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In Brief
The degree and mechanisms by
which gene copy-number
changes are buffered at the pro-
tein level are not understood.
We have identified up to 40% of
genes with protein-level buffer-
ing of gene dosage changes in
cancer. Using structural data, we
show that interaction-dependent
control of abundance is corre-
lated with interface size. These
findings in cancer were reflected
in variation in protein levels in
normal tissues with buffering of
natural genetic variation for
highly attenuated proteins.
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• Up to �40% of proteins have copy-number changes attenuated, likely via degradation.

• Interaction-dependent protein attenuations correlates with interface size.

• Protein attenuation is reflected in variation in protein levels in normal tissues.

• Protein attenuation buffers expression differences due to natural genetic variation.
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Multi-omics Characterization of Interaction-
mediated Control of Human Protein Abundance
levels*□S

Abel Sousa‡§¶�, Emanuel Gonçalves**, Bogdan Mirauta�, David Ochoa�,
Oliver Stegle�‡‡§§, and Pedro Beltrao�¶¶

Proteogenomic studies of cancer samples have shown
that copy-number variation can be attenuated at the pro-
tein level for a large fraction of the proteome, likely due to
the degradation of unassembled protein complex sub-
units. Such interaction-mediated control of protein abun-
dance remains poorly characterized. To study this, we
compiled genomic, (phospho)proteomic and structural
data for hundreds of cancer samples and find that up to
42% of 8,124 analyzed proteins show signs of post-tran-
scriptional control. We find evidence of interaction-depend-
ent control of protein abundance, correlated with interface
size, for 516 protein pairs, with some interactions further
controlled by phosphorylation. Finally, these findings in
cancer were reflected in variation in protein levels in normal
tissues. Importantly, expression differences due to natural
genetic variation were increasingly buffered from pheno-
type differences for highly attenuated proteins. Altogether,
this study further highlights the importance of posttran-
scriptional control of protein abundance in cancer and
healthy cells. Molecular & Cellular Proteomics 18: S114–
S125, 2019. DOI: 10.1074/mcp.RA118.001280.

Cancer cells can harbor a large number of somatic DNA
alterations ranging from point mutations to gene copy
changes that can occur from deletion or amplification of small
regions or whole chromosomes. While these events are the
source of the genetic variation that can confer a selective
advantage and lead to cancer, large changes in gene num-
bers can be detrimental and cause imbalances in the corre-
sponding protein levels. Several studies have shown that the
majority of changes in gene copy number will propagate to
changes in the corresponding protein levels (1–3). However,
models of aneuploidy of different species and analysis of gene

copy-number variation (CNV) in cancer have shown that CNVs
of protein-coding genes belonging to protein complexes tend
to be attenuated at the protein level (1, 4, 5). In addition, we
have shown that some complex members can act as rate-
limiting subunits and indirectly control the degradation level of
attenuated complex members (4). These results are in-line
with pulse-chase degradation measurements showing that
several complex subunits have a two-state degradation pro-
file that is compatible with a model in which they are ex-
pressed above the required levels and have a higher degra-
dation rate when unbound from the complex (6). The
attenuation of changes at the protein level also justifies why
protein complex subunits show higher correlation of protein
abundances than the corresponding mRNA levels (7, 8) and
why correlation analysis can be used to identify cancer-spe-
cific interaction networks (9, 10).

These results support a long-standing view that protein
complex formation can set the total amount of protein levels
(11). The degradation of unbound subunits may be due to a
requirement of avoiding free hydrophobic interface surfaces
that can be prone to aggregate (12). In eukaryotic species, this
appears to be achieved by degrading excess production,
while in bacterial and archaeal species genes coding for pro-
tein complexes subunits tend to occur within operon struc-
tures such that they will be expressed at similar levels (13).
This link between appropriate expression and complex for-
mation is further emphasized by the preferential ordering of
subunits in operons starting from the subunits that tend to
assemble first (14).

While this phenomenon of gene dosage attenuation in pro-
tein complexes has been well documented, we still do not
understand (i) what protein properties are associated with the
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propensity for a protein to be attenuated or (ii) if the charac-
teristics of the attenuation process are seen in noncancerous
cells. Here we have extended on a previous analysis (4),
performing a multi-omics study of protein-level attenuation of
gene dosage that combines genomics, (phospho)proteomics,
and structural data. Analyzing 8,124 genes/proteins we ob-
served that up to 42% of proteins show evidence of posttran-
scriptional regulation. Over 500 protein–protein interactions
show indirect control of degradation of one subunit via phys-
ical associations, 32 of which may be further controlled by
phosphorylation. Using structural models for 3,082 interfaces,
we find that a higher fraction of interface residues is associ-
ated with a higher degree of attenuation. Finally, we studied
the impact of these findings on noncancerous systems. We
find that protein interaction-mediated control of protein abun-
dances have an impact of the variation of protein levels across
tissues and that the degree of attenuation correlates with the
probability that natural variation with an impact on gene ex-
pression may result in a phenotypic consequence.

EXPERIMENTAL PROCEDURES

Multi-omics Data Collection—Proteomics and phosphoproteomics
quantifications at the protein/phosphosite level from TCGA cancer
patients were obtained from the CPTAC data portal (proteomics.
cancer.gov/data-portal), for breast cancer (BRCA) (15), colorectal
cancer (COREAD) (16), and ovarian cancer (17). The same data from
cancer cell lines were downloaded for COREAD cell lines (10) and for
BRCA cell lines (9, 18). Gene-level RNA-seq raw counts were ac-
quired from gene expression omnibus (GSE62944) (19) for TCGA
samples and from the CCLE data portal (19–21) for cancer cell lines.
Gene copy-number profiles in this study were represented using
discretized GISTIC 2.0 scores as described here (22, 23). Briefly,
these discrete variables can be �2 (strong copy-number loss, likely a
homozygous deletion), �1 (shallow deletion, likely a heterozygous
deletion), 0 (diploid), 1 (low-level gain of copy number, generally broad
amplifications), and 2 (high-level increase in copy number, often focal
amplification). CNV GISTIC 2.0 levels were compiled from the fire-
browse (firebrowse.org) data portal (accession date January 15, 2018)
for TCGA samples and from the CCLE data portal for cancer cell lines
(accession date February 14, 2017).

