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Abstract

The assumption that conservation of sequence implies the action of purifying selection is

central to diverse methodologies to infer functional importance. GC-biased gene conversion

(gBGC), a meiotic mismatch repair bias strongly favouring GC over AT, can in principle

mimic the action of selection, this being thought to be especially important in mammals. As

mutation is GC!AT biased, to demonstrate that gBGC does indeed cause false signals

requires evidence that an AT-rich residue is selectively optimal compared to its more GC-

rich allele, while showing also that the GC-rich alternative is conserved. We propose that

mammalian stop codon evolution provides a robust test case. Although in most taxa TAA is

the optimal stop codon, TGA is both abundant and conserved in mammalian genomes. We

show that this mammalian exceptionalism is well explained by gBGC mimicking purifying

selection and that TAA is the selectively optimal codon. Supportive of gBGC, we observe

(i) TGA usage trends are consistent at the focal stop codon and elsewhere (in UTR

sequences); (ii) that higher TGA usage and higher TAA!TGA substitution rates are pre-

dicted by a high recombination rate; and (iii) across species the difference in TAA <-> TGA

substitution rates between GC-rich and GC-poor genes is largest in genomes that possess

higher between-gene GC variation. TAA optimality is supported both by enrichment in highly

expressed genes and trends associated with effective population size. High TGA usage and

high TAA!TGA rates in mammals are thus consistent with gBGC’s predicted ability to

“drive” deleterious mutations and supports the hypothesis that sequence conservation need

not be indicative of purifying selection. A general trend for GC-rich trinucleotides to reside at

frequencies far above their mutational equilibrium in high recombining domains supports the

generality of these results.

IntroductionAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
If at a given site in DNA a mutation appears in a population and is eliminated by selection

owing to its deleterious effects, the site in question will tend to be more conserved between

species than comparable neutrally evolving sequence. This simple logic underpins the notion

that the functionality of sequence can be inferred from its degree of conservation—for
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discussion, see Ponting [1]. It is explicit in, for example, molecular evolutionary tests for puri-

fying selection (e.g., Ka/Ks test [2–5]) attempts to identify sites prone to disease-causing muta-

tions [6,7], and estimates of the proportion of DNA within a genome that is “functional” [8].

These methods assume, however, that no force other than selection can deterministically

act to alter the frequency of extant alleles. Over the past 2 decades, GC-biased gene conversion

(gBGC) has been established as a potentially important influence on allele frequencies [9],

mimicking selection [10–12]. The process of gBGC results from a repair bias favouring G/C

alleles over A/T alleles during GC:AT mismatch repair in a (commonly assumed to be meiotic)

heteroduplex [13,14]. In humans, at non-crossover gene conversion events 67.6% of GC:AT

mismatches favour the GC allele [15]. It is probably as a consequence of this bias, coupled with

the regionalisation of recombination domains over extended time periods, that mammals,

alongside birds and possibly other amniotes [16], have genomes with large (>300 Mb) blocks

of relatively homogeneous higher or lower GC content (isochores) [10,11,17]. Importantly,

assuming consistency of local recombination rates over evolutionary time and a correlation

between crossover rates and non-crossover rates [18], gBGC also can explain the relatively

strong correlation between GC content of these blocks and local recombination rates in mam-

mals [19–22] (but see also [23,24]). Consistent with such models, SNP analysis reveals the pre-

dicted fixation bias for AT!GC mutations in GC-rich domains, even after allowing for

nonequilibrium GC content [25,26].

While the human conversion bias is strong, defining the expected impact of gBGC on the

human genome is not trivial. For example, in any given generation, the net effect of bias is a

function of the length of the relevant conversion tracts, the commonality of AT:GC mis-

matches within the tracts and the rate of initiation of such tracts. Williams and colleagues [18]

estimate a mean rate in human non-crossover events (where there is the strong GC:AT bias) of

5.9 × 10−6 per bp per generation. More generally, Glemin and colleagues [27] estimate that the

net effect on substitutions is on average in the nearly neutral area. However, as recombination

occurs primarily within recombination hotspots approximately 2% of the human genome is

subject to strong gBGC in any generation [27]. Over the longer term, as the location of recom-

bination hotspots evolves rapidly, they predict that a large fraction of the genome is affected by

short episodes of strong gBGC [27]. Galtier [28] estimates that approximately 60% of all syn-

onymous AT!GC substitutions are influenced by gBGC.

Strong gene conversion is, however, not phylogenetically universal. In the best-resolved

instance, yeast, where meiotic tetrads can be directly studied, the bias is extremely weak at best.

The highest estimates suggests that the GC allele is the donor allele in 50.62% of cases [11,29].

Further analysis report a lesser bias [30], with a further large study reporting weak bias in the

opposite direction [31]. Meta-analysis of over 100,000 GC:AT mismatch resolutions in Saccha-
romyces cerevisiae determined a net segregation of 50.03%, only just in favour of the GC alleles

and not significantly different from 50:50 segregation [31]. To date, strong conversion has been

observed in only a few taxa [31], mammals [11], and birds [32,33], being the 2 well-described

exceptions, though weaker and nonregionalised gBGC is suspected in many taxa [21].

In terms of the population genetical influence, the action of gBGC is directly comparable to

meiotic drive (alias segregation distortion) [34]. In this sense, gBGC may be said to “drive”

alleles. In turn, such drive can mimic positive selection [35]. Importantly, it has previously

been noted that gBGC can (and in birds and mammals regularly does) create false signals of

positive selection by promoting the spread from rare to common of AT!GC mutations

[12,36–40]. However, as is implicit in all such models [41], gBGC could also mimic the action

of purifying selection. A GC allele at fixation mutating to a selectively advantageous AT allele

would be forced by gBGC to eliminate the AT allele, causing conservation of the deleterious

GC allele.
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Mimicry of positive selection owing to gBGC in mammals is thought to be common and, to

date, analyses have focused on the substitutional process, rather than the conservation process

[12,36–40]. We are aware of no clear example of gBGC causing false signals of purifying selec-

tion. A core difficulty is finding a circumstance where gBGC makes predictions different from

those of mutation bias and selectionist models. Differentiating between the effects of gBGC

and mutation bias tends to be relatively straightforward, as mutation is near-universally

GC!AT biased [42–46], while gBGC is biased in the opposite direction. More problematic is

the possibility that the GC state is also the selectively optimal state. If so, then both gBGC and

selection make the same predictions of conservation of GC and covariation with the recombi-

nation rate. Given Bengtsson’s argument that gBGC may be biased in this direction to counter

a deleterious GC!AT biased mutational process [47], it may well be unusual to have the selec-

tively optimal state being promoted by mutation bias but not by gBGC. Indeed, in Drosophila,

for example, “optimal” codons tend to end in G or C [48]. Codon optimality may also not be

adequate to define the direction of selection; however, as such selection may also be contingent

on the overall GC-richness of the sequence (owing to RNA structure effects [41]). Thus, the

core difficulty in establishing gBGC as a cause of false signals of purifying selection and of con-

servation of deleterious alleles is to identify a case where we can have confidence (and indepen-

dently verify) that the AT state is selectively optimal compared to its GC-richer allele.

Here, we suggest that mammalian stop codon usage may provide an exceptional test case.

Across all domains of life, the 3 stop codons, TAA, TGA, and TAG, are not used equally [49],

with TAA being commonly, if not universally, selectively favoured [49]. This is probably

owing, in large part, to selective avoidance of translational readthrough (TR). During TR, the

stop codon is missed by its cognate release factor [50] due to the misbinding of a near-cognate

tRNA [51,52], leading to the erroneous translation of the 30 UTR and the generation of poten-

tially deleterious protein products [53]. Each stop codon has a distinct intrinsic error rate such

that TGA>TAG>TAA in bacteria [54–59] and eukaryotes [55,60] (including humans [61]).

TR rate reduction in any given gene might thus be achieved by selection for TAA.

Evocation of such selection presumes that TR is usually deleterious [62,63]. This is likely as

the formation of C-terminal extensions cause energetic wastage [64] as well as problems with

protein stability [65–67], aggregation [68,69], and localisation [70,71]. Alternatively, in the

absence of another 30 in-frame stop codon, both the readthrough transcript and nascent pro-

tein are likely to be degraded when the translational machinery reaches the polyA+ tail

[72,73]. In addition to reducing TR costs, TAA also has several other benefits: There may be

selection for fast release of the ribosome to prevent ribosomal traffic jams [74], and it is robust

to 2 mistranscription events (TAA!TGA, TAA!TAG) while the 2 other stop codons are

resilient to just one (TGA!TAA, TAG!TAA).

It is then noteworthy that stop codon usage in mammals is different from that seen else-

where [49,75]: TGA is more often conserved than TAA [76] and, unusually, the substitution

rate of TAA!TGA is higher than the reverse [49]. Despite the fact that in humans, TAA is dis-

proportionately employed in highly expressed genes (HEGs) [77]; this signal of conservation

has been interpreted as evidence that purifying selection is operating to preserve TGA in mam-

mals [76]. Gene conversion would, however, oppose fixation of TGA!TAA mutations (while

also favouring TAA!TGA) and hence mimic purifying selection on TGA, even if selection

were operating in the opposite direction. Biased gene conversion, thought to be especially

influential in humans [15], could thus resolve the exceptionalism of TGA conservation in

mammals.

