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Background: Nearly 5 million emergency department (ED) visits for head injury occur 
each year in the United States, of which <10% of patients show abnormal computed 
tomography (CT) findings. CT negative patients frequently suffer protracted somatic, 
behavioral, and neurocognitive dysfunction. Our goal was to evaluate biomarkers to 
identify mild TBI (mTBI) in patients with suspected head injury.

Methods: An observational ED study of head-injured and control patients was con-
ducted at Johns Hopkins University (HeadSMART). Head CT was obtained (ACEP 
criteria) in patients with Glasgow Coma Scale scores of 13–15 and aged 18–80. Three 
candidate biomarker proteins, neurogranin (NRGN), neuron-specific enolase (NSE), and 
metallothionein 3 (MT3), were evaluated by immunoassay (samples <24 h from injury). 
American Congress of Rehabilitation Medicine (ACRM) criteria were used for diagnosis 
of mTBI patients for model building. Univariate analysis, logistic regression, and random 
forest (RF) algorithms were used for data analysis in R. Overall, 662 patients were stud-
ied. Statistical models were built using 328 healthy controls and 179 mTBI patients.

results: Median time from injury was 5.9 h (IQR, 4.0; range 0.8–24 h). mTBI patients 
had elevated NSE, but decreased MT3 versus controls (p  <  0.01 for each). NRGN 
was also elevated but within 2–6 h after injury. In the derivation set, the best model to 
distinguish mTBI from healthy controls used three markers, age, and sex as covariates 
(C-statistic = 0.91, sensitivity 98%, specificity 72%). Panel test accuracy was validated 
with the 155 remaining ACRM+ mTBI patients. Applying the RF model to the ACRM+ 
mTBI validation set resulted in 78% correctly classified as mTBI (119/153). CT positive 
and CT negative validation subsets were 91% and 75% correctly classified. In sam-
ples taken <2 h from injury, 100% (10/10) samples classified correctly, indicating that 
hyperacute testing is possible with these biomarker assays. The model accuracy varied 
from 72–100% overall, and had greater accuracy with increasing severity, as shown by 
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comparing CT+ with CT− (91% versus 75%), and Injury Severity Score ≥16 versus <16 
(88% versus 72%, respectively). Objective blood tests, detecting NRGN, NSE, and MT3, 
can be used to identify mTBI, irrespective of neuroimaging findings.

Keywords: mild brain injury, mild TBi, biomarker, machine learning, neurogranin, neuron-specific enolase, 
metallothionein 3

Another potential advantage of an objective mTBI test relates 
to the heterogeneous nature of the TBI population. mTBI patients 
may have a course that ranges from asymptomatic to significant 
disability, with symptoms emerging weeks to months after the ini-
tial evaluation (18, 19). Not only does this impact the follow-up 
recommendations at the initial visit but also makes it extremely 
difficult to evaluate the success of therapeutic interventions, 
as effect sizes cannot be accurately determined. The ability to 
identify and characterize mTBI in initially asymptomatic patients 
when planning investigational therapeutic studies would be of 
great benefit.

Several biomarkers have been studied for their utility in 
detecting TBI; notably, the pro-inflammatory cytokines, astro-
glial and neuronal proteins, and MRI evidence of neural injury. 
The astroglial markers Glial Fibrillary Acidic Protein (GFAP) and 
the calcium binding protein S100B have been studied extensively 
over the past three decades, with published studies suggesting 
both their utility and limitations. While S100B has been adopted 
as a guideline biomarker for TBI in the US (ACEP) and Europe, 
is being used as a clinical test in some EDs, and is abundantly 
expressed in astrocytes, it is not specific to the brain, limiting the 
utility in cases of polytrauma (20). Most of the published literature 
indicates that S100B decreases after injury, and it has been sug-
gested that increased levels due to polytrauma are most affected 
during the first 48  h, after which a clearer picture of residual 
TBI-related levels can be obtained (21). S100B has been shown 
to be elevated in moderate to severe TBI and to correlate with 
secondary injury and poor outcome. In mTBI, levels generally 
decrease to normal with the first 12 h (21). Therefore, S100B has 
support as a useful marker within these contexts of use. GFAP is 
an abundant intermediate filament protein specific to astroglia as 
well, but is not sensitive or specific in mild injury such as sports-
related concussion. Both S100B and GFAP have been shown to 
be sensitive and informative biomarkers in moderate to severe 
TBI, however, and correlate with inflammation and hemorrhage, 
respectively (22, 23). Several studies have looked at the prognostic 
value of these markers.