Data Preprocessing and Normalization—The label-free protein
quantifications (precursor areas) for COREAD CPTAC samples (16)
were first normalized by sample, where summed peak areas for the
same protein were divided by the total summed area for the observed
sample proteome. Relative protein abundances were then calculated
by dividing each protein area over the median area across samples
and then log2 transformed. Protein and phosphosite intensities for
COREAD cell lines (10) were divided by 100 and transformed to log2.
For BRCA cell lines (9), protein log2 fold-changes were calculated by
subtracting the median intensities across the samples. Similarly, the
label-free protein intensities (peak areas) for BRCA cell lines from (18)

were converted into relative abundances by calculating the log2 ratio
of protein intensities over the median intensities across samples.
Sample replicates of protein and phosphoprotein were combined by
averaging the values for each protein and phosphosite, respectively.
Phosphopeptides intensities mapping to the same phosphosite were
combined by calculating the median phosphosite intensity per sam-
ple. In the cancer cell lines, genes with multiple isoforms were filtered
by selecting the protein isoform with highest median expression
across samples. Proteomics and phosphoproteomics distributions
across cancer samples and cell lines were quantile normalized to
ensure comparable distributions, using the normalizeQuantiles func-
tion from Limma R package (24). In total, 13,569 proteins across 436
samples (340 cancer samples and 96 cell lines) and 79,824 phospho-
sites across 195 samples (145 cancer samples and 50 cell lines) were
assembled in this study. Given the sparseness of the phospho(pro-
tein) data, for the subsequent analyses, we only selected proteins
measured in at least 25% of the 368 samples with protein, mRNA, and
CNV measurements and the phosphosites measured in at least 50%
of the 170 samples with also phosphorylation data, comprising 8,124
proteins and 5,733 phosphosites. The phospho(protein) and mRNA
data were then standardized using the z-score transformation.

At the RNA-seq level, lowly expressed genes were removed by
filtering out genes with mean counts per million lower than 1 across
samples. After raw counts normalization by the trimmed-mean of
M-values method (25) using the edgeR R package (26), the log2-
counts-per-million values were extracted from the voom (27) function
in Limma. After merging the CPTAC samples with the CCLE cell lines,
the final RNA-seq dataset comprised 13,228 genes with measure-
ments across 370 samples (296 cancer samples and 74 cell lines). At
the CNV level, after compiling the GISTIC thresholded data, 19,023
genes were found to have CNV measurements across 412 samples
(337 cancer samples and 75 cell lines).

Potential confounding factors revealed by principal component
analysis (supplemental Figs. S1A and S2A) were regressed out using
a multiple linear regression model. This model was implemented with
the protein or mRNA abundance of a given gene as a dependent
variable and the potential confounding factors, i.e. cancer type, ex-
perimental batch, proteomics technology, age, and gender, as inde-
pendent variables. The residuals from the linear model were the
protein and mRNA variation not driven by the confounding effects, as
the second principal component analysis demonstrated (supplemen-
tal Figs. S1B and S2B).

Analysis of Protein Attenuation—The strategy in (4) was used to
evaluate the impact of CNVs at the genome level on cancer pro-
teomes. For each gene, the Pearson correlation coefficients between
the CNV and mRNA and the CNV and protein were calculated, and an
attenuation measure devised as follows:

Attenuation potentiali � corr(CNVi, mRNAi) � corr(CNVi, Proteini),

i � Protein (1)

where corr represents the Pearson correlation coefficient and Protein
represents 8,124 genes for which CNV, mRNA, and protein quantifi-
cations across 368 samples where available. After calculating the
attenuation potentials, a Gaussian mixture model with four mixture
components was used to cluster the genes in four different groups.
Group 1 had 19 genes with a negative attenuation potential due to the
higher correlation between the CNV and protein than with the CNV
and mRNA. These genes, which were not attenuated at the protein
level, were included with the remaining nonattenuated genes in group
2, comprising 4,689 genes. Groups 3 and 4 contained the lowly
attenuated and highly attenuated genes, with 2,578 and 857 genes,
respectively. The Gaussian mixture model was implemented using the
Mclust function from the mclust R package (28).

1 The abbreviations used are: CNV, copy-number variation; TCGA,
The Cancer Genome Atlas; CPTAC, Cancer Clinical Proteomics Re-
search; CCLE, Cancer Cell Line Encyclopedia; GISTIC, Genomic
Identification of Significant Targets in Cancer; CORUM, comprehen-
sive resource of mammalian protein complexes; eQTL, expression
Quantatitive Trait Loci; NHGRI, National Human Genome Research
Institute; EBI, European Bioinformatics Insitute; GWAS, Genome
Wide Association Study; LD, linkage disequilibrium.
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The enrichment of CORUM complexes was calculated with a hy-
pergeometric model, using the enrichr function from the clusterPro-
filer R package (29). Only CORUM complexes with a Jaccard index
lower than 0.9 and with more than five proteins were used. The
comparison of ubiquitination site fold-changes across protein atten-
uation levels was done using protein ubiquitination data obtained with
three proteasome inhibitors: MG-132, epoxomicin, and bortezomib
(30–33).