Here, we evaluate this suggestion. Duret and Galtier [11] provide a series of tests for differ-

entiating gBGC from selection, noting that the trend to the higher GC state should be corre-

lated with recombination and common to all sites regardless of functional status. We consider
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several analyses that examined these predictions finding all to be robustly supported. However,

to be confident that TAA underusage at the focal stop codon is indeed maladaptive, we also

need evidence that TAA is the optimal stop codon. We consider several tests, all of which sup-

port this. Finally, we show that complex mutational biases cannot fully explain the TAA/TGA

usage trends and confirm a general pattern for GC-rich trinucleotides to reside at frequencies

far above their mutational equilibria in GC-rich (high recombining) domains. The latter

results are consistent with broadscale patterns of conservation of GC-rich residues owing to

gBGC. The same analysis resolves the trinucleotide usage in domains not likely to be subject to

gBGC is as expected from a model of complex mutation bias. Indeed, these models predict

higher TGA usage than TAG usage in these domains. However, different trinucleotides of

same nucleotide content (such as TGA and TAG) have repeatable differences in the extent to

which they are subject to fixation bias in GC-rich isochores. The cause of these previously

unknown complex fixation biases is unresolved.

Results

Bias towards TGA usage is also evident in the 50 and 30 UTR

The gBGC hypothesis predicts that, because the AT!GC bias in the mismatch repair process

is nonspecific to terminating stop codons, stop codon usage at the focal stop need not be

greatly different to usage of the same trinucleotides seen elsewhere in the genome. To address

this, we analyse “stop” codon usage at the focal termination site and in human 50 and 30 UTR

sequences irrespective of reading frame. This controls for effects of transcription-coupled

mutational bias. A model supposing that TGA stop codons are optimal in mammals predicts

the patterns of stop codon usage as a function of GC content should not be seen in 50 and 30

UTR sequence.

We first establish how intronic GC, as a proxy for isochore GC, covaries with stop codon

usage at the focal termination codon. Consistent with the observations of Seoighe and col-

leagues [76] and Belinky and colleagues [49], we find TGA to be the most common stop in the

primate lineage (Fig 1). Not only is TGA the most common stop, but also its usage significantly

and positively covaries with intronic GC content in humans when both metrics are calculated

in 10% percentile bins (n = approximately 1,000 genes) (Spearman’s rank; p< 2.2 × 10–16,

rho = 0.99, n = 10). TAG usage is also correlated with intronic GC content (Spearman’s rank;

p = 0.0014, rho = 0.89, n = 10). TAA frequency is negatively correlated with intronic GC content

(Spearman’s rank; p< 2.2 × 10–16, rho = –0.99, n = 10). As predicted by a gBGC model, we see

the same trends in noncoding sequences. TAA frequency is negatively correlated with intronic

GC content in both 50 and 30 UTR sequence (Spearman’s rank; both p< 2.2 × 10–16, both rho =

–0.99, n = 10). TGA is positively correlated with intronic GC content in both 50 and 30 UTR

sequence (Spearman’s rank; both p< 2.2 × 10–16, both rho = 1, n = 10). TAG is uncorrelated

with intronic GC content in both 50 (Spearman’s rank; p = 0.10, rho = 0.55, n = 10) and 30 UTR

sequence (Spearman’s rank; p = 0.61, rho = 0.19, n = 10). Analysis on a gene-by-gene basis

(instead of using binned data) using linear regression models supports these conclusions, and

the same trends in stop codon usage can be seen in intronic sequence against GC3 (GC3 being

used in this circumstance as intronic stop usage predicted by intronic GC would be noninde-

pendent; S1 Table). This is strong evidence that the trends in canonical stop usage are approxi-

mately the same as the trends in stop usage outside of the canonical termination context.

High TGA usage is strongly predicted by high recombination rate

Biased gene conversion can explain a strong correlation between the local recombination rate

and substitution-derived GC� in primates [22,78], GC� here being the predicted fixation bias
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determined equilibrium value rather than a nonequilibrium observed value. Similarly, such a

model could predict high TGA usage in domains of high recombination. If TAA is optimal,

the selection would not predict this as Hill–Robertson interference predicts more efficient

selection with higher recombination rates.

To consider the effect of recombination on stop codon usage, we consider both local instan-

taneous measures of recombination (from the HapMap 2 project, see Methods) and broader

scale analysis. The disadvantage of the former analysis is that local recombination rates are not

stationary over evolution time so current estimates need not reflect the past history that influ-

ences stop codon usage. One problem with the latter is low samples size. Indeed, genome seg-

ments with consistently high recombination rates that could make for an ideal test are the

pseudoautosomal regions (PAR1 and PAR2). However, there are few pseudoautosomal genes.

As predicted by the gBGC model, these regions have high GC content relative to the chromo-

some average, reportedly 48% in PAR1 compared to 39% in the rest of the X chromosome

[79]. In support of the gBGC model explaining high TGA usage, we also find that TGA is used

much more often in PAR1 genes (71.4%, using 1 candidate transcript per gene annotated in

this region) compared to the genome-wide average (52.4%). While these are not significantly

different (P> 0.05), statistical comparison of TGA usage between these 2 values is, however,

underpowered due to there being a low number of annotated genes which we may extract

(n = 14).

A better “gross” scale analysis is to consider chromosome size as smaller chromosomes are

associated with higher recombination rate per bp [21]. As predicted by the gBGC model in the

human genome, we find autosomal size (bp length) to be negatively associated with GC con-

tent (Spearman’s rank; p = 0.0078, rho = –0.56, n = 22) and TGA usage (Spearman’s rank;

p = 0.0094, rho = –0.55, n = 22) (S1 Fig).

To test whether local recombination rate is predictive of stop codon usage in humans, we

employ logistic regression modelling considering all genes, using local recombination rate as

the independent variable. Here, we consider the recombination rate which for humans is valid

as gBGC-associated non-crossover and crossover events are highly correlated [18]. We find

Fig 1. Stop codon frequencies (relative to the usage of all stops) at the canonical stop site, in the 50 UTR, and in the 30 UTR at 10 equal-sized bins of

various intronic GC contents in the genome. TAA frequency is negatively correlated with intronic GC content in all 3 sequences (Spearman’s rank; all

p< 2.2 × 10–16, all rho = –0.99, n = 10). TGA is positively correlated with intronic GC content in all 3 sequences (Spearman’s rank; all p< 2.2 × 10–16,

rho = 0.99 for CDS, rho = 1 for both UTRs, n = 10). TAG usage is positively correlated with intronic GC content at the canonical stop site (Spearman’s rank;

p = 0.0014, rho = 0.89, n = 10) but is uncorrelated with intronic GC content in both 50 (Spearman’s rank; p = 0.10, rho = 0.55, n = 10) and 30 UTR sequences

(Spearman’s rank; p = 0.61, rho = 0.19, n = 10). Underlying data can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3001588.g001
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that high recombination rate is significantly predictive of higher TGA usage (coeffi-

cient = 0.017, p = 0.023) and lower TAA usage (coefficient = –0.046, p = 1 × 10–6), these being

the directions predicted by the gBGC hypothesis. Indeed, we find the same trends in non-

codingAU : PleasedefineCDSinthesentenceIndeed;wefindthesametrendsinnon � CDS . . .sequences when using linear models to predict trinucleotide frequencies as TAA, TGA,

and TAG may appear more than once (unlike at the canonical stop). High recombination rate

significantly predicts higher TGA trinucleotide frequency in the 50 UTR (coefficient = 0.0032,

p = 0.012), in the 30 UTR (coefficient = 0.0053, p< 2.2 × 10–16), and in intronic sequence (coef-

ficient = 0.0054, p< 2.2 × 10–16). It also significantly predicts lower TAA trinucleotide fre-

quency in the 30 UTR (coefficient = –0.0050, p = 3.5 × 10–14) and in intronic sequence

(coefficient = –0.0043, p< 2.2 × 10–16), but not in the 50 UTR where the regression coefficient

is negative but not significant (coefficient = –0.0011, p = 0.28). These results are all consistent

with gBGC promoting TGA over TAA in domains of high recombination both at the focal

stop codon and elsewhere.

Net flux to TGA stop codons is highest in GC-rich and highly recombining

genes

(i) Increased TAA!TGA substitution in GC-rich regions is common to mammalian

and avian lineages, but not lineages that possess weak gBGC. The above considers

observed patterns of usage. We can also consider evidence from recent substitution events.

Here, we consider flux, meaning the substitution rate from state A to state B (e.g.,

TAA!TGA) per occurrence of state A in the ancestral sequence. To calculate flux rates, we

consider species trios, assign an ancestral state to the internal node by maximum likelihood,

and calculate rates of change from this ancestral state to a derived state per incidence of the

ancestral state. This is comparable to a prior method [49], excepting for our use of likelihood

instead of parsimony.

The gBGC hypotheses predicts that TAA!TGA flux in the mammalian lineage should be

highest in GC-rich isochores. More generally, it predicts that in species with gBGC strong and

regionalised enough to cause high variation between genes in GC content, that the

TAA!TGA flux should be especially accentuated in GC-rich domains. By contrast, species

less influenced by gBGC should not show similar accentuation of TAA!TGA flux. We thus

test whether the intragenomic difference in TAA<!TGA flux between the highest and lowest

by GC is greater when the difference between the mean GC of the 2 partitions (high GC and

low GC) is itself greater or when the intragenomic variance in GC is higher.

From the TAA!TGA and TGA!TAA flux rates, we may then adapt the standard formu-

lae (e.g., as used by Long and colleagues [44], see also Li [80] and Bulmer [81]) to calculate

TGA content from these flux rates alone, predicted TGA usage (pTGA) (see Methods). This

provides a single metric of the relative substitution rate between the 2 stop codons. This we do

for the top (GC-rich) and bottom (GC-poor) 50% of genes by GC content, assayed by calculat-

ing the intronic GC content of each orthologue from 1 candidate species from the trio, to

determine whether the TAA!TGA rate increases with GC pressure.