A number of neuron-specific serum and CSF proteins have 
also been reported to be elevated in head-injured patients 
diagnosed with TBI, including, most notably, brain-derived neu-
rotrophic factor (BDNF) (1, 2), neurofilament light chain [NF-L 
(24)] and neurofilament heavy chain [NF-H (25)], Tau and phos-
phorylated Tau [pTau (26)], neuron-specific enolase [NSE (27)],  
and ubiquitin carboxyterminal hydrolase like 1 [UCHL1 (28)]. 
Each of these is predominantly expressed in neurons and is local-
ized in different areas of the neuronal infrastructure, including 
axonal localization (NF-L, NF-H, Tau), extracellular (BDNF), 
and cytoplasmic (NSE and UCHL1). Each of these proteins 
has also been shown to have some utility as TBI biomarkers in 

inTrODUcTiOn

There are nearly 5 million annual visits to the emergency depart-
ments (EDs) in the US alone for evaluation of head injuries  
(1, 2). An estimated 70–90% of these are subsequently classified 
as mild traumatic brain injury [mild TBI (mTBI); Glasgow Coma 
Scale (GCS) = 13–15 (3)], a population in which diagnosis can 
be challenging due to the heterogeneous nature of the disorder 
(4, 5). In the acute setting, neuroimaging techniques are com-
monly used to evaluate patients with suspected TBI. The decision 
to obtain cranial computed tomography (CT) scans is guided by 
the American College of Emergency Physicians criteria, and 
the Canadian Head CT Rule (6, 7). Of patients receiving a head 
CT for trauma, over 90% will have no anatomic abnormality. 
However, it is recognized that while CT is sensitive to patholo-
gies such as intracerebral hemorrhage, it is insensitive to diffuse 
axonal injury (8), which is a predominant pathology after TBI 
(9). Recent studies with acute magnetic resonance imaging (MRI) 
find that approximately 25–40% of CT negative patients have 
trauma-related abnormalities noted on MRI (10–12).

The American Congress of Rehabilitation Medicine (ACRM) 
defines mTBI as an acute injury resulting from mechanical force 
impacting the head, associated with an initial GCS score of 13–15 
after 30 min, and any of loss of consciousness (LOC) <30 min, 
posttraumatic amnesia <24 h, a period of confusion at the time 
of the accident (feeling dazed, disoriented, confused), or other 
transient neurologic abnormalities such as focal signs or seizures 
(13). One limitation of the ACRM definition is the subjectivity 
of some of the criteria used in assessment. For example, “feeling 
dazed, confused, and disoriented” is vague and often difficult 
to ascertain. Such subjective reports are nonspecific, and are 
confounded by emotional and psychological factors, and are 
problematic to accurately assess in the presence of intoxication 
with alcohol or other psychoactive substances (14, 15). Because 
of these inconsistencies, the reliability of the ACRM criteria and 
their usefulness as a guideline for treatment decisions is limited. 
Derivation of an objective diagnostic test using blood-based 
biomarkers could provide more reliable identification of mTBI in 
any acute care setting.

There is currently no pharmacologic post-TBI intervention 
that is effective in altering the natural course of recovery follow-
ing a head injury. It is clear, however, that additional trauma after 
the index injury increases the risk of adverse events and should be 
avoided (16, 17). As the decision to permit return to an environ-
ment with a high probability of TBI re-exposure is subjective and 
fraught with conflicting influences, identifying those at risk for 
serious adverse consequences is an important clinical challenge. 
An objective mTBI test would provide guidance as to the prudence 
of allowing a patient to return to an environment at risk for TBI.
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certain contexts of use. These neuronal markers need further 
development to better understand their utility and specificity in 
different clinical contexts and to determine which markers can 
best distinguish mTBI from non-head-injured individuals in the 
acute setting. Other important elements to consider in evaluat-
ing candidate blood biomarkers is that detection is dependent 
on the dynamic changes in protein clearance from CSF to blood 
and the underlying biology of each biomarker protein after injury  
(e.g., binding to receptors or other proteins). Not all biomarkers 
are reliably detectable in the first few hours after injury, with 
rates of change of protein levels and resolution to normal levels 
differing considerably between biomarkers and individuals (21).

Small neuronal proteins may more easily leak out of damaged 
plasma membranes and be detectable earlier than proteins tied 
to the axonal infrastructure. Two such proteins, neurogranin 
(NRGN, 15  kDa) and metallothionein 3 (MT3, 7  kDa) have 
been under evaluation in our laboratories for this purpose. Both 
proteins have some implication in chronic neurodegenerative 
disease pathobiology, could serve as early markers of TBI use-
ful in diagnosis, and could play a role in long-term monitoring 
if shown to play a role in neurodegenerative changes after TBI 
(29, 30). A recently published study from our group suggests 
that NRGN is a novel marker that is elevated in TBI, and other 
reported studies indicate that it may be involved in memory func-
tion, since it is known to play a role in post-synaptic signaling in 
events such as long-term potentiation and has been shown to be 
both expressed in hippocampal neurons and essential in memory 
consolidation in rodent models (31). MT3 is a neuronal member 
of the metallothionein family of proteins that regulate the bio-
availability of metal ions, such as copper, cadmium, and zinc 
(32). MT3 has been shown to increase in expression during brain 
development and to reach its highest level in mature post-natal 
neurons. In animal models of neurodegeneration, MT3 protein 
has been shown to bind to neurofibrillary tangles, amyloid, and 
Synuclein alpha aggregates and to sequester copper, insulating the 
microenvironment from free metal-associated toxicity (33, 34).  
MT3 may, therefore, have a neuroprotective role after TBI and, 
therefore, play a role in patient recovery.

