inhibitor of PHD leading to HIF-1α 
nuclear translocation inducing the hypoxia response, including c-Myc upregulation45. 

Although hypoxia decreases the TCA cycle flow, c-Myc activates genes that replenish the 

TCA cycle via glutamine mitochondrial import, which is converted to α-KG46. Additionally, 

the hypoxic response upregulates the PPP45 and we observe this with increased erythrose-4-

phosphate in the SW620 M-phenotype (Fig. 4). α-KG is also linked to epigenetic events 

as a substrate used by JMJD histone demethylases. JMJD activates the EMT transcription 

factor Snail-1, which is an epigenetic negative regulator of E-cadherin47. Likewise, the 

lysine methyltransferase, KMT5A, is an epigenetic regulator of Wnt target genes, including 

cadherin switching47. Our results are consistent with this complex relationship between 

the TCA cycle, PPP, hypoxia, and epigenetic events that convey increased tumorigenic 

properties to the M-phenotype in CRC.

TCF-transcription is a master regulator of EMT, notably, ZEB1, Slug, N-cadherin, and 

c-Myc29, 34, 48. Moreover, the isolated SW620 M-phenotype displayed the highest TCF-

activity compared to other EMT populations (Fig. S8). Indeed, treatment with 7, induces 

MET, by downregulating TCF-transcription promoting antitumor activity (Fig. 4, Fig. 

S9, and Video S1)28, 29. Furthermore, crosstalk between the Wnt and Ras pathways is 

further implicated in regulating EMT as shown by lead probes RO318220 (PKC)49 and 

SNS314 (AURK)50 that induce MET. Therefore, both the Wnt and Ras pathways interact 

to promote EMT, and tumor progression in CRC51. Moreover, the SW620 M-phenotype 

has increased fatty acids, and fatty acid oxidation is known to activate the Ras MAPK 

pathway through MEK52 (Fig. 6). Yet another connection with mesenchymal cell energetics, 

we identified that inhibition of Pim 1/2/3 by CX6258 reverses EMT. Pim kinases have 

been shown to regulate energy by increasing c-Myc and PGC-1α, promoting glycolysis 

and downregulating AMPK (Fig. 6)53. Our results are consistent with this mechanism of 

Pim mediated energetics regulating EMT, demonstrating that the M-phenotype has higher 

ATP/AMP ratios compared to the E-phenotype (Fig. 4). Finally, in addition to being an 

inhibitor of VGLUT (aka SLC17A7), CSB is also a potent nM inhibitor of MIF54, which 

stimulates β-catenin nuclear translocation and TCF-transcription55. Since VGLUT has been 

primarily studied in the nervous system56, we assessed VGLUT expression in CRC using 

the cBioPortal (TCGA, Firehose Legacy) database. We found that its expression is low but 

has a significant positive correlation with vimentin, TCF4, and Snail-1 (Fig. S13). Thus, we 

postulate that the predominant on-target reversal of EMT is through CSB inhibition of MIF.
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In conclusion, this report highlights novel tools and approaches to identify, isolate, and 

characterize EMT cell populations and their plasticity. These tools were used to validate 

a tumor organoid model of EMP in CRC for 3D HCS, which identified hundreds of 

EMT probes, including lead probes that induce MET. In addition, the information from 

metabolomics and lead probes were used to generate a coherent relationship of pathways 

regulating CRC quasi-M-phenotype plasticity (Fig. 6). We anticipate that these tools and 

probes will be employed for both in vitro and in vivo studies of EMT-driven tumorigenesis 

that will facilitate novel strategies to treat cancer.

Methods

Metabolomics.

Tumor organoids were prepared as previously described at 20,000 cells/well. The tumor 

organoids were incubated for 72h then treated with DMSO or 7 for an additional 72h. 

Afterwards, eight tumor organoids per condition were collected into 1.5 mL microcentrifuge 

tubes. Tumor organoids and medium were separated by centrifugation. Medium was stored 

in −80°C until metabolomics analysis. Viable cell numbers in each sample were determined 

using trypan blue and used to normalize the metabolomics data. Prior to LC-MS analysis, 

samples were placed on ice and re-suspended with methanol:acetonitrile:water (5:3:2, v:v) 

at a concentration of 2×106 cells/mL. Media samples were extracted with the same solution 

at a dilution of 1:25 (v/v). Suspensions were vortexed continuously for 30 min at 4°C. 

Insoluble material was removed by centrifugation at 18,000 g for 10 min at 4°C and 

supernatants were isolated for metabolomics analysis by UHPLC-MS.