We calculate the difference in pTGA between GC-rich and GC-poor genes for 4 mamma-

lian set of species trios (within primates, mice, dogs, and cows) and 4 nonmammalian species

trios (birds, nematodes, fruitflies, and plants) (see https://github.com/ath32/gBGC for species

lists). To assay the extent of pTGA deviation, we calculate (Observed-Expected)/Expected

((O-E)/E) where O is pTGA of the GC-rich set and E is that for the GC-poor set of genes. To

assign significance, we compare observed pTGA deviation scores to null simulations that cal-

culate pTGA for 2 null groups of genes according to the net genomic TAA!TGA and

TGA!TAA rates (see Methods).
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Consistent with the hypothesis that gBGC drives high TGA usage in GC-rich isochores,

pTGA is higher in GC-rich genes than GC-poor genes across the 4 mammalian lineages. The

difference between the gene groups is greater than expected by chance in all 4 cases (primates:

p = 0.014, dog: p = 0.040, cow: p< 0.0001, mouse: p< 0.0001). Of the nonmammalian line-

ages, pTGA in GC-rich genes exceeds pTGA in GC-poor genes in birds (p = 0.174), flies

(p = 0.427), and nematodes (p = 0.231) but none of the observed differences are significantly

different to null. Possibly related to the selfing biology of Arabidopsis [82], pTGA is lower in

GC-rich genes than GC-poor genes (nevertheless, p = 1 using the same test as the other line-

ages, Fig 2H).

The prediction of the gBGC model is that the between-species variation in intragenomic

flux difference should be predicted by the extent of GC variation within the genome. For this

analysis, we calculate GC variation as the difference in mean intronic GC content between the

2 sets of genes analysed in Fig 2 and call this GC. We also estimate the variance in GC3

Fig 2. AU : AbbreviationlisthavebeencompiledforthoseusedinFigs2to4; 6to8; S2; S5; andS6:Pleaseverifythatallentriesarecorrect:pTGA derived from TAA!TGA and TGA!TAA flux for the top 50% of genes by GC content and bottom 50% of genes by GC content in 4

mammalian (a–d) and 4 nonmammalian (e–h) lineages. pTGA is calculated as 1/(1+(TGA!TAA/TAA!TGA)) and hence represents the balance between

the 2 dominant stop codon flux events. Error bars show standard deviation calculated from 10,000 bootstraps generated by resampling genes in each bin with

replacement. Underlying data can be found in S2 Data. Trios analysed are primates (a), dogs (b), cows (c), mice (d), birds (e), nematodes (f), fruit flies (g), and

plants (h). Species lists are available at https://github.com/ath32/gBGC.

https://doi.org/10.1371/journal.pbio.3001588.g002
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between all genes. Consistent with the gBGC hypothesis for explaining TGA usage trends, ana-

lysing our 8 lineages we find pTGA deviation is significantly correlated with both GC (Spear-

man’s rank; p = 0.046, rho = 0.74, n = 8) and genomic variance in coding sequence GC3

(Spearman’s rank; p = 0.028, rho = 0.79, n = 8) (Fig 3).

This suggests that species with pronounced TAA!TGA flux in their GC-rich domains

(mammals) also tend to have more variation between their GC-richest and GC-poorest genes.

Broadly, these results accord with what is known about gBGC across these species. The (O-E)/

E values are higher in mammals (primates = 0.221, cows = 0.365, dogs = 0.213, mice = 0.700)

and birds (birds = 0.154) than in invertebrates (nematodes = 0.015, fly = 0.097) and plants

(Arabidopsis = –0.318). Birds are expected to resemble mammals as they too have pronounced

gBGC [11,83]. However, small chromosomes and associated high recombination rates proba-

bly mean that most genes in birds are subject to considerable gBGC, it being notable that the

predicted pTGA is high for both gene groups (Fig 2E). Non-isochore-containing genomes of

invertebrates may possess AT!GC-biased gene conversion, albeit with much weaker

[31,41,84] or less regionalised effects. Arabidopsis being an almost obligate inbreeder is

expected to be most affected by mutation bias and least affected by gBGC [82], although it has

yet to reach equilibrium [82].

(ii) TAA!TGA flux is higher in highly recombining genes than lowly recombining

genes. Just as gBGC predicts TAA!TGA flux to positively covary with GC content, as gBGC

is coupled tightly to recombination, it also predicts a positive relationship with recombination

rate. To assess this, using data from the HapMap2 project, we first define highly recombining

genes (HRGs) as the top 50% of genes by recombination rate and lowly recombining genes

(LRGs) as the bottom 50%. Adapting our stop codon flux methodology, we then calculated the

flux rates for TAA!TGA and TGA!TAA for HRGs and LRGs and used these rates to

Fig 3. pTGA deviation between the top 50% and bottom 50% of genes by GC content as a function of (a) the difference in GC content between the 2 gene bins,

“delta GC,” and (b) coding sequence GC3 content variance across a sample of 4 mammalian and 4 nonmammalian lineages. pTGA is calculated as 1/(1

+(TGA!TAA/TAA!TGA)) and hence represents the balance between the 2 dominant stop codon flux events. pTGA deviation is calculated as (O-E)/E where

O is the pTGA score of GC-rich genes and E is the pTGA score of GC-poor genes. pTGA deviation is positively correlated with both delta GC (Spearman’s rank;

p = 0.046, rho = 0.74, n = 8) and GC3 variance (Spearman’s rank; p = 0.028, rho = 0.79, n = 8). Underlying data can be found in S3 Data. (O-E)/E, (Observed-

Expected)/Expected; pTGA, predicted TGA usage.

https://doi.org/10.1371/journal.pbio.3001588.g003
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calculate pTGA for both groups (Fig 4). Significance was once again determined by comparing

the observed pTGA deviation to those observed in null simulations that assume uniform geno-

mic TAA!TGA and TGA!TAA rates. Consistent with the hypothesis that gBGC drives high

TGA usage in highly recombining regions, pTGA is higher in HRGs than LRGs, (p = 0.049).

The pTGA deviation score between HRGs and LRGs is 0.172, slightly less than observed

between GC-rich and GC-poor genes in the same genome (0.221).

No evidence to support TGA optimality in eukaryotes

The evidence from nontermination sites (i.e., UTRs, introns) supports the hypothesis that

whatever causes unusual TGA usage trends in most mammals, it cannot be explained by selec-

tion on the focal termination codon alone. Also, as predicted by the gBGC model, the

TAA!TGA flux is stronger in domains of high GC/high recombination. Nonetheless, to have

a case that gBGC acts against the direction of selection, we need also to be able to confident

that selection does not prefer TGA. Outside of the focal termination codon, this is hard to

assay but at the focal stop codon, we can gather further evidence.

First, selection on any genic feature is classically assumed to predict that usage of that fea-

ture will be most common in HEGs [62,85,86] as selection is strongest in HEGs. Overusage of

“optimal” codons in HEGs is a case in point [87,88]. In the current context, the opportunity

for deleterious readthrough (or other stop codon error) should scale linearly with the amount

of protein product, so protein levels are a good metric for assaying strength of selection on the

stop codon. Hence, if TGA usage were to be explained by selection, TGA usage is predicted to

positively correlate with protein level. Prior data appeared to contradict this, suggesting that

human HEGs (the opposite being lowly expressed gene (LEGs)) preferentially use TAA stop

codons [77]. However, possible covariation between expression level and GC content [89–91]

could disturb the ability to make correct inference. We ask whether TAA or TGA are overem-

ployed in HEGs after controlling for GC content.

Second, the efficiency of both selection [92,93] and gBGC [28,32] are expected to vary with

the effective population size (Ne), both being more effective when Ne is high. The gBGC effect is

however complicated by the fact that selection may also modify the effect of gBGC, reducing its

impact if deleterious [28], such selection in turn also being dependent on Ne. Most evidence sug-

gests that gBGC is more influential when Ne is high (but see also [94]). However, we know the

direction of gBGC, and it must act against TAA. Thus, across eukaryotes our expectation is that

if TAA is optimal (and gBGC is relatively less important), its usage will increase with Ne. How-

ever, if gBGC is unexpectedly important outside of mammals or if TGA is optimal then TGA will

increase with Ne. We previously observed this not to be the case, with TAA increasing with Ne

[95]. However, the possibility remains that for LEGs TGA might be optimal and causing the

focal termination codon trends (despite similar behaviour in 30 UTR). We test this extension.

(i) High expression level strongly predicts high TAA usage controlling for GC. To test

the predictive power of expression level on stop codon usage, we consider a series of logistic

regression models. Each gene was assigned a 1 (present) or 0 (absent) in 3 different columns,

TAA, TGA, and TAG, depending on its stop codon identity. These scores were included as the

dependent variable in several logistic regression models, with protein abundance (for which

we employ the natural log to promote a normal distribution) an independent predictor. We

control for GC content by fitting multivariate models that include GC3 content (Table 1). Col-

linearity between GC content and protein abundance need not be a concern as the computed

variance inflation factors are very low (less than 1.1 for all models).

Consistent with prior observations of stop codon covariance with GC content [77,96], we

find TAA usage to be negatively (indicated by the sign of the coefficient), and TGA to be
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positively, correlated with GC3 in all 4 species trios tested. By the same coefficient analysis, we

find that high TAA stop codon usage is predicted by high expression level in all 4 mammalian

lineages [77], contra to the possibility that TGA has become the favoured stop codon in mam-

mals. Both protein abundance and GC3 are consistently significant predictors of stop codon

Fig 4. pTGA derived from TAA!TGA and TGA!TAA flux for the top 50% of genes by recombination rate

(HRGs) and bottom 50% of genes by recombination rate (LRGs) in the human genome. pTGA is calculated as 1/(1

+(TGA!TAA/TAA!TGA)) and hence represents the balance between the 2 dominant stop codon flux events. Error

bars show standard deviation calculated from 10,000 bootstraps generated by resampling genes in each bin with

replacement. Underlying data can be found in S4 Data. HRG, highly recombining gene; LRG, lowly recombining gene;

pTGA, predicted TGA usage.

https://doi.org/10.1371/journal.pbio.3001588.g004

Table 1. Results from multivariate logistic regression analysis that assess the extent to which gene expression and gene coding sequence GC content can predict

stop codon usage in mammalian genes.

