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Abstract. Osteosarcoma (OS) is a severe disease that is gener-
ally caused by genetic alterations. Systematic identification of 
driver genes may be used to increase the understanding of the 
mechanisms underlying the disease. The present study identi-
fied a framework to predict driver genes, with the hypothesis 
that driver genes operate through a number of connected 
functional genes. OS‑related genes were extracted from the 
Catalogue Of Somatic Mutations In Cancer and subsequently 
ranked by virtue of their effect on a set of functional genes 
using a network‑based algorithm. This revealed the driver 
genes associated with dysregulated networks. In addition, 
compared with the Mutations For Functional Impact on 
Network Neighbors algorithm, the results obtained using 
the aforementioned network‑based algorithm revealed that 
the proposed method is effective. Gene functional analysis 
demonstrated that the potential OS driver genes were involved 
in OS‑associated pathways. Through the validation of the 15 
candidate OS driver genes, the classifier constructed in the 
present study revealed that the identified driver genes were able 
to distinguish 184 cancer samples from controls. Therefore, 
the present study provided insights into the identification of 
driver genes from a vast amount of sequencing data.

Introduction

Osteosarcoma (OS) is a malignant bone tumor that often 
occurs in children and adolescents (1). Improving the 5‑year 
survival rate remains a challenge (2). OS is characterized 
by the accumulation of somatic mutations, including gross 
insertions and deletions (3). With the development of next 
generation sequencing, an increasing number of OS‑associated 

mutations have been identified. However, only a small propor-
tion of these represent driver mutations, as the majority are 
passenger mutations (4). The identification of driver mutations 
may improve the understanding of the molecular mechanisms 
underlying OS, as well as provide potential diagnostic and 
therapeutic markers. Therefore, the development of accurate 
automated computational prediction algorithms capable of 
screening driver from passenger mutations is of paramount 
importance.

The development of next‑generation sequencing technology 
has allowed the production of a vast amount of mutation data, 
which in turn stimulated the development of algorithms for the 
identification of variants that are likely to be associated with 
disease (5). The Catalogue of Somatic Mutations in Cancer 
(COSMIC) is a comprehensive resource for cataloguing 
somatic mutations in human tumors (6). However, biological 
experiments that investigate the effect of each gene/mutation 
are time‑consuming and not cost‑effective. Computational 
methods, on the other hand, are able to mine vast datasets for 
mutation information. A case group was constructed using 
pathogenic mutations (melanoma-associated mutations) iden-
tified using COSMIC (7). All point mutations in COSMIC can 
be classified as pathogenic or neutral variants using the algo-
rithm Functional Analysis Through Hidden Markov Models 
(FATHMM)‑Math Kernel Library (MKL) (8). FATHMM is 
highly precise, with only a small proportion of false positive 
somatic mutations (8), and is widely used to filter variants 
and to detect driver genes (9). However, as FATHMM is not 
a cancer‑specific prediction tool, improving the accuracy of 
predicting driver genes for a specific type of cancer is urgently 
required. Furthermore, cancer development is generally a 
result of mutations in multiple genes as opposed to a single 
gene. Therefore, network‑based methods that consider the 
interaction between genes may be advantageous.

While the detection of driver network modules implicates 
the constituent genes as being cancer-associated, several 
methods have been developed to directly identify genes 
involved in cancer pathogenesis (5). Direct implication of 
genes may reduce false positive driver gene prediction in 
cases where not all genes in a network module have equal 
oncogenic potential. Although many gene‑level methods rely 
on patterns of mutation, networks have also been applied to 
implicate driver genes. Mutations For Functional Impact on 
Network Neighbors (MUFFINN) is a pathway‑centric method 
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that identifies cancer‑associated genes based on the mutation 
data of both individual genes and their neighbors connected in 
functional networks (10). Application of MUFFINN revealed 
that analysis of mutations in indirect neighbors via diffusion 
algorithms did not improve the predictive performance 
compared to analysis of only direct neighbors in 18 types of 
cancer (10).

The present study performed a systematic exploration of 
somatic mutations by mining datasets for OS‑associated driver 
genes using a network‑based approach. Firstly, the mutation 
impact scores calculated by FATHMM based on COSMIC 
were integrated, and only the pathogenic mutations were 
selected for further study. Secondly, as the power to detect 
driver genes depended on how many mutated genes were 
connected with functional genes, a protein‑protein interaction 
(PPI) network consisting of mutated and functional genes 
was created. Subsequently, the following method was used 
to uncover the driver genes that were associated with the 
functional genes. For each mutated gene, the enrichment score 
for known functional genes was calculated using a network 
approach, and the number of driver genes was summarized into 
a driver‑gene score to evaluate the function of the driver genes. 
Furthermore, the identified driver genes were validated using 
an independent validation dataset. The results revealed that 
the driver genes may be used as biomarkers to predict clinical 
outcome in OS. Taken together, the method described was 
highly predictive for known OS‑associated genes, particularly 
genes with low mutation frequency. Furthermore, the present 
study revealed that several of the identified genes were bona 
fide drivers. Therefore, the present study described an avenue 
for the identification of driver genes from large amounts of 
cancer genome sequencing data.