Analyses were performed as previously published57, 58. Briefly, the analytical platform 

employs a Vanquish UHPLC system (ThermoFisher) coupled online to a Q Exactive mass 

spectrometer (ThermoFisher). Samples were resolved over a Kinetex C18 column, 2.1 × 

150 mm, 1.7 μm particle size (Phenomenex, Torrance, CA) equipped with a guard column 

(SecurityGuard™ Ultracartridge – UHPLC C18 for 2.1 mm ID Columns – AJO-8782 – 

Phenomenex, Torrance, CA) using an aqueous phase (A) of water and 0.1% formic acid 

and a mobile phase (B) of acetonitrile and 0.1% formic acid for positive ion polarity 

mode, and an aqueous phase (A) of water:acetonitrile (95:5) with 1 mM ammonium acetate, 

and a mobile phase (B) of acetonitrile:water (95:5) with 1 mM ammonium acetate for 

negative ion polarity mode. Samples were eluted from the column using either an isocratic 

elution of 5% B flowed at 250 μL/min and 25°C or a gradient from 5% to 95% B over 

1 min, followed by an isocratic hold at 95% B for 2 min, flowed at 400 μL/min and 

45°C. The Q Exactive mass spectrometer (ThermoFisher) was operated independently in 

positive or negative ion mode, scanning in Full MS mode (2 μscans) from 60 to 900 

m/z at 70,000 resolution, with 4 kV spray voltage, 45 sheath gas, 15 auxiliary gas. 

Calibration was performed prior to analysis using the Pierce™ Positive and Negative 

Ion Calibration Solutions (ThermoFisher). Acquired data was then converted from .raw 

to .mzXML file format using Mass Matrix (Cleveland, OH). Samples were analyzed in 

randomized order with a technical mixture injected periodically through analysis to qualify 

instrument performance. Metabolite assignments, isotopologue distributions, and correction 

for expected natural abundances of deuterium, 13C, and 15N isotopes were performed using 
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MAVEN (Princeton, NJ)59. Experiments were replicated twice (n=6 for drug treatment and 

n=4 for cell line phenotypes).

3D High-Content Screening.

High-content screening of 3D tumor organoids was conducted in the University of Colorado 

Anschutz Medical Campus, School of Pharmacy HTS core facility and NCATS. At the HTS 

core facility, the Janus Automation System (PerkinElmer) was used to plate and treat cells, 

while the Labcyte Echo Acoustic Liquid Handling system was used at NCATS. The HTS 

core utilized CellCarrier Spheroid ULA 96-well plates (PerkinElmer) and seeded the sorted 

M-phenotype SW620 cells at 5,000 cells/well in a volume of 75 μL of growth medium. 

NCATS utilized Nexcelom3D ULA round bottom 384-well plates (Nexcelom, Lawrence, 

MA) and seeded at 2,000 cells/well in a volume of 40 μL of growth medium. Afterwards, 

plates were centrifuged at 1,000 RPM for 10 min and a final concentration of 2% Matrigel 

was added to each well, with slow dispensing speed, to reach a final volume of 100 μL/

well and 50 μL/well for the 96-well and 384-well format, respectively. Plates were then 

sealed with Breathable Film (Corning) and incubated at 37°C, 5% CO2, and 95% humidity 

control for 72h prior to drug treatment. The positive control (7) and library compounds were 

screened at 10 μM for 72h. Tumor organoids were then stained with 25 μM of Hoechst 

33342 (ThermoFisher) and incubated for 1–2h at 37°C and 5% CO2 prior to imaging.

Image acquisition and analysis was performed using the Opera Phenix HCS system 

(PerkinElmer). Images were acquired with a 5x air objective and using four channels 

(Brightfield, Hoechst 33342, RFP, GFP), with the same excitation and emission spectra 

as described above. A total of seven Z-slices were acquired each separated by 26.5 μm, 

which were used to generate a maximum projection image for subsequent analysis using the 

Harmony 4.0 software (PerkinElmer) or Columbus Image Analysis System (PerkinElmer). 

Briefly, the spheroid was located by using the Brightfield and Hoechst 33342 channels. 