Our purpose was to test the utility of the novel, small molecu-
lar weight TBI biomarkers MT3 and NRGN, together with a 
cytoplasmic neuronal protein that has already been shown to 
correlate with disease severity, NSE (35, 36). This multi-analyte 
panel of three neural biomarkers, detectable in blood, should be 
less dependent on significant proteolysis related to cell damage 
and cell loss and, therefore, reflective of more subtle injury and 
increased permeability of neuronal membranes due to cellular 
damage. The study was designed to evaluate the three biomarkers 
individually and in multi-analyte panels for their usefulness in 
objectively identifying mTBI, irrespective of CT findings or clini-
cal symptoms. The establishment of such a test would allow for 
objective screening for mTBI in any point of care setting.

MaTerials anD MeThODs

enrollment of subjects
Patients included in this analysis were evaluated for a blunt 
head injury at two EDs within the Johns Hopkins University 

Hospital System (Baltimore, MD, USA) and enrolled in the 
Head Injury Serum Markers for Assessing Response to Trauma 
(HeadSMART) study. The study was a prospective observational 
study enrolled for the purposes of biomarker development for 
TBI diagnosis and monitoring. The enrollment period was from 
2014 to 2017. Eligibility criteria included being 18–80 years of 
age, providing written informed consent, having been eligible and 
received a head CT scan, and having a GCS of ≥13. Of the 500 
enrolled patients, 8 were excluded because of the GCS value of 
less than 13 and 30 patients were excluded due to advanced age 
(>80, which were not used due to being beyond the range of the 
approved protocol). One sample was removed because of both 
age and GCS (age = 88, GCS = 11). Patients with an initial blood 
sample collected after the first 24 h of injury were not examined 
in this HeadSMART study. Patients in the TBI cohort received a 
standard of care head CT per the ACEP criteria for TBI imaging 
as part of the ED workup and were assessed by ACRM criteria. 
The patient data collected by physicians and trained research staff 
included demographics, past medical history, signs and symptoms 
following injury, clinician interview, mechanism of injury, physi-
cal findings, social history, and detailed contact information. The 
HeadSMART patients were divided evenly to provide a model 
derivation (n = 251) and validation set (n = 249). To ensure that 
model building and testing was performed using mTBI, only the 
patients meeting ACRM criteria for mTBI diagnosis were used 
(see Figure 1 for the study outline). From the 500 hundred patient 
HeadSMART study 179/251 were ACRM+, used for model deri-
vation, and 155/249 were used for validation of the models. The 
flow diagram in Figure 1 shows the breakdown of patients and 
the selection process for the training and testing the models. No 
difference was observed in clinical data or demographics between 
the two cohorts. Patients were also evaluated for injury severity 
scores (ISS) and adjusted injury severity scores for the head and 
periphery, and CT images were read by a neuroradiologist for 
assessment of abnormal intracranial findings and skull fractures.

Two control cohorts were used for this study. In the HeadSMART 
study, healthy controls were enrolled at Johns Hopkins University 
Hospitals (Downtown and Bayview campuses, Baltimore, MD, 
USA; n = 59). The protocol required controls to have no acute 
medical complaints/active illness and were not ED patients. 
To be included, subjects had to have no known prior or active 
diagnosed psychiatric or neurologic disease, no history of kidney 
failure, stroke, brain tumor, or intracranial surgery, no known 
active medical conditions other than diabetes, hypertension and 
high cholesterol, no recent blood transfusion, not pregnant, no 
recreational drug use within 2  weeks of blood draw, and only 
included non-smokers with a blood pressure below 140/80. 
Further details about the design of HeadSMART have been 
published elsewhere (37).

To increase the number of healthy controls, a second heathy 
control cohort was obtained at Baylor College of Medicine (BCM, 
Houston, TX, USA; n = 269), and consisted of non-patient ED 
waiting room volunteers enrolled after providing informed con-
sent. Comprehensive health histories were taken to exclude head 
injury within 6  months, and they had no known neurological 
disease, cancer, or other major illness. All samples were processed 
with standardized protocols. Only samples with available clinical 
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FigUre 1 | Flow diagram demonstrating the criteria for HeadSMART mild TBI (mTBI) patient selection and effect on sample size for the model derivation and 
validation sets. Final model set numbers also reflect the removal of a small number of samples that did not pass quality control in repeated assay runs.
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data were used. Institutional Review Board approval was obtained 
from all institutions.

All TBI blood samples were obtained in the ED by research 
staff within 24  h of injury. From both TBI and controls, 10  cc 
of whole blood was drawn, separated in serum collection 
tubes (Vacutainer, Becton Dickenson; Durham, NC, USA), de-
identified, processed and stored at −80°C. The samples were then 
shipped on dry ice to the ImmunArray lab (Richmond, VA, USA) 
for testing. Visual inspection was used to screen for hemolysis in 
test samples, and four samples were removed from the analysis, 
on the basis of having evidence of hemolysis.