Stop Parameter Primates Dog Cow Mouse

Coef. Std. error p-value Coef. Std. Error p-value Coef. Std. Error p-value Coef. Std. error p-value

TAA Log (PxAbundance) 0.023 0.007 6E-4 0.071 0.014 4E-7 0.071 0.008 2E-16 0.013 0.006 0.039

GC3 –0.038 0.001 2E-16 –0.033 0.002 2E-16 –0.040 0.002 2E-16 –0.034 0.002 2E-16

TGA Log (PxAbundance) –0.015 0.006 0.009 –0.039 0.012 0.001 –0.050 0.007 3E-13 –0.006 0.005 0.273

GC3 0.019 0.001 2E-16 0.018 0.002 2E-16 0.022 0.001 2E-16 0.019 0.001 2E-16

https://doi.org/10.1371/journal.pbio.3001588.t001
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usage in our 3 mammalian lineages. In 8/8 models, the coefficients of protein abundance are

consistent with TAA preference over TGA in HEGs. Assuming that gene expression levels in

orthologous genes are stable, stop codon usage reliably informs us of the stop that is preferred

by selection.

(ii) Across taxa, lowly expressed genes also prefer TAA over TGA. While the above

analyses provide support for the hypothesis that TAA, and not TGA, is preferred in HEGs,

there is however, a further possibility, namely, that while TAA may well be preferred by HEGs,

TGA may be optimal in LEGs. If this were to be the case, TGA might increase in genome-wide

usage if most genes are not “highly” expressed. This we test by phylogenetically generalized

least squares (PGLS) regression analysis that compares TGA enrichment (at the primary stop

codon compared to downstream, to remove any GC covariance) in LEGs to effective popula-

tion size (Ne) for several eukaryotic species controlling for phylogenetic topology (see PGLS in

Methods).

We find Ne to be a significant negative predictor of TGA enrichment in LEGs (PGLS; esti-

mate = –0.060, p = 0.012). By contrast, TAA enrichment in LEGs is positively, if not signifi-

cantly, associated with Ne (PGLS; estimate = 0.073, p = 0.078). When we consider HEGs, Ne

positively and significantly correlates with TAA enrichment (PGLS; estimate = 0.059,

p = 0.0014) but is negatively, if not significantly, associated with TGA enrichment (PGLS; esti-

mate = –0.044, p = 0.17). These results are not consistent with a selective preference for TGA

stop codons at any expression level. These same results also indicate that gBGC is not an

important force in most of the species examined as gBGC should also be more influential

when Ne is high and force increased usage of TGA [32].

TAA!TGA flux cannot be explained by mutation bias in humans

The above evidence indicates that whatever causes TGA conservation, it is neither specific to

the termination site nor explained by selection for termination efficiency at the termination

site. In principle, the trends we have seen could be explained by mutation bias. However,

mutation bias tends to be GC!AT biased so should favour TAA not TGA [42–46]. Nonethe-

less, the possibility remains either that some more complex k-mer bias might exist or that

mutation bias varies by isochore. Indeed, nucleotide pools can vary through the cell cycle

potentially altering local mutation bias [97]. Moreover, CpG to TpG rates are high in humans

[98–101], and thus creation of new stop codons away from the focal stop (e.g., within 30 UTR)

via CpGA to TpGA could be common. We could imagine, for example, that focal stop codons

commonly mutate to a sense codon this being rescued by a 30 UTR preexisting stop. If so, stop

codon usage could be determined by mutational processes away from the focal termination

codon. The same model does not however predict TAA!TGA flux at orthologous termina-

tion sites. That CpG deamination rate may also correlate negatively with GC content [101]

also renders this an unlikely explanation.

We consider the relative rates of human germline de novo mutations derived from family

trio data [102]. From the mutation rate of each class of mutational event, we calculate rates per

occurrence of the ancestral nucleotide and generate a mutational matrix. From this, we calcu-

late the neutral equilibrium frequencies of all nucleotides (denoted N�), dinucleotides, or

codons (see Methods). From N� predictions, we may predict the equilibrium GC frequency

(GC�). Under the assumption that nucleotide contents are stationary, deviation of the

observed nucleotide content from predicted equilibrium provides an indication of the direc-

tion of any fixation bias [44]. However, equilibrium status is disputed [103] and the predicted

equilibrium can vary with complexity of the mutational model (mononucleotide, dinucleotide,

etc.).
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Consistent with previous analyses [42–46], from a dataset of 108,778 observed de novo

mutations, we find an overall GC!AT skewed mutational profile that hence fails to predict

observed stop usage (S2 Table). Might, however, variation in mutation bias between isochores

explain increasing usage of TGA and decreasing usage of TAA as domains become more GC-

rich? To assay whether the above mutational profile covaries with intronic GC in a similar way

to stop codon flux, we first repeat the above analysis for mutations found in different isochore

GC contents (see also Smith and colleagues [46]). For each mononucleotide change, the local

GC content (10 kb window) was calculated. Mutations were then ordered by GC and split into

10% percentile bins of equal size (approximately 10,000 mutations each). From each of these

bins and their associated mutational spectra and nucleotide contents, we recalculate GC� and

TGA� (Fig 5, orange points). We find our GC� and TGA� predictions for each bin to be consis-

tent between isochores of different GC content, indicating that mutation bias is not driving

the trends we see in TGA usage nor TAA!TGA stop codon flux—and see also Smith and col-

leagues [46]. If anything, mutation bias is increasingly GC!AT biased at high GC as the local

GC content around de novo mutations is negatively correlated with their predicted GC�

(Spearman’s rank; p = 0.024, rho = –0.72, n = 10) and TGA� (Spearman’s rank; p = 0.035, rho

= –0.68, n = 10).

The above approach makes no allowances for more complex dinucleotide effects nor the

possibility that some stop codons might be generated by mutations within CDS or within 30

UTR sequences when the focal stop mutates. Given that there is hypermutability at CpG resi-

dues, leading to TpG residues [98–101] that are likely to affect the mutation-drift equilibrium

frequency of TGA, we expand our analysis to consider the 16 × 16 dinucleotide mutational

matrix. We also apply a model in which we generate null sequences from the equilibrium

mutational matrix in a Markov process, hence allowing for within UTR mutational events. We

consider the relative frequencies of the 3 stop codons in such sequence and how they vary by

Fig 5. Predicted GC equilibrium (GC�) and relative TGA equilibrium (TGA�) frequencies across isochore GC contents derived from mononucleotide (orange)

and dinucleotide (purple) mutational matrices. Standard deviations for the datapoints are minuscule and hence error bars are not shown (approximately 0.5%

for mononucleotide estimates of TGA� and GC�, approximately 0.5% for dinucleotide estimates of TGA�, and approximately 0.1 for dinucleotide estimates of

GC�). Underlying data can be found in S5 Data.

https://doi.org/10.1371/journal.pbio.3001588.g005
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local GC. Consistent with the mononucleotide results, we find dinucleotide-derived GC� and

TGA� to be lower than observed in the genome (40.9% and 52.4%, respectively) and, impor-

tantly, flat across GC contents (Fig 5, purple points). While TGA� derived from the dinucleo-

tide matrix exceeds TGA� derived from the mononucleotide matrix, this is probably as a

consequence of permitting CpG hypermutation generating potentially premature stop codons.

We conclude that the absence of evidence for increasing GC� with GC content strongly argues

against mutation bias as an explanation for higher TAA!TGA flux and higher TGA usage in

GC-rich isochores.

Mutation bias predicts trinucleotide usage in GC poor domains and TAG

rarity

Above we have generated a mutational expectation for all trinucleotides but focused on TGA.

This allows us to ask a series of further questions. For example, for all trinucleotides might a

mutational null match what we see in GC-poor domains, as expected if these are less subject to

gBGC? In addition, can mutation explain any trends in stop codon usage in GC-poor domains,

for example, the observation that TAG is underused compared with TGA?

We find that observed trinucleotide frequencies from GC-poor sequences (the bottom 20%

of genes by GC content) are accurately predicted by a GC-poor mutational matrix (derived

from the bottom 20% of de novo mutations by surrounding 10 kb GC content) for all sequence

that is not CDS (r2 > 0.9; Fig 6). This strongly supports the hypothesis that mutation bias

alone may explain trinucleotide trends in GC-poor domains outside of the coding context. In

addition, while one can always consider more complex k-mer–dependent mutational models,

our extension from dinucleotides rates appears to be robust. Importantly, in such GC-poor

isochores TAG equilibrium is lower than TGA equilibrium (S2 Fig). This indicates mutation

bias operates differently on the 2, going some way to explain why TAG and TGA behave

differently.

gBGC predicts deviations from mutational expectations for all

trinucleotides

The previous analysis suggests that in low GC domains, k-mer trends are well predicted by

mutation bias alone (Fig 6). By contrast, in GC-rich domains, there exists a substitutional bias

to TGA that is incompatible with mutation bias alone (Fig 5). Is the TAA!TGA fixation bias

in high GC domains illustrative of a broader pattern? Were gBGC mimicking purifying selec-

tion we expect that GC-rich trinucleotides should be most deviant from their mutational null

in GC-rich domains. We hence extend the above analysis to consider the extent to which all

trinucleotides deviate from mutational equilibrium as a function of their isochore of residence.