Materials and methods

Data collection. The mutation data used in the present study 
was derived from COSMIC (version 79; https://cancer.
sanger.ac.uk/cosmic). OS missense mutations were selected 
for further study. The present study focused only on those 
mutations that were predicted to be pathogenic (defined as 
cancerous or damaging) by the FATHMM‑MKL algorithm. 
The FATHMM score ranged between 0 to 1, and variants with 
a score >0.7 were considered to be pathogenic (11) (predicting 
the functional, molecular and phenotypic consequences of 
amino acid substitutions using hidden Markov models). The 
official gene names corresponding to the pathogenic mutations 
were obtained from the National Center for biotechnology 
Information (https://www.ncbi.nlm.nih.gov/). Following the 
removal of duplicated genes, 882 OS‑associated genes were 
identified. Functional gene sets (FGS) were obtained from the 
literature (12), and included genes involved in signaling and 
cancer‑associated pathways and hallmarks. The Cancer Gene 
Census (CGC; cancer.sanger.ac.uk/census), which includes gene 
mutations causally implicated in cancer, was downloaded. The 
CGC is widely used as the gold standard to evaluate the effect of 
predicted driver genes (10). OS‑associated genes were down-
loaded from the OS database (osteosarcoma‑gene association 
database, http://osteosarcoma‑db.uni‑muenster.de/). The gene 
expression dataset (GSe42352) (13) was obtained from the Gene 
expression Omnibus (GeO; www.ncbi.nlm.nih.gov/geo).

Network and influence graph construction. The network was 
built using the Human Protein Reference Database (HPRD, 
release 9; www.hprd.org). Self‑interactions were deleted, and 
39,240 interactions among 9,616 proteins were identified. The 
mutated genes and the FGS were mapped onto the network. 
Node i and j represent genes, and the edge represents an 
interaction between gene i and gene j in the network. The 
influence graph presents the influence of the mutated genes 
on these genes in the FGS. Using the network, a bipartite 
graph was generated, in which nodes on one side represented 
the mutated genes and nodes on the other side represented the 
FGS. edges were drawn if gene i and gene j had an interac-
tion according to the known gene network, i.e., the influence 
graph. The aim of the algorithm was to identify mutated genes 
that were connected to the majority of genes in the FGS. The 
mutated genes were ranked according to their z‑score using 
the following equation:

Where dAF is the enrichment score of mutated genes and the 
FGS, µAF is the expected mean of dAF and σAF is the standard 
deviation of dAF.

First, a network was constructed using the HPRD data-
base, and the mutated genes and the FGS were mapped to the 
network. Second, the association between the mutated genes 
and the FGS was measured using a bipartite graph. In the 
bipartite graph, the nodes on the left represented the mutated 
genes, while the nodes on the right represented the FGS. 
An edge was drawn if nodes on each side interacted in the 
network. The number of edges for each of the mutated genes 
was subsequently calculated. Finally, the z‑score was used as 
the driver gene score. A mutated gene with a z‑score >2 was 
considered a driver gene (14).

Performance benchmarking. The well‑studied CGC dataset 
was used as an approximate benchmarking dataset, as standard 
benchmarking is impractical due to lack of ground truth (14). 
The developed method was compared with MUFFINN 
(www.inetbio.org/muffinn/search.php), which is a method 
for prioritizing cancer genes that accounts for not only muta-
tions in individual genes but also those in neighboring genes 
connected in functional networks. Candidate cancer genes 
were identified by NDmax on HumanNet V1 (http://www.
functionalnet.org/humannet/about.html). Precision, recall and 
F1 scores were based on the top 100 genes in our study and 
were calculated as follows.

Genes found in our method refers to genes identified using the 
proposed method.

Identification of candidate OS driver genes as putative 
module biomarkers. The identified OS driver genes were vali-
dated as putative module biomarkers based on their ability to 
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distinguish between OS and control samples using the random 
forest method (15). The performance of the classification 
model was assessed using receiver operating characteristic 
(ROC) curves and the area under the curve (AUC) (16).

GO and pathway enrichment analysis. To interpret the biolog-
ical significance of the OS driver genes, Gene Ontology (GO; 
http://geneontology.org/) and Kyoto encyclopedia of Genes 
and Genomes (https://www.genome.jp/kegg/) pathway enrich-
ment analyses were performed using the online tool Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID; version 6.7; https://david.ncifcrf.gov/). enrichment 
analysis was calculated using the hypergeometric test. Only 
terms with adjusted P<0.05 were considered.

Subnetwork generation. To better understand the interaction 
between the OS driver genes, a subnetwork consisting of the 
OS driver genes was generated using GenRev software V1 (17). 
The interaction network was sourced from the Pathway 
Commons database (Release 1), which is built on publicly 
available pathway data. The GenRev algorithm requires two 
inputs, network information and a set of input genes (termed 
seed genes), to calculate a subnetwork containing the seed 
gene and non‑seed genes (linker genes). The present study 
used the limited k‑walk algorithm (18), with k=3, to evaluate 
the relevance of seed genes in relation to linker genes by using 
random walk algorithm.