Biomarker assays
Serum levels of NRGN, NSE, and MT3 were tested using a sand-
wich immunoassay with electrochemiluminescence detection on 
a Quickplex 120 plate reader (Mesoscale Discovery; Rockville, 
MD, USA). Recombinant full-length human NRGN and NSE 
proteins (Origene Technologies, Inc., Rockville, MD, USA) and 
recombinant full-length human MT3 (NovoPro Biosciences, 
Shanghai, China) were used to generate a standard curve relating 
analyte concentration to luminescent signal. Mouse monoclonal 
capture antibodies for MT3 and NRGN, and rabbit polyclonal anti-
bodies for NRGN were produced by ImmunArray (ImmunArray 
USA, Inc.; Richmond, VA, USA). Other antibodies were obtained 
from commercial sources for MT3 (rabbit polyclonal antibody; 
NovoPro Biosciences, Shanghai, China) and NSE (R&D Systems; 
Minneapolis, MN, USA). Samples were tested in duplicate wells in 
replicate assays and the average concentrations obtained via 4PL 
regression curve equation from the standard curve. Acceptance 
criteria included replicate samples varying less than 10% (CV), 
percent recovery of 80–120% and regression curve linearity above 

0.99. The lower limit of detection (LLOD) for NRGN, NSE, and 
MT3 are 0.041, 0.033, and 0.018 ng/ml, respectively.

statistical analysis
Descriptive statistics were calculated for clinical features and bio-
marker data, assessing means and SDs for continuous variables, 
and counts and percentages for categorical variables. Biomarker 
values below the LLOD were substituted with a randomly gener-
ated number between 0 and 0.5 times the LLOD for that biomarker 
assay, consistent with published standards (38). The biomarker 
concentrations were transformed using the logarithm with base 2 
to reduce skewness in the distributions. Kruskal–Wallis tests were 
used to determine significant changes in biomarkers over time 
(between time points, α = 0.05), and univariate analysis in logistic 
regression (LR) was performed to test for significant elevation 
(NSE, NRGN) or decrease (MT3) compared to the distribution 
of the healthy control population (n = 328, α = 0.05).

Performance of single and multi-marker combinations was 
compared using C-statistics. For modeling, patients with miss-
ing biomarker data (samples not evaluated) were excluded. For 
each panel, a LR model was fit and the C-statistic was estimated 
via stratified 10-fold cross-validation (39, 40). Models were also 
constructed with a panel of all biomarkers using the random 
forest (RF) algorithm, and performance re-assessed using strati-
fied 10-fold cross-validation. To further test the accuracy of the 
model, the best RF model was applied to the remaining 155 
ACRM+ patients from the HeadSMART cohort that was not used 
in model building. The model was also tested on a subset of the 
HeadSMART test samples with the blood draw time less than 2 h 
(n = 10), to examine the utility of the model in the earliest period 
post-injury (hyperacute).
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TaBle 1 | Demographics, acute clinical symptoms, mechanisms of injury and biomarker concentrations in TBI patients and healthy control subjects used in the study.

healthy control head injured

Baylor (n = 269) headsMarT 
(n = 59)

Total healthy 
(n = 328)

acrM+  
derivation (n = 179)

acrM+ validation 
(n = 155)

Total mild TBi 
(n = 334)

Mean age, years (SD) 40.65 (±13.43) 31.27 (±12.27) 38.96 (±13.21) 40.40 (±17.18) 45.36 (±17.28) 42.70 (±17.20)
Male (%) 119 (44.24%) 23 (38.98%) 142 (43.29%) 123 (68.72%) 96 (61.94%) 219 (65.57%)

race
White 156 (57.99%) 28 (47.46%) 184 (56.10%) 83 (46.37%) 77 (49.68%) 160 (47.90%)
Black 89 (33.09%) 15 (25.42%) 104 (31.71%) 84 (46.93%) 69 (44.52%) 153 (45.81%)
Asian 15 (5.58%) 14 (23.73%) 29 (8.84%) 2 (1.12%) 1 (0.65%) 3 (0.90%)
Other (includes missing) 9 (3.34%) 2 (3.39%) 11 (3.35%) 10 (5.59%) 8 (5.16%) 18 (5.39%)

ethnicity
Hispanic or Latino 81 (30.11%) 3 (5.08%) 84 (25.61%) 16 (8.94%) 5 (3.23%) 21 (6.29%)
Not Hispanic or Latino 188 (69.89%) 56 (94.92%) 244 (74.39%) 163 (91.06%) 150 (96.77%) 313 (93.71%)

TBi Patients Only

Mechanism of injury
Struck by motor vehicle 19 (10.61%) 17 (10.97%) 36 (10.78%)
Motor vehicle collision 50 (27.93%) 37 (23.87%) 87 (26.05%)
Fall >3 ft or >5 stairs 19 (10.61%) 20 (12.90%) 39 (11.68%)
Other fall 23 (12.85%) 36 (23.23%) 59 (17.66%)
Assault 37 (20.67%) 26 (16.77%) 63 (18.86%)
Struck by/against object 7 (3.91%) 9 (5.81%) 16 (4.79%)
Pedal cycle without helmet 2 (1.12%) 3 (1.94%)  5 (1.50%)
Motorcycle 19 (10.61%) 7 (4.52%) 26 (7.78%)
Other 3 (1.68%) 0 (0.00%)  3 (0.90%)
Computed tomography positive 41 (22.91%) 23 (14.84%) 64 (19.16%)

glasgow coma scale
13 3 (1.68%) 3 (1.94%)  6 (2.69%)
14 29 (16.20%) 21 (13.55%) 50 (14.97%)
15 147 (82.12%) 131 (84.52%) 278 (83.23%)

Altered mental status 120 (67.04%) 109 (70.32%) 229 (68.56%)