In this instance, however, we cannot be confident that the GC-rich residue is selectively delete-

rious (as with TGA). Moreover, even when optimal codons are known to be GC ending selec-

tion at exon ends can commonly be in the opposite direction to enable accurate splicing [104],

adding complexity.

Using mutational profiles from the relevant isochore, we calculate trinucleotide frequencies

that represent our mutational null and compare these to observed trinucleotide frequencies in

the genome. To test the hypothesis that a fixation “boost” in GC-rich isochores acts differently

on GC-rich trinucleotides, we calculate a fixation boost metric. Specifically, we first calculate a

(O-E)/E score for the top 20% of sequences by GC content, where expected is the mutational

equilibrium frequency derived from the top 20% of de novo mutations assaying their sur-

rounding 10 kb GC content. This metric we term deviation 1, or D1 for short. We then repeat

this for the bottom 20% of sequences by GC content using their equivalent set of de novo
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mutations, receiving D2. Given the above results (Fig 6), we expect the bottom 20% to be clos-

est to mutation equilibrium, hence having a low D2 score. By contrast, if there is a GC-corre-

lated fixation bias, D1 should be high for the GC-rich trinucleotides. We thus consider, for

each trinucleotide, the difference between D1 and D2 values, this reflecting the shift in fixation

process associated with domains of high GC. Using this metric, trinucleotides may be ranked

by the “boost” they receive from GC-coupled fixation bias within their GC class. Thus, we clas-

sify all trinucleotides into 1 of 4 classes by GC% (0%, 33%, 66%, 100%). Within the 0 class are

trinucleotides with no G or C (e.g., AAA, ATA, TTA) and within the 100% class by contrast

are those with no A or T (e.g., GGC, GGG), for example.

We find that the more GC-rich the class of trinucleotides, the more they exceed their muta-

tional equilibrium in high GC isochores (0%< 33%< 66%< 100%) (for statistics, see Fig 7).

This strongly supports the notion that the trinucleotide content of isochores derives from a fix-

ation bias, rather than mutation bias, favouring GC residues, as gBGC would predict. More

Fig 6. Observed (a) CDS, (b) 50 UTR, (c) 30 UTR, (d) intronic, (e) ncRNA, (f) CRE trinucleotide frequencies as a function of the expected frequencies of the

same trinucleotides derived from a dinucleotide mutational matrix. Expected frequencies were calculated simulated DNA sequences derived from dinucleotide

equilibrium frequencies. Dinucleotide frequencies were calculated from a sample of de novo mutations taking place in the bottom 20% of sequences by GC content

to avoid potential GC-coupled fixation biases. Expected frequencies accurately predict what is seen in real CDS sequence (linear regression; p = 7.7 × 10−15, adjusted

r2 = 0.62), 50 UTR sequence (linear regression; p< 2.2 × 10–16, adjusted r2 = 0.90), 30 UTR sequence (linear regression; p< 2.2 × 10–16, adjusted r2 = 0.91), intronic

sequence (linear regression; p< 2.2 × 10–16, adjusted r2 = 0.90), ncRNA sequence (linear regression; p< 2.2 × 10–16, adjusted r2 = 0.90), and CRE sequence (linear

regression; p< 2.2 × 10–16, adjusted r2 = 0.93). Underlying data can be found in S6 Data. CDS, coding sequenceAU : PleasedefineCDSinFigs6and7andS2; S5; andS6Figsabbreviationlistsifthisindeedisanabbreviation:; CRE, cis-regulatory element; ncRNA, noncoding RNA.

https://doi.org/10.1371/journal.pbio.3001588.g006
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generally then, we have strong reason to suspect the gBGC-mediated fixation bias causes false

signals of purifying selection at GC-rich residues in GC-rich isochores that extend far beyond

the specific context of TAA!TGA flux.

We assess this possibility a second way by considering flux between all 2-fold synonymous

codon pairs, all ending G:A or C:T, in genes of increasing recombination rate. Considering all

2-fold synonymous codon pairs en masse, we find that the flux to the GC-rich codons are

most strongly favoured at high recombination rates, consistent with possible gBGC action (S3

Fig). Before Bonferroni correction, this is true for 10 of the 12 two-fold synonymous codon

pairs individually (Binomial test with null probability = 0.5; p = 0.039). This too is supportive

of a gBGC-mediated fixation bias that is much more general than the stop codon example.

Unlike with TAA and TGA flux, however, we cannot in these examples be sure which (if

either) is the selectively optimal state. The 2 exceptions are Leucine (TTA<->TTG) and Gluta-

mine (CAA<->CAG) where the ratio of flux increasing GC and decreasing GC is invariant to

recombination rate (S4 Fig). That both CAA<->CAG and TAA<->TAG are unrepresenta-

tive of the more general trend is noteworthy.

Fig 7. Deviation scores, (O-E)/E, describing the difference in GC-coupled fixation “boost” for the 4 GC classes of trinucleotides.

Deviation between fixed and mutational equilibrium frequencies for each trinucleotide in the top 20% of sequences by GC content, D1, was

calculated as (O-E)/E, where expected is the mutational equilibrium frequency. This was repeated for the bottom 20% of sequences by GC

content to receive D2. As we predict GC-rich sequences to be subjected to stronger biased gene conversion, we predict D1>D2. To

compare D1 and D2, we once again calculate (O-E)/E, which we dub the GC-coupled fixation “boost”. In all sequences, GC content is

positively correlated with this “boost” metric (Spearman’s rank; all p< 2.2 × 10–16; rho = 0.92 in CDS, rho = 0.94 in 50 UTR, rho = 0.90 in 30

UTR, rho = 0.87 in introns, rho = 0.92 in ncRNA, rho = 0.93 in CREs, n = 64 in all tests). Underlying data can be found in S7 Data. CDS,

coding sequence; CRE, cis-regulatory element; ncRNA, noncoding RNA; (O-E)/E, (Observed-Expected)/Expected.

https://doi.org/10.1371/journal.pbio.3001588.g007
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Trinucleotides have stereotypical fixation biases

We have observed that high TGA usage and high TAA!TGA fixation bias is especially com-

mon in GC-rich isochores, but TAG usage does not behave in the same way. Is this difference

between 2 GC-matched trinucleotides particular to TAG and TGA? The CAA!CAG result

would suggest not. We can address this by considering within GC-class variation in the fixa-

tion “boost” scores calculated above.

Not only do we find substantial variation between trinucleotides of the same class (S5 Fig),

but also we find the ranking within each GC class to be remarkably consistent between

sequence types (50 UTR, 30 UTR, noncoding RNA (ncRNAAU : PleasenotethatncRNAhasbeendefinedasnoncodingRNAatitsfirstmentioninthesentenceNotonlydowefindsubstantialvariationbetween:::Pleasecorrectifnecessary:), cis-regulatory elements (CREs),

introns) (Fig 8). We exclude coding sequence from this analysis to negate the impacts of cod-

ing selection. Within the most populated GC classes (33% and 66%), ranks are significantly

Fig 8. Correlation analysis of trinucleotide ranks (by their gBGC “boost” metric) within the 4 GC classes (a) 0%, (b) 33%, (c) 66%, and (d) 100%. Within the

33% and 66% GC classes, ranks are significantly correlated in all comparisons (p< 0.01). This is not true of the 0% and 100% GC classes, correlation analyses

within which are underpowered (n = 8 trinucleotides in each class compared to 24 in the 33% and 66% classes). Correlation statistics were calculated using

Pearson’s method. Underlying data can be found in S8 Data. CRE, cis-regulatory element; gBGC, GC-biased gene conversion; ncRNA, noncoding RNA.

https://doi.org/10.1371/journal.pbio.3001588.g008
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correlated in all comparisons (Pearson’s method; all p< 0.01). This supports the hypothesis of

a consistent isochore dependent fixation bias that acts differently on different trinucleotides of

the same GC content. We note that the nonexpressed CRE versus intron comparison gives

exceptionally high repeatability indicating that transcription coupled repair/mutation proba-

bly does not explain these trends.

Within the TAG/TGA case study, we find TAG to be less “boosted” than other A, G, T-con-

taining trinucleotides, second only to GTA trinucleotides (S6A Fig). By contrast, TGA is the

most promoted by fixation bias, with the one exception of AGT in the 50 UTR (S6A Fig). Fixa-

tion bias correlated with GC-content, hence appears to contribute to the differences in fre-

quency between TGA and TAG trinucleotides outside of, and possibly also within, the stop

codon context. That TCA also receives a consistent higher GC-coupled fixation boost than

TAC (S6B Fig) favours that the fixation bias is dependent on nucleotide context rather than

stop codon functionality. We also recall that while high recombination rate favours flux to the

GC-rich state at 2-fold degenerate sites, Glutamine (CAA!CAG) is one exception to this rule

(S4 Fig). If CAA!CAG is suffering a similar fate to TAA!TAG, this too would be supportive

of a general nucleotide context-dependent trend in fixation bias affecting TAG rather than

selection for termination efficiency.

Discussion

The assumption that sequence conservation implies purifying selection and hence optimality

of the preserved sequence underpins many enterprises, from medical diagnostics to evolution-

ary analyses of the proportion of sequence that is functional. While there has been prior con-

sideration that tests for positive selection might be impacted by gBGC mimicking selection’s

signatures [12,35–40], there has been less attention paid to the problem that it might also

explain sequence conservation, despite this being a logical necessity [41]. We identified the

case of stop codon usage in mammals as a test case because prior evidence suggested a contra-

diction: TAA looks to be optimal (as elsewhere) but TGA was nonetheless conserved. We rea-

soned that gBGC might explain this and resolve the exceptionalism of mammalian stop codon

usage. Our data strongly support this. We see TGA usage is higher in GC-rich and highly

recombinogenic domains, with the same trends also being seen in noncoding sequence.