Compendium of Physical Protein Interactions—In order to build a
compendium of physical protein interactions, we downloaded a data
set of protein–protein interactions from BioGRID version 3.4.157 (34)
(accession date January 30, 2018). We only selected protein interac-
tions occurring in human and captured with physical experimental
systems. Interactions captured with Affinity Capture-RNA and Pro-
tein-RNA were excluded in order to guarantee that our dataset con-
tained only interactions observed at the protein level. After excluding
protein homodimers, 524,148 protein interactions (262,074 unique)
were compiled with BioGRID. A list of protein interactions was also
built using a set of protein complexes from the CORUM database (35)
(accession date May 29, 2018). The rationale was that protein partners
from the same protein complex interact physically at least once. Using
a set of 1,787 protein complexes and excluding protein homodimers,
we assembled 74,712 (37,356 unique) physical protein interactions. As
small number of 890 Endoplasmic reticulum-related interactions were
additionally curated from the literature. In total, 572,856 (286,428
unique) protein physical interactions were compiled.

Linear Modeling to Identify Protein and Phospho–protein
Associations—

Protein Associations—For a given protein physical interaction pair
X and Y, it was tested whether protein X can control the protein levels
of Y through protein–protein interaction, potentially constraining the
degradation rate of Y. For each interacting pair, two nested linear
models were fitted. The first model (null) was used to predict the
protein levels of Y (Py) using its mRNA (Ty) and a set of other
covariates, i.e. cancer type, experimental batch, proteomics technol-
ogy, patient age, and gender (Equation (2)). In a second linear model
(alternative), the CNV levels of X (Gx) was added as predictor variable
(Equation (3)). A likelihood ratio test (LRT) (Equation (4)) was then
applied in order to test whether the second model increases the
goodness of fit of the first model in predicting Py.

Null model: Py � �0 � �1Ty � [�2, �3, �4, �5, �6] � � (2)

�0 represents the intercept, �1 the regression coefficient (effect size)
for the mRNA of Y, �2, �3, �4, �5, and �6 the regression coefficients
for the covariates cancer type, experimental batch, proteomics tech-
nology, age, and gender, respectively. � is the noise term.

Alternative model:

Py � �0 � �1Ty � [�2, �3, �4, �5, �6] � �7Gx � � (3)

�7 is the regression coefficient for the CNV (Gx) of protein X. An LRT
was used to assess the significance of the association:

LRT � 2 � [logeLik(Alternative) � logeLik(Null)] (4)

logeLik corresponds to the log likelihood of the alternative and null
models. p values were then calculated using the LRT statistic over a
chi-squared distribution and adjusted for false discovery rate (FDR)
using the Benjamini–Hochberg method. This model was applied for a
given protein association pair X and Y if: X � CNV � Y � Protein � Y
� mRNA, where CNV, Protein, and mRNA are the sets of genes
detected with the respective assays.

A total of 411,591 protein pairs followed these criteria and were
tested across 368 tumor samples. The same analysis was performed

with the mRNA, instead of the CNV, of protein X for 392,128 protein
pairs. To avoid spurious protein associations that might occur due to
the genomic co-localization of the controlling proteins, the top-ranked
association was selected using the Borda ranking method. This was
done systematically for every case where multiple controlling proteins
in the same chromosome were associated with the same controlled
protein. More than one controlling protein in the same chromosome
for the same controlled protein were allowed if their CNV profile
Pearson correlation was lower than 0.5.

The linear models were implemented using lm R function and the
LRT test with associated statistics were calculated using the lrtest
function from the lmtest R package. The Borda ranking method was
implemented using the Borda function from the TopKLists R package
(36).

Phospho–protein Associations—For a given protein pair X and Y, it
was tested whether a phosphosite Xp from protein X can be associ-
ated with changes in the protein abundance of protein Y. A similar
model to before linear regression models and LRT tests was used. For
each phosphosite–protein interaction, a first null model was fitted to
predict the protein levels of Y (Py) using its mRNA (Ty), the CNV and
protein levels of protein X (Gx and Px), and the covariates experimen-
tal batch, patient age, and gender (Equation (5)). In a second alterna-
tive linear model, the phosphosite Xp (Phox) of protein X was added
as predictor variable (Equation (6)). The models were then compared
using an LRT as in Equation (4).

Null model: Py � �0 � �1Ty � �2Gx � �3Px � [�4, �5, �6] � � (5)

where �0 represents the intercept, �1 the coefficient of the mRNA of
Y, �2 and �3 the regression coefficients for the CNV and protein of X,
respectively, and �4, �5, and �6 the regression coefficients for the
covariates experimental batch, age, and gender, respectively. � is the
noise term.

Alternative model:

Py � �0 � �1Ty � �2Gx � �3Px � [�4, �5, �6] � � (6)

where �7 is the regression coefficient for the phosphosite Xp
of protein X. This model was applied for a given phosphosite–
protein association pair Xp and Y if Xp � Phospho � X �

Protein � X � CNV � Y � Protein � Y � mRNA, where Phospho,
Protein, CNV, and mRNA are the sets of genes detected with
the respective assays. A total of 315,772 phosphosite–protein
pairs followed this criteria and were tested with this model
across 170 tumor samples.

Structural Analysis—Protein interface sizes were calculated using
an in-house pipeline (int3dInterfaces, github.com/evocellnet/
int3dInterfaces) that extracts protein interfaces from Interactome3D
structures (37). For each protein interaction structure in
Interactome3D, this pipeline uses NACCESS (bioinf.manchester.
ac.uk/naccess) to calculate the solvent accessibility of the bound and
unbound monomers. Every residue changing its relative solvent ac-
cessibility is considered to form part of the interface. From the 11,530
human protein interaction structures analyzed with this pipeline,
structures of protein homodimers or structures with less than 100
amino acids were removed. Also, structures with chain lengths bigger
than the respective UniProt protein lengths and with the same chain
length for each partner were removed. After applying these filters,
3,082 structures with 6,147 protein interactions were used in the
subsequent analyses.