Amnesia 129 (72.07%) 118 (76.13%) 247 (73.95%)
Depression 58 (32.40%) 47 (30.32%) 105 (31.44%)
Loss of consciousness 137 (76.54%) 119 (76.77%) 256 (76.65%)
Severe headache 101 (56.42%) 91 (58.71%) 192 (57.49%)

serum biomarker protein concentration (ng/ml)
Mean (SD) Neuron-specific enolase 
(NSE)

3.85 (±5.74) 1.85 (±1.47) 3.48 (±5.28) 12.22 (±37.88) 8.89 (±12.36) 10.68 (±28.99)

Mean (SD) neurogranin (NRGN) 14.08 (±29.82) 18.62 (±32.15) 14.93 (±30.27) 11.53 (±22.50) 13.41 (±33.51) 12.39 (±28.08)
Mean (SD) metallothionein 3 (MT3) 0.84 (±5.53) 0.07 (±0.08) 0.51 (±4.18) 0.12 (±0.35) 0.14 (±0.42) 0.13 (±0.38)

Univariate P-value (each group versus total healthy control)
NSE <0.01 <0.01 <0.01
NRGN 0.05 <0.01 <0.01
MT3 <0.01 0.08 <0.01
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Clinical utility was assessed by defining model performance 
threshold that provided a sensitivity of greater than 98% for an 
ACRM positive diagnosis. All data were analyzed by the statistical 
programming environment R version 3.3.0 and the integrated 
development environment for R, RStudio version 1.0.136 (41).

resUlTs

Overall, 662 patients were utilized in the study. For model devel-
opment, a derivation set of 507 samples was used, where 179 were 
mTBI (ACRM+). The median time from injury to ED presenta-
tion was 5.9 h (IQR, 4.0; range 0.8–24 h). While the sex distribu-
tion was similar between the HeadSMART and BCM healthy 
control populations (univariate analysis in LR, p = 0.46), there 
were more females (56.7% females) in HeadSMART and more 

males in the BCM control group (34.4% females). Demographics, 
clinical features, and mean biomarker levels for healthy and mTBI 
cohorts are reported in Table 1. The clinical and demographic 
data for HeadSMART mTBI patients resemble those reported for 
other published cohorts (37).

General results show that head-injured patients had higher 
levels of NSE and lower levels of MT3, compared to healthy 
controls. NRGN was also elevated in a subset of patients. Figure 2 
shows the distributions of biomarker levels (log2-transformed), 
comparing mTBI patients with healthy control patients in the 
samples used to derive the classifier model. The boxplots repre-
sent the data used to build the LR and RF models to discriminate 
between mTBI and healthy control subjects. The two healthy 
control populations included in the study, when examined 
separately, were shown to have similar distributions for the three 
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FigUre 2 | Distribution of biomarkers in mild TBI (mTBI) and healthy control subjects. Distribution of biomarker concentrations, analyzed according to TBI status. 
For each protein marker assay, box plots show log2-transformed detected serum levels for ACRM+ mTBI patients (left side of each subplot) versus healthy control 
subjects (right side of each subplot). The horizontal black lines represent the median of each distribution; red diamonds indicate the mean for the subgroup. Black 
dots are individual patients with values 1.5 times beyond the interquartile range and are, therefore, outliers.
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biomarkers studied. Similarly, median biomarker concentrations 
were not different between the two healthy control cohorts by the 
Rank Sum Test (all p values > 0.05; data not shown). Univariate 
relationships between controls and mTBI patients showed sig-
nificant differences for each of the three biomarkers (NSE, MT3 
p < 0.005, and NRGN p = 0.055), as well as sex (p < 0.001), but 
not age (p =  0.301). Each biomarker was also studied in three 
bracketed age groups, representing young adult (18–40  years), 
middle-aged adult (41–65  years), and older adults (66–80), in 
order to assess age-related changes (Figure 3). Biomarker levels 
were unchanged in healthy controls for MT3, but NRGN was sig-
nificantly decreased with age (Kruskal–Wallis, α = 0.05), and NSE 
was found to be significantly increased. In contrast, in ACRM+ 
mTBI patients, age-related changes were detected only in MT3, 
with no age-related statistically significant differences for NRGN 
and NSE.

Mean biomarker levels were also plotted in time intervals 
derived from the actual elapsed time, in hours, from injury to 
blood draw. These data, shown in Figure 4, indicate that signifi-
cant changes in biomarker levels occur over the first 24 h after 
injury (Kruskal–Wallis test). Univariate analysis of mTBI serum 
biomarker levels within each time interval, compared to healthy 
control levels was performed using LR. These tests showed 
that the mean levels of NSE, NRGN, and MT3 in serum were 
significantly different from controls at multiple time intervals, 
with NSE and NRGN increasing after injury, and MT3 decreas-
ing after injury compared to controls (asterisks, Figure 4). Mean 
biomarker levels for NRGN were shown to be significantly 
elevated from controls 2–6 h after injury (p < 0.05) and to have a 
continued upward trend. In contrast, MT3 was found to be lower 
than healthy controls by 2 h after injury (p < 0.05), and had a 
continued downward trend through the first 24  h post-injury. 
Although MT3 levels were shown by univariate analysis to differ 
from healthy controls, no difference was seen between TBI sub-
groups with different blood draw times after injury. NSE did show 
significant temporal changes (p = 0.006), with highest detected 

serum levels between 2 and 12 h, whereas MT3 and NRGN were 
not significantly different between different blood draw time 
points due to heterogeneity of levels within the patients (p = 0.56 
and 0.63, respectively).