Increased TAA!TGA flux is also seen in GC-rich regions and regions of high recombination.

Multiple lines of evidence suggest that at the focal termination codon TGA is not optimal and

hence that gBGC can act against the direction of selection. The results satisfy all criteria pro-

posed by Duret and Galtier [11] for differentiating gBGC from selection. Across species a

greater flux of TAA!TGA in the GC-richer genes is associated with a greater intragenomic

variance in GC content, consistent with the above trends being predicted, broadly speaking, by

the extent to which a species is isochoric.

Is the TAA/TGA enigma a special case or indicative of a more general trend? We observe

that deviation of all trinucleotides from mutational equilibrium in GC-rich domains is strongly

predicted by their GC content. The TAA!TGA trend in high GC domains can be considered

a special example. More generally then, we have strong reason to suspect the gBGC mediated

fixation bias will cause false signals of purifying selection at GC-rich residues in GC-rich iso-

chores that extend beyond the specific context of TAA!TGA flux. This example is however

unusual in that we have confidence that the substitutional process at the focal termination

codon context forces conservation of a nonoptimal codon, a trend that can be partly overcome

by stronger selection for optimality in HEGs.

There is, however, another possibility to explain deviation from mutational equilibrium in

domains of high GC, this being that some form of selection favours GC-rich sequence. As
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Hill–Robertson interference [105] is reduced in domains of high recombination selection

should be more effective in such domains, causing a fixation bias. One can imagine many pos-

sible modes of such selection, for example on DNA structure [106–108] or on nucleosome

positioning [109–112]. Unlike gBGC that predicts GC enrichment, any selection model must,

after the fact, explain why GC-rich trinucleotides are favoured. Such models are unconvincing

for several reasons.

First, in the current context TGA is not selectively favourable at the focal termination

codon but nonetheless conserved. This suggests we must evoke a force other than selection to

explain TGA conservation (assuming selection on stop codon functionality to be the strongest

mode of selection at the focal stop). Why we should not similarly evoke the same force outside

of the termination context seems like special pleading.

Second, the strength of selection (and associated load) in species with low Ne (mammals

and birds) is problematic. Consider the hypothesis that TA dinucleotides could lead to acci-

dental incidences of, for example, “TATA” boxes in eukaryotes and “Pribnow” boxes in bacte-

ria (i.e., the TATAA motif). More generally, TA features in many key regulatory motifs that

would be inappropriate in most DNA regions in both eukaryotic and prokaryotic genomes

[113,114]. To date, this is probably the best (if not only) model for selection against TA in all

taxa. This could, in principle, explain why TAG is underused compared with TGA. Indeed,

within the trinucleotides with only A and T, ATA and TAT, the 2 that are core to TATA box,

are consistently the 2 with the lowest “boost” (S6 Fig). In bacteria and archaea, the strength of

selection against such spurious binding is estimated to be around Nes = –0.09 and thus within

the range of nearly neutral mutations for these species [115]. If then Escherichia coli’s Ne is of

the order of 108 [116], then smust be approximately –0.09/108 = –9 × 10–10. For a mutation to

be under selection in humans s approximately 1/2 Ne must hold. In a species with Ne approxi-

mately 10,000 (e.g., humans), then this value of s (i.e., 1/20,000) is much greater than 9 × 10–10

estimated for selection against spurious binding. Thus, unless the selective cost of spurious

binding is very much greater in humans than in bacteria, it is hard to see how selection can be

efficient enough to remove point mutations that introduce spurious binding sites.

We do not presume that mutation bias and selection have no role. Indeed, in GC-poor

domains mutation bias appears to provide a robust fit to the observed trends and explains the

differential usage of TAG and TGA. Further, HEGs overemploy TAA. However, for a full

explanation of TGA conservation, especially in GC-rich domains, we need to evoke some

other force, of which biased gene conversion is a good possibility, not least because it predicts

high GC trinucleotides should be given a fixation boost in GC-rich domains, as observed.

We do not wish to claim that TAA is optimal for all genes. There could be many reasons

that, for some genes, TGA is optimal. One possibility could be that TGA might be the least

leaky in some contexts but as the experimental evidence contradicts this possibility [61], we do

not consider this reasonable. Alternatively, TGA may be TR-prone and “leaky,” but that leaki-

ness is selectively favoured in some instances. High rates of TR may beneficially increase prote-

ome diversity [117]. Indeed, a few examples of functional readthrough have been described

[118,119], though the commonality of this in mammals is unknown. Alternatively, read-

through may be part of a gene regulatory mechanism [76,120]. Indeed, the discovery of TGA

conservation prompted speculation that TGA might be commonly optimal in humans as it

enables novel gene expression control. Specifically, it was suggested that ribosomes that read

through the primary stop codon stall and form a queue from the next in-frame stop (or ribo-

some pausing factor), filling the space between the 2 stops and eventually infringing upon the 30

end of the coding sequence itself. At this point, translation of this mRNA molecule is blocked

[120]. The fact that readthrough occurs at a low (but not very low) rate thus allows the mRNA

molecule to be translated a relatively tightly regulated number of times prior to degradation.
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Generally, however, it is unclear how any adaptive TR model might explain mammalian

exceptionalism in stop codon usage. Given that TGA optimality cannot explain why TGA is

also favoured in noncanonical stop contexts, the above arguments are, by Occam’s razor, not

needed to explain general trends. Moreover, were there selection for TR, one might expect this

to be common to all eukaryotes and therefore predict higher TGA usage in species with high

Ne (not just mammals), but this is not seen [95]. Instead TAA usage correlates positively with

Ne [95], as expected if it is the optimal stop codon (although there are mechanisms that are

rare in high Ne species but common in mammals, a high density of exonic splice enhancers to

define intron–exon junctions being a case in point [121]).

Why do trinucleotides of the same nucleotide content have different

fixation boosts?

Our evocation of gBGC to explain the general trends in GC-rich domains is not a complete

explanation. Importantly, we see repeatable trends whereby GC-matched trinucleotides show

consistent differences in levels of fixation bias “boost” in GC-rich isochores. For example,

TAG is among the least “boosted” trinucleotides in the 33% GC class, compared to TGA

which more highly exceeds its mutational equilibrium at high GC isochores. Similarly, TAG

usage appears largely uncorrelated with local GC content. Any model (selection, mutation, or

gene conversion) evoking a relationship between simple GC pressure and differences in nucle-

otide content cannot obviously account for a difference in boost between nucleotide-matched

trinucleotides (e.g., TAG and TGA).

Given the ability of our complex mutation bias model to predict trinucleotide usage in low

GC domains (Fig 6), we assume that our mutation bias estimation in GC-rich domains is also

largely accurate. If so, complex mutation bias is unable to explain the repeatable boost scores

(Fig 8). In principle, there could be several remaining classes of explanation. First, selection

might act differently on underlying di or trimers. For example, regarding TAG and TGA,

selection on TA or AG residues may be different to that on TG or GA ones. We can find no

convincing evidence for this that can explain the universality of TAG avoidance (see S1 Text).

One also needs to evoke selection that is strong enough throughout the human genome, which

appears unlikely for reasons given above.

A further possibility is an interaction between complex mutation bias and gBGC making

certain trinucleotides more liable to conversion owing to their relative commonality in popula-

tions. With a difference in mutational equilibria, the incidence of TAA/TAG meiotic hetero-

duplex mismatches (or sense/antisense ones to be more precise) is highly likely to be lower

than that of TAA/TGA mismatches. Thus, gBGC may more commonly act on TAA/TGA.

Overall, however, we see no correlation between our gBGC boost score and mutational equi-

librium in any GC class of trinucleotides (Spearman’s rank; p> 0.05 for 0%, 33%, 66%, and

100% GC trinucleotides). Pairwise comparison of all possible trinucleotide combinations also

indicates that the trinucleotide with the higher mutational equilibrium does not necessarily

receive the higher boost (Binomial test with null probability = 0.5, p = 0.17). This may reflect

the fact that common trinucleotides are also more commonly substrates to be converted.

Finally, like mutation, gBGC may be contingent on the local sequence context such that, for

example, TAG and CAG are relatively unaffected by gBGC, while TGA is affected. This could

explain similar trends in bacteria and eukaryotes if, as is claimed, gBGC also operates in bacte-

ria [122]. Complex specificity might be expected as many protein–nucleic acid interactions are

contingent on local sequence context. For example, APOBEC3/A/B induced mutations

account for many C!T and C!G mutations but occur predominantly in the context of TC

[A/T] [123,124]. More specifically, several DNA repair processes are known to be affected by
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local sequence context [125] including, at least in bacteria, mismatch repair [126], the process

underpinning gBGC. Here, sequence contexts that enhance localised DNA flexibility are asso-

ciated with mismatch repair activation [126] (see also [127,128]). Similar evidence for a role of

local DNA flexibility has been found in yeast [128,129]. The biological response elicited by

CTG and CGG repeats in human trinucleotide repeat disorders may be mediated by their

increased flexibility indicative of a relationship between local flexibility and trinucleotide con-

tent [130]. Evidence in humans for more effective repair of flexible DNA owing to local

sequence context [131] suggests that an association between DNA mismatch repair and DNA

flexibility may have relevance to understanding fixation biases in GC-rich domains. If flexibil-

ity is the core factor, then we might expect that a trinucleotide and its antisense should have

similar boost scores as both feature in the same 3 base pairs of DNA (one on the Crick strand,

the other on Watson). In our data, however, we find that the difference in gBGC “boost”

between sense and antisense trinucleotides is no smaller than randomised trinucleotide com-

parisons (p> 0.05 regardless of the sequence analysed). This suggests that DNA flexibility

alone cannot explain gBGC boost. Despite this, direct analysis of the sequence context associ-

ated with gBGC would be valuable. Preliminary data is consistent with k-mer dependency,

especially CG contingency [15].