For the 1,470 proteins that contained both information about CNV
attenuation and interface size, the percentage of residues in protein
interfaces was calculated as the ratio of the number of unique resi-
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dues in interfaces over the protein size. For 60 significant protein
association pairs represented in the structural data, the relation be-
tween the protein interface size with the regression CNV coefficient
and FDR, was assessed using the Pearson correlation coefficient. For
each pair, the protein interface size was calculated in the controlling
and controlled proteins. The protein sizes (number of residues) were
obtained from UniProt for 20,349 proteins (accession date June 19,
2018).

The percentage of area inside complex for the protein subunits
from the COP9 signalosome was calculated using FreeSASA (38). For
each protein subunit, this percentage corresponded to the difference
between the solvent accessible surface area (SASA) outside and
inside complex over the SASA outside complex. The SASA was
calculated in units of squared Ångström (Å2).

Analysis of Gene Essentiality Using CRISPR-Cas9 screenings—
Gene essentiality data obtained with CRISPR-Cas9 screenings
(39) were downloaded from Project Achilles data portal (portals.
broadinstitute.org/Achilles) (accession date October 31, 2017). These
data contain gene-dependence levels adjusted for copy-number-
specific effects for 17,670 genes across 341 cancer cell lines. Genes
with an essentiality score lower than �1�S.D. (the standard deviation
for the entire dataset corresponds to 0.3) in more than 5% of the cell
lines were considered essential and used in the remaining analysis
(5,532 genes). The median gene essentiality was calculated for 3,548
genes with attenuation and essentiality data across the 341 cancer
cell lines.

Pairwise Correlation of Protein Association Pairs Using Normal
Tissue Data—Gene and protein expression data for normal human
tissues were obtained from the Genotype-Tissue Expression (GTEx)
(40) and Human Proteome Map (41) portals. The gene expression was
obtained in the format of RNA-seq median Reads Per Kilobase of
transcript per Million mapped reads for 56,238 genes across 53
tissues. The protein expression was downloaded as averaged label-
free spectral counts for 17,294 genes across 30 tissues. For the
protein expression data, 9,156 genes in common with the Human
Proteome Map data available in Expression Atlas (42) were selected.
The 14 tissues common to the GTEx and the Human Proteome Map
used in the remaining analysis were: frontal cortex, spinal cord, liver,
ovary, testis, lung, adrenal gland, pancreas, kidney, urinary bladder,
prostate gland, heart, esophagus, and colon. The gene expression in
the last three tissues was averaged in GTEx, between heart atrial
appendage and left ventricle; between esophagus gastroesophageal
junction, mucosa, and muscularis; and between colon sigmoid and
transverse. The protein and gene expression data were then filtered to
only include genes and proteins expressed in at least 10 of 14 tissues,
resulting in 5,239 genes consistently expressed at the gene and
protein level. The RNA and protein measurements were then stan-
dardized to z-scores and quantile normalized.

Having assembled the gene and protein expression datasets for
normal tissues, pairwise Pearson correlation coefficients were calcu-
lated between the protein of the controlling and controlled genes,
mRNA of the controlling and controlled genes, and mRNA and protein
of the controlled gene. The Pearson correlations were calculated for
91 highly significant associations (FDR � 0.01), 210 significant asso-
ciations (0.01 � FDR � 0.05), and 161,945 nonsignificant associa-
tions at the CNV and mRNA level (FDR � 0.05). In order to assure that
the increase in protein–protein correlations were not simply due to an
increase in mRNA–mRNA correlations, we selected the protein pairs
with mRNA Pearson’s correlation coefficient between 0 and 0.4,
corresponding to 57,145 pairs (30 highly significant, 69 significant and
57,046 nonsignificant).

Analysis of the Impact of CNV Attenuation on the eQTL Association
to Disease Traits—Following the approach in HipSci proteomics (43),
we considered a stringent set of 21,601 associations from the

NHGRI-EBI GWAS catalogue (download on April 10, 2018; converted
to hg19) for analysis. We considered eQTLs reported from the GTEx
in 35 tissues (excluding brain), compute the number of tissues having
the same slope sign, i.e. direction of effect size, and discarded those
with consistent slope in less than three tissues.

We defined proxy variants of each cis-eQTL as variants in high LD
(r2 	 0.8; based on the UK10K European reference panel) within the
same cis window. Next we grouped eQTLs in high LD blocks (r2 	
0.8), excluded from this analysis 247 genes having each more than
100 eQTL blocks) and obtain a final set of 66,197 eQTL blocks
corresponding to 2,953 genes and 441,194 eQTL–gene associations.
We then define these blocks as GWAS tagging if for at least one eQTL
in the block at least one LD proxy variant was annotated in the
NHGRI-EBI GWAS catalogue. Finally, we report the fraction of
GWAS-tagging eQTL stratified by the attenuation level of the corre-
sponding cis genes. To assess the robustness of this analysis and to
study the effects on GWAS-tagging probability of eQTL recurrence
across tissues, we compute the number of tissues in which an eQTL
was called with the same slope and report results by stratifying the
eQTLs by increasing number of tissues.

We rely on core protein complexes from CORUM to identify the
gene complex membership status and segregate those that are an-
notated in at least one large complex (	5 subunits). Out of the genes
with eQTL evidence and with annotation scores, 961 are annotated in
CORUM, and 576 are members of large complexes.