Table 2 demonstrates the discriminative value of models built 
with LR using single and multiple biomarkers, in differentiat-
ing between mTBI (ACRM+) and non-injured healthy control 
patients. For a performance comparison, the results are presented 
as C-statistics (AUCs). The highest C-statistic was obtained using 
the combination of all three biomarkers (AUC = 0.88, sensitiv-
ity  =  0.97, specificity  =  0.53) to distinguish mTBI (ACRM+) 
from healthy controls. Increasing the panel from single markers 
to multiple biomarkers improved the C-statistic. NSE was the 
strongest performing single biomarker (AUC = 0.85), followed 
by MT3 (AUC  =  0.59) and NRGN (AUC  =  0.51). The two-
biomarker combination model with NSE and MT3 performed 
as well as NSE, MT3, and NRGN in LR by AUC value, but the 
three biomarker panel had distinct advantages when tested in 
other model building algorithms such as RF. We also assessed 
whether the sex of the patient was a significant confounder in the 
biomarker panels that needed to be controlled for, or rather an 
effect modifier, in which case the panels will perform differently 
for males and females. Univariate analysis suggested that sex, but 
not age, was significant as a univariate feature. Because some age-
related differences in biomarkers were found when bracketing for 
age groups, we included both age and sex as covariates in model 
building. The effect of including age and sex in model fitting was 
shown to be more pronounced with single markers, as indicated 
by improved AUC values versus biomarkers alone. Adding age 
and sex as covariates increased the performance of the panels by 
enhancing specificity (increased by 7–11% for biomarkers).

Preliminary models were also generated in another machine 
learning algorithm, RF, to test whether additional model build-
ing techniques could improve classification. Models in RF were 
built using the top performing model that was obtained in the LR 
method (three marker panel including NSE, MT3, and NRGN), 
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FigUre 3 | Distribution of biomarkers in mild TBI (mTBI) ACRM+ and healthy 
control patients among different age groups. Distribution of biomarker 
concentrations in young, middle-aged, and older adults, analyzed separately 
for mTBI and the general population (328 healthy controls). For each protein 
marker assay, box plots show log2-transformed detected serum levels for 
ACRM+ mTBI patients (left side of each subplot) and healthy control subjects 
(right side of each subplot). The red diamonds indicate the mean for the 
subgroup.
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and the results compared with and without age and sex included 
as covariates (see Table  3). The C-Statistic in RF was 0.91, 
with 98% sensitivity and 72% specificity, compared with more 
than 20% lower specificity of the classifier in LR. The positive 
predictive value was improved from 75% in LR model to 84% 
in RF comparing three biomarkers with age and sex included as 
covariates. Negative predictive value improved from 93% in LR to 
96% in RF. Since the highest C-statistics and other metrics were 
nearly equivalent between the MT3-NSE and the MT3-NSE-
NRGN panels in LR, we also tested the two marker panels in RF. 
In contrast to LR results, the performance of the three biomarker 
panel gave a significant increase in specificity (from 55 to 72%) 
using the three biomarker panel. This improvement was seen with 
and without the inclusion of age and sex in the models. In general, 
however, age and sex increased the performance of the models.

As a test to further examine the effect of sex of the patient on 
the model, female and male patient data were used separately to 
build classifier models for TBI, with age included in the models as 
a covariate. ROC curves for the RF models with three biomarkers 
alone (Figure 5A), three biomarkers with age and sex included 
as covariates (Figure 5B), and for male (Figure 5C) and female 
patients and age only (Figure  5D) are shown, and the charac-
teristics at 98% sensitivity compared. Results in females with 
cross-validation were slightly greater (C-statistic 0.93, sensitiv-
ity 0.98, specificity 0.68) and male-only models slightly lower 
(C-statistic 0.87, sensitivity 0.98, specificity 0.51) in performance 
than models built with all patients together (i.e., compared with 
the RF model with both sexes included).