Methods

General methods

All data manipulation was performed using bespoke Python 3.6 scripts. Statistical analyses and

data visualisations were performed using R 3.3.3. All scripts required for replication of the

described analyses can be found at https://github.com/ath32/gBGC. While stop codons func-

tion at the mRNA level, we here analyse chromosomal DNA sequences and therefore refer to

the 3 stops as TAA, TGA, and TAG.

Inferring stop codon switches from eukaryotic triplets

Lists of one-to-one orthologous genes were downloaded for a diverse variety of species triplets

from the main Ensembl repository (release 101), Ensembl plants (release 46), or Ensembl

metazoan (release 46): [1] primates; Homo sapiens, Otolemur garnettii, Callithrix jacchus, [2]

cows; Bison bison bison, Bos grunniens, Bos taurus, [3] dogs; Canis lupus familiaris,Ursus amer-
icanus, Vulpes vulpes, [4] mice/rodents; Mus musculus, Mus spretus, Rattus norvegicus, [5]

birds; Gallus gallus, Anas platyrhynchos platyrhynchos, Meleagris_gallopavo, [6] flies; Drosoph-
ila melanogaster, Drosophila pseudoobscura, Drosophila simulans, [7] nematodes; Caenorhab-
ditis briggsae, Caenorhabditis remanei, Caenorhabditis elegans, [8] plants; Arabidopsis halleri,
Arabidopsis lyrata, Arabidopsis thaliana. Orthologous genes were extracted from the respective

genomes using whole-genome sequence and gene annotation data downloaded from the same

sources. Genes were filtered to retain genes with CDS length divisible by 3, no premature stop

codons, and stop codons TAA, TGA, or TAG. Genes from each species triplet that met our

quality controls were aligned using MAFFT with the -linsi algorithm [132].

Rather than using parsimony as done previously [49,133], stop codon switches were recon-

structed using a maximum likelihood approach. For each species triplet, ancestral nucleotide

states for the internal node between the 2 ingroups were inferred by maximum likelihood

using IQTree v2.1.2 with the -asr flag [134,135]. This analysis does have one limitation in that

we do not control for the possibility of parallel substitutions; however, we assume this effect to

be small. To calculate stop codon flux rates, we compute the inferred ancestral stop codon

state at the internal node and calculate transition from this ancestral state to a derived state

(per incidence of the ancestral state).
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Under the assumption that intronic GC reflects isochore GC content, intronic nucleotide

sequences were extracted from 1 candidate genome within a species trio (e.g., the human

genome was used as a representative of the primate triplet) using the appropriate GFF and

WGS files downloaded from Ensembl (release 101). From the resulting spectra of intronic GC

contents, genes were binned into GC-rich and GC-poor sets such that there were an equal

number of flux events in each. This allowed effective segregation of genes by isochoric GC con-

tent for comparison of their stop codon flux rates. For primates, the same was done to compare

HRGs and LRGs—see “Pseudo-autosomal regions, chromosome size, and local recombination

rates” below for the source of recombination data.

Predicting equilibrium TGA content using flux data

The pTGA for a given lineage was calculated by adapting the formulae outlined by Long and

colleagues [44]. In their study, given a spectrum of de novo mutations, they propose the equi-

librium GC content, Pn, can be calculated from the GC!AT mutation rate divided by the

reciprocal rate, m, such that:

We adapt this equation to the stop codon exemplar. As TAA and TGA stop codon usage

covary in opposite directions with genomic GC content, we consider their usage to be depen-

dent on one another. Due to the unusual biology of TAG, not least that it remains lowly used

irrespective of genomic GC content, we exclude fluxes involving TAG from this calculation.

Our proposed equation for calculating equilibrium TGA content, pTGA, from the ratio of

TGA!TAA divided by TAA!TGA, s, is:

Null simulations to assign significance to observed pTGA deviation

between 2 groups of genes

The difference in pTGA observed between 2 gene groups (“A and B,” GC-rich and GC-poor

genes, or HRGs and LRGs) may be assigned significance by comparisons to simulated null

gene groups. First, by analysing all genes en masse we can calculate a genomic rate of

TAA!TGA per TAA and for TGA!TAA per TGA. For each group of genes, we may then

calculate null pTGA scores that control for these rates.

For each gene in the group, we determine the ancestral stop codon (of which we are only

interested in TAA or TGA) and record the number of each. If the ancestral stop codon is TAA,

we generate a random number between 0 and 1 and if equal to or below the genomic

TAA!TGA rate we record a null TAA!TGA flux event. If the ancestral stop codon is TGA

we generate a random number between 0 and 1 and if equal to or below the genomic

TGA!TAA rate, we record a null TGA!TAA flux event. By this method, we thus receive

null counts of TAA!TGA and TGA!TAA which may be divided by the ancestral counts of

TAA and TGA to receive null flux rates. From these rates, we may calculate null pTGA, and

thus by repeating this process 1,000 times we create a null distribution of pTGA for the gene

group. Repeating this method for both gene groups, we have a distribution for gene group A

and gene group B.

Next, we randomly sample with replacement 1 pTGA score from each of the 2 distributions,

receiving a random pair. For each random pair, we calculate the deviation between that sam-

pled from group A and group B and repeat this process 10,000 times to create a null distribu-

tion of differences. We then compare the observed difference between the real gene groups to

this distribution, asking how many simulants have as high a difference as the observed one (n).

The significance of the observed difference beyond null may be represented as p = n / m where

m is the number of random pairs considered.
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Calculating mutational equilibria

The equilibrium content of all 4 nucleotides (indicated N�) may be estimated using the full

mutational spectrum [136,137]. A full spectrum of 108,778 de novo mutations (from 1,548 Ice-

landic human family trios) was downloaded from the supplementary material of Jonsson,

Sulem [102]. Knowing the rate of flux between every nucleotide (normalised to the occurrence

of each nucleotide), we calculate the mutational equilibrium states of all nucleotides and GC

content exactly as outlined in [137AU : PleasenotethatcitationRiceetal:ð2020Þhasbeenlinkedtoref :137inthereferenceslist:Pleaseconfirmthatthisiscorrect:]. The same theory can be applied to the 3 stop codons to

predict their equilibrium frequencies as follows, where TAA0 indicates the frequency of TAA

after some period of time:

TAA0 = TAA (1 − TAA!TGA − TAA!TAG) + TGA (TGA!TAA) + TAG

(TAG!TAA)

TGA0 = TGA (1 − TGA!TAA − TGA!TAG) + TAA (TAA!TGA) + TAG

(TAG!TGA)

TAG0 = TAG (1 − TAG!TAA − TAG!TGA) + TAA (TAA!TAG) + TGA

(TGA!TAG)

For equilibrium calculation, these simultaneous equations are solved such that TAA0 =

TAA, etc. We are solving for gain = loss for each stop codon:

TAA (TAA!TGA + TAA!TAG) = TGA (TGA!TAA) + TAG (TAG!TAA)

TGA (TGA!TAA + TGA!TAG) = TAA (TAA!TGA) + TAG (TAG!TGA)

TAG (TAG!TAA + TAG!TGA) = TAA (TAA!TAG) + TGA (TGA!TAG)

Note that in these equations, we ignore the possibility of mutations from stop codons to

sense codons. These we assume to be very rare and, should they occur, highly deleterious via

the creation of C-terminal extensions. To constrain the results such that all equilibrium fre-

quencies sum to 1, we replace 1 arbitrarily chosen stop codon frequency with 1—the sum of

the other 2. While this would be achieved most accurately using precise mutational flux data

between TAA, TGA, and TAG, this is not captured within the Jonsson [102] dataset. Instead,

we estimate flux between the 3 stops using null frequencies proposed by Belinky and colleagues

[49]. In their paper, they suggest the substitution control for TAA>TGA and TAA>TAG is

A>G, for TGA>TAA and TAG>TAA is G>A, and for TGA>TAG and TAG>TGA is

2 × A>G × G>A.

The full spectrum of 108,778 de novo mutations may also be analysed using a 16 × 16 dinu-

cleotide mutation matrix by tracing each mutation back to the reference genome and inferring

dinucleotide changes. From the resultant matrix, we estimate the equilibrium frequencies of

each dinucleotide by adapting the simultaneous equations above to consider flux into and

away from each dinucleotide. An estimated GC� may then be calculated from the 16 dinucleo-

tide equilibria, whereas TGA� (and other trinucleotide equilibrium frequencies) may instead

be estimated by incorporating the 16 equilibria into Markov models, simulating null

sequences, and calculating trinucleotide frequencies from these (see “Markov models for simu-

lating null sequences”).

Gene expression metrics

To assess the role of gene expression in mammalian stop codon evolution, we consider experi-

mentally derived protein abundance data downloaded for H. sapiens, B. taurus, C. familiaris,
and M.musculus from PaxDb [138]. As selection acts on protein activity, not mRNA levels, we

consider this a robust measure. For species where multiple datasets are available, we employ

the whole organism integrated set for maximum coverage of the proteome (see https://github.

com/ath32/gBGC for accessions list).
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Pseudo-autosomal regions, chromosome size, and local recombination rates

To assay the impact of recombination, we employed (a) chromosome size as a proxy of long-

term recombination rate per bp; (b) pseudoautosomal localization, this being known to be

highly recombinogenic; and (c) estimated recent recombination rates.