RESULTS

Protein-level Attenuation of Gene Dosage Associates with
Distinct Essentiality and Structural Features—In order to study
protein posttranscriptional control, we collected matched
gene copy number, mRNA, and protein expression cancer
datasets made available by the TCGA and CPTAC consortia,
for BRCA (15, 44), ovarian (17, 45), and COREAD cancers (16,
46). In addition, we compiled existing protein/gene expression
and copy-number data for cancer cell lines from Lapek et al.
(BRCA) (9), Roumeliotis et al. (COREAD) (10), and Lawrence et
al. (BRCA) (18). In total, 368 cancer samples (294 tumors and
74 cell lines) were compiled in our study with matched gene
expression, copy number, and protein abundance (Fig. 1A).
Principal component analysis revealed the presence of con-
founding effects in the RNA and protein expression data (Figs.
S1A and S2A). These effects are related to cancer type,
experimental batch, type of proteomics experiment, and also
patient gender and age. Therefore, these potential confound-
ing effects were regressed out from the RNA and protein
expression data (“Methods”). After correction, the association
between the principal components and the potential con-
founding effects was removed (Figs. S1B and S2B). In the
combined dataset, the average mRNA–protein correlation is
0.44, which is in agreement with previous studies.

We then investigated the impact of CNV in cancer pro-
teomes, using the strategy reported in Gonçalves et al. (4).
Due to the sparseness of the protein data, we selected genes
with protein measurements in at least 25% of the 368 sam-
ples, comprising 8,124 genes with CNV, mRNA, and protein
expression. We included the CNV, mRNA and protein meas-
urements for the 8,124 genes in the Supplemental Table 1. For
each gene, we then calculated the Pearson correlation coef-
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ficient between the CNV and the mRNA and the CNV and the
protein, across samples. In order to assess the disagreement
between the transcriptome and proteome regarding the copy
number changes, we calculated an attenuation potential, cor-
responding to the difference between Pearson coefficients
(“Methods”). A higher attenuation potential suggests genes
that have CNVs buffered at the protein level. As previously
mentioned, we then clustered the genes by attenuation po-
tential using an unsupervised Gaussian mixture model. Using
this strategy, we identified 3,435 (42%) genes as attenuated
at the protein level (2,578 low attenuated and 857 high atten-
uated) and 4,689 as nonattenuated (Figs. 1B and 1C and
Supplemental Table 2). These results indicate that up to 42%

of genes show signs of gene dosage buffering at the protein
level, probably due to a posttranscriptional control of protein
degradation, and robustly recapitulates previous findings on a
smaller set of 6,418 genes (4). To discard the possibility that
the lack of correlation between CNV and protein could be due
to noisiness in measuring protein levels, we asked if the
correlation of protein or mRNA measurements, across sam-
ples, could predict known protein–protein associations from
CORUM, among protein pairs at different levels of attenuation
(Fig. S3). As can be seen by the receiver operating curves,
protein interaction pairs are better predicted by protein than
mRNA correlations in all classes, with the difference increas-
ing with the attenuation level. If the attenuation was mostly

FIG. 1. Features of proteins showing gene dosage buffering at the protein level. (A) Number of samples with CNV, mRNA, and protein
measurements, by cancer type and batch. (B) Scatter plot representing the correlation between the CNV and mRNA (x-axis) and the CNV and
protein (y-axis), for each gene. The colors represent the attenuation levels. From light blue to dark blue: nonattenuated, low attenuated and
highly attenuated. (C) Number of proteins by attenuation level. (D) Protein length (log10 of number of residues) by attenuation level. (E)
Representation of COP9 signalosome complex. (F) Scatter plot representing the correlation between the attenuation potential (x-axis) and the
fraction of residues at interfaces in the complex (y-axis), for the eight protein subunits from the COP9 signalosome complex represented in (E).
(G) Percentage of residues at protein interfaces by attenuation level.
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explained by noise in the protein-level measurements, then
the opposite trend would be expected, where correlation of
protein measurements would be noisier for highly attenuated
proteins and a worse predictor of protein–protein interactions.
These results indicate that attenuated genes are not defined
as such because they have noisier protein measurements.

In line with previous findings, the list of attenuated genes is
strongly enriched in well-characterized protein complex mem-
bers and, notably, in members of large complexes (Fig. S4).
More, the attenuation potential is correlated with the number
of subunits in a protein complex, indicating that members of
large complexes have higher attenuation than those of small
complexes (Fig. S4E). Attenuated genes are also expected to
show increased ubiquitination after proteasome inhibition,
which was confirmed here using previously published data
with three different proteasome inhibitors—MG-132, epox-
omicin, and bortezomib (30–33) (Fig. S5A). Having defined a
comprehensive list of genes/proteins with different degrees of
attenuation, we then set out to characterize their physical and
genetic properties.

We first asked if the level of attenuation relates to distinct
essentiality features, based on gene essentiality defined by
CRISPR-Cas9 screens (39). Highly attenuated proteins
showed higher gene essentiality than low- and nonattenuated
proteins (Fig. S5B) (Wilcoxon rank-sum test p value � 2.2e-
16, highly versus nonattenuated proteins). This result is likely
to be driven by the enrichment of protein complex members
of essential complexes, such as the ribosome and spliceo-
some. We then studied the physical characteristics of these
proteins, such as length and structural properties. We found
that the highly attenuated proteins tend to have a smaller size
(Fig. 1D) (Wilcoxon rank-sum test p value � 2.2e-16; highly-
versus nonattenuated proteins), suggesting a size-dependent
buffering mechanism. For the structural analysis, we consid-
ered a total of 2,392 proteins having structurally defined in-
terface models (37). We illustrate this analysis with the COP9
signalosome complex (Fig. 1E) where we noticed a trend in
which the subunits with a larger surface buried in interfaces
had the strongest attenuation (Fig. 1F). While the trend on a
single complex is not significant (Fig. 1F), this trend was
supported across all proteins, with the average fraction of
residues at interfaces increasing from the nonattenuated to
the highly attenuated proteins in a statistically significant
manner (Fig. 1G).