To test the potential clinical utility of the derived biomarker 
model, additional analyses were performed by applying the model 
to the classification of a separate set of mTBI patients. Results 
for the clinical utility analysis are shown in Figure  6. The top 
performing model (NSE, MT3, NRGN, age, and sex in RF) was 
applied to the test set of the HeadSMART TBI patients, being the 
half of the 500 patient cohort that was not used for model deriva-
tion. This test set was analyzed for accuracy in classification by 
applying the RF model (NSE, NRGN, MT3, patient age, and sex) 
to the complete test set and to several clinically relevant subsets of 
the same patients. Since the model was fit to data from ACRM+ 
mTBI (GCS 13–15) patients in the derivation set (179 ACRM+ 
mTBI samples), the same criteria were used for identified mTBI in 
the test set population. These patients were identified as mTBI by 
the biomarker model with 78% accuracy (119 of the 153 patients 
with complete biomarker data for all three markers). To evalu-
ate the sensitivity of the model for the earliest time points after 
injury, a subset of samples obtained less than 2 h from the index 
injury were examined for test accuracy and found to be correctly 
classified in 100% of individuals (10/10). CT positive patients and 
CT negative patient subsets were found to be correctly classified 
91% (21/23 patients) and 75% (94/125) of the time, which could 
indicate greater sensitivity for the panel in more severe injury. 
The remaining five patients of the 153 had skull fracture findings 
by head CT but no apparent intracranial abnormalities, of which 
100% were classified as mTBI by the biomarker model. Similarly, 
ISS was used to determine injury severity threshold, using a score 
of 16 or greater to indicate severe injury. In patients with total ISS 
of 16 or greater, the accuracy of classification by the model was 
found to be 88% (8/9), and in patients with lower severity of injury 
(15 or lower ISS), the accuracy was 72% (78/109). Because the ISS 
scores in TBI patients can also reflect extracranial injury, we also 
looked specifically at the subset of patients that had elevated Head 
AIS alone, with no peripheral AIS >1 and found the accuracy to 
be 90%. There were no patients that had peripheral injury scores 
higher than 1 that did not also have an elevated Head AIS in 
the HeadSMART cohort, but these are reflected in the total ISS 
severity analysis.

DiscUssiOn

We found that NSE and NRGN were elevated, and MT3 
decreased, in mTBI patients compared to controls. This is 
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TaBle 2 | Comparison of C-statistics to identify the best performing LR models 
that differentiate ACRM+ mTBI patients from controls using biomarkers alone, or 
biomarkers with patient age and sex included as covariates.

Features included Total (n) aUc (model with 
biomarkers only)

aUc (model with 
biomarkers, age, 

and sex)

Neuron-specific enolase 
(NSE), metallothionein 3 
(MT3), neurogranin (NRGN)

299 0.88 0.87

NSE, MT3 302 0.88 0.87
NSE, NRGN 483 0.86 0.85
NSE 495 0.85 0.84
MT3 306 0.59 0.66
MT3, NRGN 303 0.59 0.66
NRGN 494 0.51 0.62

FigUre 4 | Biomarker concentrations detected at different post-injury time intervals. Plots of log2-transformed mean serum levels for ACRM+ mild TBI (mTBI) 
patients (red dots) are plotted with the SEM (whiskers). Significant changes were seen in neuron-specific enolase (NSE) levels between time intervals (Kruskal–Wallis 
Test, p < 0.01), whereas metallothionein 3 (MT3) and neurogranin (NRGN) were not significantly different (p = 0.56 and 0.63, respectively). Differences between the 
mean of the healthy control population and each mTBI biomarker level were tested at each time interval. Significant changes were demonstrated at multiple time 
points for each marker, determined by univariate analysis in logistic regression (asterisks on each plot, p < 0.05; dotted line, mean for 328 healthy controls; 
whiskers, SEM).
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consistent with other data in the literature for all three markers 
(1, 2, 27, 42). The decrease detected for MT3 may be related 
to the sequestering of this protein at the injury site in bound 
protein complexes, as reported in experimental models (32). 
Tests of the performance of each individual marker and multi-
marker panels indicated that the best discrimination between 
mTBI and healthy individuals was achieved using all three 
marker proteins. Including age and sex as covariates in model 
building was both necessary and improved performance, indi-
cated by higher C-statistics, and greater specificity. The neuronal 
biomarker panel of NGRN, NSE, and MT3 could objectively 
identify mTBI patients with greater than 75% accuracy in CT 
negative patients. This may provide a useful test for identifying 
mTBI in CT negative patients. If validated in the clinical setting, 
then neurocognitive mTBI intervention may be a reasonable 
strategy (43, 44).

The usefulness of the biomarkers NRGN, NSE, and MT3 should 
be further evaluated in models for risk assessment, to determine 
whether patient stratification is possible. Such follow-on studies 
will require prospective evidence for any prognostic utility. In the 
context of use as an objective screening tool for patients present-
ing to the ED with a suspected mTBI, this three biomarker panel 
appears to identify mTBI with reasonable (72–100%) accuracy. 
An objective test of this type could potentially be developed 
to provide an indication of the severity of injury in patients. If 
achieved, this would be of benefit for those treated on the playing 
field, battlefield, or in any environment that lacks access to neu-
roimaging equipment. These points of care would greatly benefit 
from a test that could indicate which patients were in need of 
advanced medical services, as this information may indicate the 
need for immediate transport to a more comprehensive clinical 
setting.

The three biomarker model studied here, when controlling 
for age and sex bias, has good sensitivity and specificity and a 
high negative predictive value (96%). A preliminary assessment 
of clinical utility was performed by applying the internally 
cross-validated model to a separate validation set of patients. 
This analysis suggests a high sensitivity is achievable across a 
spectrum of mTBI subcategories (CT+, CT−, symptomatic and 
asymptomatic by ACRM, time from injury, etc.) and disease 
severities (ISS). By defining sensitivity at >98%, we identified 
a method to provide a reasonable screening tool for clinicians. 
High sensitivity in this model provides a low false negative rate, 
and while this is obtained at a deterioration in specificity (to 
only 72% in this analysis), it can ensure that the risk of a missed 
diagnosis is clinically unlikely. Whether it is safe to allow the 
patient that is negative to the test (biomarker/age/sex model) to 
return to activities that entail a high risk of head injury will need 
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TaBle 3 | ROC curve analysis for performance of top panels in discriminating mild TBI from controls, listed by statistical method and features included.