For the latter, we employed recombination rates generated by the HapMap2 project [139]

using coordinates lifted to the hg19/GRCh37 human genome build by Adam Auton (available:

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20110106_recombination_

hotspots/). For this analysis, we hence use the GRCh37 human genome build and annotations,

downloaded from NCBI and available at: https://www.ncbi.nlm.nih.gov/assembly/GCF_

000001405.13/ (last accessed 24 September 2020). For logistic regression modelling, each gene

was assigned an estimated recombination rate equal to the average recombination rate of all its

internal SNPs from the genetic map.

To assess the possible correlation between equilibrium GC content and recombination rate

(see S7 Fig), we instead employ recombination rate bands directly assayed from 15,257 parent

offspring pairs at 10 kb resolution. This we consider to be the better data to use for this analysis

as de novo mutations may be reasonably assigned the recombination rate of the 10 kb band it

falls within. The data were downloaded from https://www.decode.com/addendum/ (last

accessed 14 September 2020) [140].

Coordinates of the 2 regions (PAR1 and PAR2) were downloaded from NCBI (https://

www.ncbi.nlm.nih.gov/grc/human, last accessed 14 September 2020). Chromosome sizes

employed are base pair lengths derived from human genome build hg38.

Assessing the predictive abilities of gene expression and recombination rate

To determine whether expression and recombination rate can correctly predict the observed

trends in stop codon usage, we employ logistic regression. Stop codon usage and GC3 content

was captured alongside gene expression data or recombination data (depending on the feature

to be examined). Models were fit and examined using the glm function in R with the

“family = binomial” parameter. This produces a coefficient for each independent feature and

associates a p-value for its predictive significance. We control for GC content by including

GC3 content in a multivariate model when assessing expression level metrics. For the analysis

of stop codon usage in null sequences, we instead use linear regression, also using glm in R, as

more than 1 “stop codon” may be present in each sequence.

PGLS analysis of TGA enrichment and effective population size (Ne)

A phylogenetically controlled test of correlation between Ne and TGA enrichment in LEGs

(lowest 25% of genes by protein abundance—see “Gene expression metrics” above) were

facilitated by PGLS using the “caper” R package (https://CRAN.R-project.org/package=

caper). Ne estimates are from species with well-resolved estimates of mutation rate and

well-described polymorphism data, and are the same as used in Ho and Hurst [95]. Pagel’s

lambda (λ) was predicted by maximum likelihood. Species used in this analysis were the

same as published in our previous analysis [95], with the input phylogenetic trees generated

using TimeTree (http://www.timetree.org/) and available in our GitHub repository along

with the data required to repeat this analysis. TGA enrichment scores in LEGs were calcu-

lated such that:

where mean TGA usage downstream is calculated from downstream codon positions +1 to

+6. “Usage” refers to the relative frequency of TGA compared with the other stop codons TAA

and TAA at position n, such that:
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Markov models for simulating null sequences

Null trinucleotide frequencies were generated from a null model that controls for underlying

mono- or dinucleotide mutation rates. To achieve this, we first calculate mutational equilib-

rium frequencies for all mono- or dinucleotides—see “Calculating mutational equilibria”

above and Rice and colleagues [137]. We next simulate 10,000 sequences (of average coding

sequence length) using Markov models in a similar way to that outlined by Ho and Hurst

[141]. The first nucleotide/dinucleotide of each simulant is selected at random according to

equilibrium nucleotide/dinucleotide frequencies. The following nucleotide is selected from a

second set of frequencies: given the prior nucleotide in the simulation, what is the probability

that the next nucleotide should be A, C, G, or T. As all trinucleotides occur in these simulated

sequences at a rate dictated by a derived mutational matrix, trinucleotide frequencies in the

real sequences that are deviant from the simulations indicates enrichment or under-enrich-

ment beyond chance.

Supporting information

S1 Fig. The relationships of autosome length with GC content and TGA usage in the

human genome. Autosomal size (bp length) is negatively associated with G+C content (Spear-

man’s rank; p = 0.0078, rho = –0.56, n = 22) and TGA usage (Spearman’s rank; p = 0.0094, rho

= –0.55, n = 22). Underlying data can be found in S9 Data.

(PDF)

S2 Fig. Trinucleotide frequencies in 6 sets of different genomic sequences (between 0%–

36.31% GC content) compared to dinucleotide matrix-derived equilibrium predictions.

The GC range used is the bottom 20% of genes to avoid the possible confounding effects of

biased gene conversion. CDS refers to coding sequence, CREs to cis-regulatory elements. “xDi-

nuc matrix” refers to equilibrium estimates of trinucleotide frequencies derived from a dinu-

cleotide mutational matrix. Underlying data can be found in S6 Data. CDS, coding sequence;

CRE, cis-regulatory element; ncRNA, noncoding RNA.

(PDF)

S3 Fig. The rate of flux increasing GC content at 2-fold degenerate sites divided by the rate

of flux decreasing GC content at the same sites across 10 gene bins of increasing recombi-

nation rate. Flux to the G+C-rich codons is most strongly favoured at high recombination

rates (Spearman’s rank; p< 2.2 × 10–16, rho = 0.99), consistent with the possible action of GC-

biased gene conversion. Underlying data can be found in S10 Data.

(PDF)

S4 Fig. The rate of flux increasing GC content at 2-fold degenerate sites divided by the rate

of flux decreasing GC content at the same sites across 10 gene bins of increasing recombi-

nation rate for each appropriate amino acid. Flux increasing GC content are significantly

favoured in regions with higher recombination rate in 10 of the 12 amino acids before Bonfer-

roni correction (Spearman’s rank tests; p< 0.05), the 2 exceptions to this being Leucine and

Glutamine. Underlying data can be found in S10 Data.

(PDF)

S5 Fig. Deviation scores, (O-E)/E, describing the difference in gBGC “boost” for each tri-

nucleotide individually. The normalised differences, (O-E)/E, between estimated trinucleo-

tide mutational equilibrium frequencies (calculated from DNMs) and fixed trinucleotide

frequencies (from 10 kb sequences surrounding those mutations) were calculated for GC-rich

(top 20%, 45.5%–100%, “group 5”) and GC-poor (bottom 20%, 0%–36.3%, “group 1”)
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sequences surrounding 108,778 DNMs. As we predict, GC-rich sequences to be subjected to

stronger biased gene conversion, we predict a larger differential between fixed and equilibrium

frequency, D, for GC-rich trinucleotides in GC-rich sequences. The extent to which a trinucle-

otide is “boosted” by biased gene conversion can hence be accessed by measuring the differ-

ence, (O-E)/E, in D between the GC-richest and GC-poorest sequences. Trinucleotides are

ordered from low to high according to the extent they are “boosted” by biased gene conver-

sion. Underlying data can be found in S7 data. DNM, de novo mutation; (O-E)/E, (Observed-

Expected)/Expected.

(PDF)

S6 Fig. Trinucleotides containing (a) A, G, and T and (b) A, C, and T within the 33% GC-

content class of trinucleotides ranked by gBGC “boost” scores. TGA receives a consistent

higher GC-coupled fixation boost than TAG which performs the second worst (after GTA).

TCA similarly receives a consistently higher GC-coupled fixation boost than TAC. Sequences

analysed include CRE, 50 UTR (5), intronic (intron), ncRNA, (ncrna), and 30 UTR (3). CDS

sequences are excluded from this analysis as they are much more prone to selection and other

potential fixation biases. Underlying data can be found in S8 data. CDS, coding sequence;

CRE, cis-regulatory element; gBGC, GC-biased gene conversion; ncRNA, noncoding RNA.

(PDF)

S7 Fig. Predicted G+C equilibrium (G+C�) and TGA equilibrium (TGA�) frequencies from

de novo mutations of various recombination rates. Mutations were assigned a recombination

rate based upon their local 10 kbp environment. Mutations in nonrecombining regions were

discarded. The remaining mutations were split into bins of equal size (approximately 5,000

mutations) for the calculation of GC� and TGA�. Recombination rate is not correlated with

GC� (Spearman’s rank; p = 0.58, rho = –0.2) nor TGA� (Spearman’s rank; p = 0.63, rho = –0.18)

when estimated from de novo mutations. Underlying data can be found in S11 Data.

(PDF)

S1 Table. Results of linear regression models predicting stop codon (TAA, TGA, TAG) tri-

nucleotide usage as a function of intronic G+C content in 50 and 30 UTR sequences and as a

function of coding sequence GC3 content in intronic sequences.

(PDF)

S2 Table. The 4 × 4 mutational matrix for 108,778 observed de novo mutations in 1,548

human trios. Rates are defined as the number of observed changes per incidence of the nucle-

otide in the reference genome. UnderAU : PerPLOSstyle; numeralsarenotallowedatthebeginningofasentence:PleasecheckandconfirmthattheeditstothesentenceUndertheassumptionthattheobservednumberofmutationsis:::arecorrect; andamendifnecessary:the assumption that the observed number of mutations

is a Poisson variable, 95% confidence intervals (CI) were calculated using the Poisson.test

function in R.

(PDF)

S1 Text. Possible selective explanations for TAG avoidance compared with TGA.

(PDF)

S1 Data. Underlying data for Fig 1.

(XLSX)

S2 Data. Underlying data for Fig 2.

(XLSX)

S3 Data. Underlying data for Fig 3.

(XLSX)
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S4 Data. Underling data for Fig 4.
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S5 Data. Underlying data for Fig 5.
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S6 Data. Underlying data for Figs 6 and S2.
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S7 Data. Underlying data for Figs 7 and S5.
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S9 Data. Underling data for S1 Fig.
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S10 Data. Underlying data for S3 Fig.
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