Protein Interaction-dependent Control of Degradation De-
pends on Interface Size—The features of highly attenuated
proteins suggest that protein interactions are an important
determinant of a protein’s susceptibility of having gene dos-
age attenuation. It has been suggested that some members of
protein complexes can act as scaffolding or rate-limiting sub-
units. We have previously analyzed a set of 58,627 protein
interactions among complexes curated in CORUM database
and identified a set of 48 interactions in which a protein can
indirectly control the abundance of an interacting partner (4).

Here we set out to expand this analysis to all currently re-
ported human physical interactions in the BioGRID database
(“Methods”). In total, we collected 572,856 physical interac-
tions and identified proteins whose CNV changes correlate
with the protein abundance of interacting proteins once their
mRNA levels are taken into account (“Methods”). For an in-
teraction pair of proteins X and Y, we used a linear regression
model, where we predict the protein levels of protein Y using
the CNV of X, discounting the mRNA of Y and the impact of
other covariates (“Methods”). Correlating molecular changes
with DNA variation such as CNVs ensures the correlations
found are most likely causal and in the direction of DNA
changes to the molecular changes. Copy-number alterations
in cancer most often occur in large segments leading to
co-amplification or co-deletion of multiple co-localized genes.
For proteins with two or more interacting partners that are
genomically co-localized, we selected only the top-ranking
association to avoid spurious “passenger” associations
(“Methods”).

Out of 572,856 physical interaction,s we had data to test
associations for 411,591 with this model, finding 516 protein–
protein associations as significant using CNV and mRNA
(FDR � 5%) (Fig. 2A and Supplemental Table 3). In this set of
associations, we classified the proteins as controlling (353)—
those capable of controlling the protein levels of their inter-
actions partners; controlled (423)—whose abundance levels
depends on their interactions; and both (60)—proteins with
the two characteristics (Fig. 2B). Out of 423 controlling pro-
teins, 62 had at least two interactions. The top controlling
protein was TCP1, which was predicted to control the protein
abundance of seven complex partners, including CCT3,
CCT5, CCT7, and CCT8 (Fig. 2D). As expected, the controlled
proteins had higher attenuation potential, a consequence of
the posttranscriptional regulation of their protein levels (Fig.
2C) (Wilcoxon rank-sum test p value � 4.8e-6; controlled
versus controlling proteins). The controlled proteins also show
a smaller size (Wilcoxon rank-sum test p value � 9.8e-6;
controlled versus controlling proteins), which corroborates the
hypothesis that protein size is important for the buffering
mechanism (Fig. 2E). These results increased the evidence of
interactions and regulators that may act as drivers of protein
complex assembly.

We hypothesized that protein-interaction-dependent con-
trol of degradation could depend on the protein interfaces
size. To test this, we identified 60 significant associations with
available structural models (“Methods”) and correlated the
protein interface size with the effect size (beta value) and
significance (FDR) of the respective protein association pairs
(Fig. 2F). We found that both statistics are positively and
significantly correlated with interface size (CNV beta - Pear-
son’s r: 0.36; p value: 4.5e-3; -log10 FDR - Pearson’s r: 0.46;
p value: 2.0e-4). We selected two examples to illustrate the
observed differences (Fig. 2G). Posttranscriptional regulation
of TRMT61A by TRMT6, that form the tRNA (adenine-N1-)-
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methyltransferase enzyme, is the second-strongest associa-
tion found in our analysis, and the interface formed between
these two proteins covers a total of 72 residues. In contrast, a
weaker association between CSNK2A1 and CSNK2B may be
explainable by a much smaller interface of 13 residues.

These results show that interface sizes are an important
determinant of the protein-interaction-mediated control of
protein degradation. This may be due to an effect of binding

affinity or differences in the recognition of exposed interfaces
of different sizes by the degradation machinery.

Identification of Phosphorylation Sites That May Modulate
Protein Complex Assembly—The role of phosphorylation in
modulating protein-binding affinities has been well described
(47–49). We reasoned we could use the multi-omics datasets
to find protein interactions affected by phosphorylation, which
in turn could impact complex assembly and protein degrada-

FIG. 2. Physical protein associations. (A) Volcano plot of CNV beta (x-axis) and FDR (y-axis) for 411,591 protein pairs. Nonsignificant
associations (FDR 	 5%) are represented in light blue, and significant associations (FDR � 5%) in dark blue. Associations also found to be
significant (FDR � 5%) in the mRNA model and filtered by genomic co-localization are highlighted with a darker border (516). (B) Number of
proteins by control status. (C) Distribution of attenuation potential by control status. (D) Examples of protein associations between TCP1
(controlling protein) and CCT3, CCT5, CCT7, and CCT8 (controlled proteins). The boxplots show the relation between the CNV changes of
TCP1 and the protein residuals (log2FC) of the interacting partners. The scatter plots show the same relation with the protein abundance of
TCP1. (E) Protein length (log10 of number of residues) by control status. (F) Scatter plots displaying the correlation between the protein
association statistics (beta and FDR) with the protein interface size (number of residues at the protein interface, measured in the controlled
protein). Each dot is a protein association. Two representative associations between CSNK2A1 - CSNK2B (small interface) and TRMT6 -
TRMT61A (big interface) are denoted in red. (G) Representation of protein interactions between CSNK2A1 and CSNK2B and TRMT6 and
TRMT61A. The controlled proteins are colored in yellow (CSNK2B and TRMT61A), and the controlling proteins are colored in gray (CSNK2A1
and TRMT6). The interface area is represented in red.
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tion. Out of 368 samples with CNV, mRNA, and protein meas-
urements, 170 also have quantifications at the phosphosite
level (Fig. 3A). For this analysis, we used proteins and phos-
phosites measured in at least 50% of the 170 samples, cor-
responding to 8,546 proteins and 5,733 phosphosites.