Then, the mean RFP and GFP intensity for the tumor organoid was calculated. The data 

was analyzed and normalized plate-wise to corresponding intra-plate neutral controls (0.1% 

DMSO). A Z’-factor was calculated for each screening plate using an RFP/GFP ratio. Mean 

and standard deviation values of normalized RFP and GFP intensities were calculated from 

each compound library. For hits that induce MET, we performed dose-response experiments 

twice (n=3)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The dual-reporter allows for the identification and isolation of distinct EMT subtypes.
(a) Fluorescent dual-reporter plasmid map, VimPro-GFP (vimentin promoter reporter); 

EcadPro-RFP (E-cadherin promoter reporter). (b-d) Confocal images of SW620, A549, 

and MDA-MB-231 dual-reporter unsorted cell lines (20x water objective). Fluorescent 

channels: Blue (Hoechst 33342), Green (GFP), Red (RFP). (e-g) FACS distribution of the 

dual-reporter cell lines. (h-j) Representative western blots of sorted phenotypes using known 

EMT markers. Mesenchymal markers: vimentin and Twist. Epithelial markers: E-cadherin 

and ZO-1.
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Fig. 2. The mesenchymal phenotype has higher stemness and invasive potential.
(a) Ungated flow cytometry distribution of SW620, A549, and MDA-MB-231 cells by the 

immunofluorescent staining of CD44 and CD24 and quantification of the CD44/CD24 ratio 

of the different cell lines. (b) Unsorted cells gated for CD44high/CD24low were further 

categorized to each EMT phenotype based on their dual-reporter fluorescence (mean ± 

SEM). P-values were generated by two-way ANOVA. (c) Quantification of the stemness 

within the EMT phenotypes for the various cell lines. Data is normalized to the E-phenotype 

(mean ± SEM). P-values were calculated by one-way ANOVA. (d) Tumor cell invasion 

assay quantification of the different cell lines. Graphs show the ability of the tumor cells to 

close a scratch wound while embedded in Matrigel. Mean ± SD of a singlet experiment from 

quadruplicate wells. P-values were calculated by one-way ANOVA.
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Fig. 3. Isolated EMT cell populations have distinct metabotypes.
Isolated EMT phenotypes were assessed for metabotypes using LC-MS-based 

metabolomics. (a,b,c) Steady-state metabolomics reveals distinct metabotypes by PCA. 

(d,e,f) Hierarchical Clustering Analysis graphed as heat maps with metabolites (4 

replicates). The differences between the EMT phenotypes were exclusively described by 

PC1 and PC2, while PC3 described technical variability: SW620 (9.8%), A549 (10.2%), and 

MDA-MB-231 (12.6%). Each column of each heat map refers to an individual sample, with 

the same color code as the PCA as indicated in the figure key. Metabolite levels are plotted 

according to relative abundance using a color gradient from red to blue for highest to lowest 

level, respectively.
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Fig. 4. Treatment of M-phenotype CRC tumor organoids with 7 induces MET by metabolomics.
(a) PCA of SW620 tumor organoids comprised of E or M cells (4 replicates), and M cells 

treated with DMSO or 7 (6 replicates). To control for inherent batch variability stemming 

from independent dataset acquisition, metabolites in each sample were normalized to the 

median value in the respective M sample group. The metabolic differences shared between 

E and M+7 organoids relative to M are described by PC2. (b) The 25 metabolites with the 

largest magnitude of loading weights along PC2 were hierarchically clustered and graphed 

as a heat map. Metabolite levels are plotted according to relative abundance using a color 

gradient from red to blue for highest to lowest level, respectively. Each column refers to 

an individual sample, with the same color code as the PCA as indicated in the figure 

key. (c) Box-whisker plots are shown for the E and M levels of metabolites involved in 
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glycolysis, pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, and energy 

status. (d) Box-whisker plots are shown for these same metabolites in M-phenotype cells 

treated with DMSO or 7, Y-axis values represent raw unnormalized peak areas in arbitrary 

units. P-values were calculated using the Student’s t-test.
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Fig. 5. A diverse set of probes reverse EMT in a dose-dependent manner.
(a) Dose-response graphs of lead EMT probes that induce MET (mean ± SD). (b) 

Representative fluorescent images (10x air objective) of tumor organoids treated with 

ML324. (c) Quantification of the stemness in SW620 M-phenotype cells treated with lead 

probes. Data is normalized to DMSO control (mean ± SD). P-values were calculated by 

two-way ANOVA. (d) Tumor cell invasion of SW620 cells treated with lead probes. Data is 

normalized to DMSO control. Mean ± SD of a singlet experiment from quadruplicate wells. 

P-values were calculated by one-way ANOVA.
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Fig. 6. Mechanisms regulating mesenchymal cell EMP in CRC.
EMP is orchestrated by a series of cellular processes (black dashed arrows), including 

signal transduction (grey arrows), bioenergetics (green dashed arrows), epigenetic events 

(light blue arrows), and transcription factors (orange arrows). The processes regulating 

mesenchymal cell EMP have been elucidated using isolated SW620 M-phenotypes. Lead 

probes capable of inducing MET (red blunt headed arrow indicating target inhibition) and 

the results from the metabolomics studies were used to infer a coherent relationship between 

probe molecular targets and processes regulating mesenchymal cell plasticity in CRC.
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