Method Features included aUc sensitivity specificity PPV nPV

Random forest (RF) Neurogranin (NRGN), neuron-specific enolase 
(NSE), metallothionein 3 (MT3), age, sex

0.91 0.98 0.72 0.84 0.96

RF NRGN, NSE, MT3 0.91 0.98 0.71 0.83 0.96
Logistic regression (LR) NRGN, NSE, MT3, age, sex 0.87 0.97 0.53 0.75 0.93
LR NRGN, NSE, MT3 0.88 0.97 0.53 0.75 0.93

FigUre 5 | Receiver operator characteristic curves for random forest (RF) models. ROC curve analysis showing plotted models built using three biomarkers 
neurogranin (NRGN), metallothionein 3 (MT3), and neuron-specific enolase (NSE) only (a), three biomarkers with age and sex as covariates in the model  
(B), biomarkers and age in the male patients only (c), and biomarkers and age in female patients only (D). The red dot indicates the threshold point for the  
reported optimal sensitivity (0.98) and the corresponding specificity for classifying mild TBI versus healthy controls. Area under the curve (AUC = C-statistic;  
CI, confidence intervals for each AUC estimate) is indicated for each panel.

to be determined by further investigation and validation studies, 
designed to address this question.

Our study has several limitations, including the fact that the 
study was only performed in the ED environment and involved 
a limited number of centers. Thus, generalizing these findings to 
other non-ED environments is premature. Further, no patient 
decisions were made with any of our results, such that no clinical 
recommendations can be suggested.

An additional limitation is the fact that the healthy control 
population consists of a greater number of females than males 
and that it was in part obtained at a different location than the 
head-injured population. Further, the lack of a non-head-injured 
trauma cohort leaves the possibility of a specificity deterioration 

if systemic trauma has a similar biomarker effect. In general, it 
must also be discussed that hemolysis could interfere with the 
results obtained, since each of the biomarkers studied, though 
enriched in neurons, have also been shown to have some level 
of expression in other tissues including in red and white blood 
cells. Peripheral NSE is found in red blood cells, which may also 
have some level of NRGN expression, noted in recent proteo-
mics studies throughput the body and in public databases (45). 
Metallothioneins are also present as circulating proteins in the 
blood could also contribute to detected blood levels. MT3 is 
mainly expressed in neurons, but public proteomic databases 
also show detection by mass spectroscopy in lung tissue and in 
the testes. We do not see differences between males and females 
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FigUre 6 | Accuracy of test results for clinically distinct subsets of TBI patients. The best performing model, fit in random forest using neurogranin (NRGN), 
metallothionein 3 (MT3), and neuron-specific enolase (NSE) values, patient age, and sex, was applied to subsets of mild TBI (mTBI) patients in the HeadSMART test 
set to test the accuracy in classification. Accuracy was assessed in the complete test set (far left bar), the subset patients that met the ACRM+ criteria, and mTBI 
patients with blood samples acquired less than 2 h from the index injury (<2 h) were tested with the percentage of accurate calls indicated (%). Computed 
tomography (CT) positive and CT negative patient subsets were also examined separately to determine the accuracy of the model. Injury severity score (ISS) was 
evaluated at two separate thresholds to test whether the accuracy of the model biomarker test is affected by injury severity, as well as Head AIS in the subset of 
patients with high Head AIS (>2) without peripheral AIS (AIS = 1 for all categories). Number of samples used to determine the accuracy for each subgroup is 
indicated below each bar.

in the TBI patients, but do see an age-related decline in some 
patients for MT3, as noted. Because of these possibilities, the 
final machine learning models have incorporated adjustments 
for both sex and age to adjust for these clinical differences. Such 
peripheral expression could affect the accurate detection of TBI-
specific NSE or NRGN levels in particular during serum testing, 
particularly in polytrauma or hemolysis [recently reviewed 
for NSE in Ref. (35)]. Each of these markers, during further 
development and validation, will have to undergo strict testing 
to examine the effect of hemolysis on the model performance, 
and attempts made to minimize the impact of blood cell or 
platelet-derived protein expression on test results. How these 
characteristics could affect implementation of these biomark-
ers in a clinical setting is unclear, and further study is needed. 
Incorporation of a quality control feature that is sensitive to the 
detection of hemolysis might also be considered.

Finally, because the biomarkers selected for this investigation 
may not be equally present in the pediatric population, a cohort 
not studied in our investigation, the utility in children younger 
than 18 will need to be determined. Published evidence does 
suggest that NSE is a useful biomarker predicting neurocognitive 
deficits after pediatric TBI (46).

cOnclUsiOn

The results of the study have shown that a panel of three neu-
ronally enriched protein biomarkers, MT3, NRGN, and NSE, 
objectively identifies mTBI patients as compared to healthy indi-
viduals. Further studies of this biomarker panel will determine 
whether it can be used as a tool to stratify head-injured patients 
to direct and evaluate interventions. If so, this would be the first 

such biomarker test to be developed with high sensitivity in mTBI 
that is accurate across the TBI spectrum.
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