Using the compendium of physical interactions (572,856
protein interactions), we tested whether the changes of a
phosphosite Xp from protein X is associated with the protein
levels of the interacting protein Y. As before, we used a linear
regression model where the protein abundance of protein Y is
predicted using the phosphosite levels of protein X (Xp), while
taking into account the protein and CNV levels of protein X,
the RNA of protein Y, and other covariates (“Methods”). Out of
315,772 phosphosite–protein pairs tested with this model,
11,672 associations were significant (FDR � 5%). To ensure
the associations are directional, we overlapped these associ-
ations with the 516 protein–protein associations found with

the CNV and mRNA models, identifying 32 overlapping asso-
ciations (Fig. 3B, listed in Supplemental Table 4). Our inter-
pretation of these associations is that these phosphosites can
regulate the protein interaction and thereby modulate the
degradation of the complex subunits.

The 32 associations involve 28 phosphosites, and of these,
two phosphosites are already known to regulate interactions
(POLD3 S458 and MYH9 S1943) and an additional case
(EIF3A S492) is not yet known to regulate protein interactions
but is at the interface with other complex members (Fig. 3C).
EIF3A is predicted here to be a “rate-limiting” subunit of the
eukaryotic initiation factor 3 complex and has been previously
experimentally implicated in the control of protein levels of
several of the other subunits (50). One phosphosite of EIF3A
(S492) showed a strong association with the protein levels of
two other complex subunits (EIF3D and EIF3E). In line with
this, we find that the copy number of EIF3A correlates with the

FIG. 3. Identification of phosphorylation sites with a potential role in regulating protein interactions. (A) Number of samples with CNV,
mRNA and phospho(protein) measurements, by cancer type/batch. (B) Volcano plot of phospho beta (x-axis) and FDR (y-axis). Each dot is a
phosphosite–protein association, between a putative regulatory phosphosite Xp and a regulated protein Y. All associations (438) are significant
in the CNV and mRNA models between the putative regulatory protein X and the regulated protein Y. 32 associations (FDR � 5%) are also
significant in the phospho model (dark blue). (C) Representation of EIF3 complex in two orientations. The arrow points to the phosphosite S492
(serine 492) at EIF3A subunit. (D) Significant association between EIF3A/EIF3A S492 and EIF3D. The boxplots show the agreement between
the CNV changes of EIF3A and the protein residuals (log2FC) of EIF3D. The scatter plots show the same relation with the protein and
phosphosite (S492) abundances of EIF3A.
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residual protein levels of EIF3D (i.e. after regressing out EIF3D
mRNA levels) and that the phosphosite levels of EIF3A S492
correlates better with EIF3D protein residual than the EIF3A
total protein levels (Fig. 3D). We further confirmed that the
residual phosphosite levels of EIF3A S492 phosphosite
(once accounting for the protein abundance of EIF3A) is
significantly correlated with the protein levels of EIF3D in
both datasets analyzed (Fig. S6). However, we found data-
set-specific differences in the correlation of the protein
levels of EIF3A and EIF3D (Fig. S6). Overall, these results
suggest that EIF3A S492 may have an impact on protein
complex assembly.

Protein Attenuation Mechanisms Found in Cancer Are Ob-
served in Normal Tissues—The study of the impact of CNVs in
cancer proteomes indicates that up to �40% of genes have
copy number changes that are buffered at the protein level.
Such posttranscriptional regulatory processes should not be
specific to cancer; however, the extent that these effects are
observed in normal cellular states is still largely unknown. To
address this question, we analyzed gene and protein expres-
sion datasets for normal tissues, made available by the GTEx
and Human Protein Map projects. In total, we collected ex-
pression for 5,239 proteins and genes, across 14 tissue types
(“Methods”).

We tested if the posttranscriptional control dependent on
protein interactions observed in cancer is present in normal
tissues. For this, we asked if the protein abundance of
controlling–controlled protein pairs will tend to correlate more
strongly than other protein interaction pairs. Similarly, we
expected that the correlation between the mRNA and protein
levels of controlled subunits would tend to be weaker than for
non-posttranscriptionally controlled proteins. We tested this
using protein–protein interaction pairs measured in the tissue

data with significant controlling–controlled relationships from
cancer data (301 pairs) and all other 161,945 protein–protein
interactions pairs (“Methods”). Reassuringly, we observed
that the correlation of protein abundance across tissues in-
creased for protein pairs with stronger association strength,
for similar levels of mRNA-mRNA correlation values (Wilcoxon
rank-sum test p value � 8.96e-4 between nonsignificant and
significant pairs; p value � 8.25e-06 between nonsignificant
and highly significant pairs) (Fig. 4A). Also, as predicted the
protein to mRNA correlation values across tissues, of the
controlled subunits, decreases with the association strength
(Wilcoxon rank-sum test p value � 0.022 between nonsignif-
icant and significant pairs) (Fig. 4A). We provide two examples
for protein-interacting pairs ARCN1 and COPA and TRAPPC8
and TRAPPC11 where the mRNA levels of the controlling
subunits (ARCN1 and TRAPPC8) appear to dictate the protein
abundance of both proteins (Fig. 4B). These results suggest
that the protein associations identified in the cancer datasets
can also be observed in normal tissues, at least in aggregate.
Importantly, they demonstrate that cancer data can be a
useful resource to study protein homeostasis in normal
conditions.

Buffering of Gene Expression Variation Due to Natural Ge-
netic Variation—If mechanisms controlling the protein levels
are consistent across cell types, then the attenuation models
studied here could help elucidate how natural variation may
sometimes result in changes in mRNA but not protein and
consequently phenotypic traits. Single-nucleotide polymor-
phisms associated with gene expression via quantitative trait
loci (QTL) analysis—known as expression QTLs (eQTLs)—
should also tend to be attenuated at protein level potentially
for the same genes as those found in cancer. To study this, we
analyzed if protein-level CNV buffering could explain the

FIG. 4. Evidence of interaction-mediated control of protein abundances in normal tissues. (A) Pearson correlation coefficient between
the protein of the controlling and controlled genes (blue); mRNA of the controlling and controlled genes (gray) and mRNA and protein
abundance of the controlled gene (yellow); for the nonsignificant associations (FDR 	 5%), significant associations (1% � FDR � 5%) and
highly significant associations (FDR � 1%). (B) Heatmap showing the agreement between the mRNA and protein expression profiles (rows)
across tissues (columns) for two highly significant associations: ARCN1 (controlling) � COPA (controlled) and TRAPPC8 (controlling) �
TRAPPC11 (controlled).
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probability of eQTLs to have phenotypic impact, i.e. in high LD
(r2 	 0.8) with GWAS variants (Fig. 5A and “Methods”; on
genes with significant CNV-mRNA Pearson’s r 	 0.3). To this
end, we relied on cis-eQTLs reported in GTEx and compared
the fraction of GWAS tagging eQTLs for different classes of
protein attenuation (Fig. 5B and “Methods”). We found that
eQTLs corresponding to genes classified as highly attenuated
have a lower fraction of GWAS tagging eQTLs, and that the
difference between the degree of attenuation increases for
eQTLs mapped in multiple tissues (Fig. 5B).

Highly attenuated genes tend to be enriched in protein
complexes and are likely essential to the cell, and therefore
could have specific biases as to how eQTLs are linked to
GWAS associated traits. To account for this potential bias we
replicated the analysis on members of protein complexes.
Interestingly, this shows that the attenuation score has a
higher impact on GWAS tagging probability for members of
protein complexes, and more specifically for members of
large protein complexes (	5 subunits) (Fig. S7).

These results suggest that the CNV attenuation measured
in cancer cells for protein abundance has direct application in
the ranking of potential impact of mRNA variation on pheno-
type differences and support the idea that some of these
attenuation mechanisms may take place in multiple tissues.

DISCUSSION

The joint analysis of multi-omics datasets of cancer sam-
ples suggests that a very significant fraction of the proteome
(up to 42%) is under posttranscriptional control. The set of
genes with protein-level buffering of CNVs is enriched in gene
products belonging to large protein complexes. In addition,

we found that the fraction of interface residues of a protein is
a strong determinant of attenuation. Together with experi-
ments on pulse-chase degradation (6), aneuploidy (1–3), and
the impact of natural genetic variation on protein levels (51,
52), these results implicate protein complex formation as an
important factor in posttranscriptional control, most likely via
a high degradation rate of unassembled subunits. We note
that this mechanism of CNV buffering at the protein level may
be possible with CNV amplifications and deletions. While in
the former it would be manifested by an apparent increase in
the degradation rate of free complex subunits, in the latter it
would result from a decrease in the apparent degradation rate
of free subunits. However, it is likely that multiple mechanisms
contribute to posttranscriptional control measured in the can-
cer samples including, for example, the control of protein
translation rates by microRNAs or RNA-binding proteins. The
extent of posttranscriptional control that is explained by the
different processes remains to be studied.

We observed that the fraction of residues at the interface
correlates with the probability that a protein shows gene
dosage attenuation. Similarly, the size of the interface corre-
lates with the strength of association between pairs of phys-
ical interactions in which one subunit appears to control the
abundance level of the interaction partner. The size of the inter-
face typically correlates with increasing binding affinity between
proteins as well as larger amounts of hydrophobic residues that
are exposed in the absence of interactions. We speculate that
either of these consequences could play a role in the attenua-
tion. In particular, larger fraction of hydrophobic regions could
increase the propensity to form aggregates, and in some cases

FIG. 5. Protein attenuation reduces cis-eQTLs impact on phenotypic traits. (A) Illustration of the potential impact of protein attenuation
on the eQTL association with phenotypic changes. (B) Fraction of eQTLs associated to disease traits for the three classes of CNV attenuation:
no (light blue), low (blue), and high (dark blue) attenuation. The fractions are reported for increasing number of eQTL tissues, i.e. minimal number
of tissues in which an eQTL was called (x-axis). Bottom panel shows the number of genes and eQTLs used in the top figure for cumulative strata
of eQTL tissues.
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hydrophobic regions are known to be recognized for degrada-
tion (53). This could represent a general mechanism for recog-
nition of unassembled complex subunits. The structural analysis
performed here is limited by the current lack of coverage for
structures of protein complexes. In the future, additional struc-
tures may allow us to study in more detail the interface features
that are important for the attenuation mechanism.

We have used data from cancer samples to identify the
attenuated proteins and physical interactions with rate-limit-
ing subunits. We find that most of the controlling–controlled
protein–protein associations we predict have a positive rela-
tionship. Given the working model that these are explained by
protein complex formation, the negative associations could
be explained by cases of mutually exclusive complex mem-
bership. The fact that few associations predicted are negative
are consistent with the idea that most complex members are
not mutually exclusive.

It is still unclear if the same proteins and interactions will
have the same posttranscriptional control in other systems
and/or species. When studying expression variation in normal
tissues and the association of eQTLs with phenotypes, we
observed that, in aggregate, the same proteins and interac-
tions show signals consistent with posttranscriptional buffer-
ing of mRNA expression variation. Of note, we find that eQTLs
are less likely to be linked to phenotypes in highly attenuated
proteins. This is in line with studies of mRNA and protein QTLs
in human induced pluripotent stem cell lines, showing that
genetic variation driving mRNA changes are more likely to be
associated to genotype differences when they are observed
at the protein level (43). These findings highlight the impor-
tance of studying the degree of conservation of these post-
transcriptional processes in different tissues and systems in
the context of human genetics and disease.
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