Results

Identification of OS driver genes. based on the FATHMM 
score of each variant, variants were labeled as pathogenic 
or neutral (11). As the non‑pathogenic variants predicted 
by FATHMM are not likely to be implicated in cancer, the 
present study focused solely on the pathogenic variants, simi-
larly to previously published studies (7,19). Furthermore, this 
approach reduces the noise of false positive somatic mutations. 
A total of 1,244 pathogenic mutations in 882 genes were iden-
tified. The genes harboring pathogenic variants were ranked 
using a computational approach as shown in Fig. 1. A mutated 
gene with a z‑score >2 was considered a driver gene (14). 
Using this approach, a total of 15 driver genes were identified. 
The results form Table I demonstrates that tumor protein p53 
(TP53) ranked first out of the driver genes.

Integrating protein interactions improves the enrichment 
of OS genes. In order to evaluate the ability of the approach 
developed in the present study to detect driver genes, the results 
were compared with results obtained using the MUFFINN 
algorithm. The MUFFINN online server requires a set of 
genes and mutation frequencies as input. The algorithm takes 
into account somatic mutations both in genes and their neigh-
bors connected in functional networks (10). MUFFINN can 
also detect mutations in indirect neighbor genes by diffusing 
the mutation occurrence information throughout the network. 
The output is a list of ranked cancer genes (10). based on the 
MUFFINN score, genes were arranged in descending order. 
Precision, recall and F1 scores were based on the top N 
genes (20,21). In the present study, the predictive performances 
for the top 100 candidates were comparable. The performance 

of the method developed in the present study and MUFFINN 
were evaluated, and the former exhibited significant improve-
ment by using mutational data from direct neighbors in the 
network. As displayed in Fig. 2, the precision, recall and F1 
score curves for the top 30 genes obtained using the method 
developed in the present study are higher than the curves 
obtained using MUFFINN. However, the scores for the genes 
after the top 30 genes were higher using MUFFINN.

It is worth noting that, TP53 (a well‑known cancer 
gene) (22) was ranked first in both the method developed in 
the present study and MUFFINN. MUFFINN revealed that 
Ube2I (ubiquitin conjugating enzyme e2 I) ranked second. 
Ube2I is not a mutated gene, but can be connected to the 
mutated genes. Overall, the method developed in the present 
study performed better than MUFFINN with respect to the 
CGC, particularly for the top 30 genes.

Confirmation of predicted OS driver genes. The OS gene 
database and the CGC were used to investigate whether the 
predicted genes had been previously reported. Among the 15 
identified OS driver genes, 13 genes overlapped with the OS 
gene database or the CGC (Fig. 3). Statistical analysis was 
performed in order to determine whether the overlapped genes 

Figure 1. Illustration of OS driver gene identification. COSMIC (version 79) 
data was used. OS was selected as the cancer type and the FATHMM 
algorithm was used to retrieve the pathogenic OS missense mutations. 
The bipartite graph reflects the effects of the mutated genes on the FGS. 
COSMIC, Catalogue of Somatic Mutations in Cancer; OS, osteosarcoma; 
FATHMM, Functional Analysis Through Hidden Markov Models; FGS, 
functional gene sets.
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were randomly obtained from the 882 pathogenic genes. The 
P‑value from the hyper‑geometric test was 1.707x10-13, which 
demonstrated that the identified OS driver genes were not 
randomly obtained. The results indicated that the approach 
developed in the present study detected 15 driver genes that 
are highly associated with OS.

Genes in the disease‑associated network. To further explore 
the biological significance of the 15 OS driver genes, the driver 
genes were mapped to the interaction network. The 15 driver 
genes were inputted into the GenRev software, and 15 seed 
genes and their neighbors were mined. The interaction of the 
15 OS genes is presented in Fig. 4, which demonstrates that all 
15 OS drivers were connected in a subnetwork, where purple 
and red vertices represent the linker and seed genes, respec-
tively. The subnetwork included 39 genes (15 seed genes and 
24 linker genes) and 49 edges (Fig. 4). Among the 24 linker 
genes, 10 linker genes overlapped with genes in the OS gene 
database; however, the association between the other 14 genes 
and OS is unclear.

Functional analysis. To further investigate the biological 
function of the 15 driver genes, functional enrichment anal-
ysis was performed using DAVID. A number of the predicted 
driver genes were significantly enriched in biological 
functions related to tumorigenesis, including ‘regulation of 
signal transduction’ and ‘regulation of cell communication’ 
(Fig. 5A).

Validation of potential OS driver genes. To further validate 
the predicted OS driver genes, these genes were used to 
distinguish cancer samples from controls. The gene expression 
dataset GSe42352 was obtained from the GeO, and consisted 
of 15 controls and 103 OS samples. Moreover, the results 
were compared with the results obtained using 13 biomarkers 

collected from a previous study (23). The performance of the 
15 predicted OS driver genes and the 13 biomarkers was evalu-
ated using a random forest classifier and 5‑fold cross‑ validation. 
The ROC curves and AUC values for the classifications of the 
15 predicted OS driver genes and the 13 biomarkers are shown 
in Fig. 5b. The AUC was 1 for the 15 predicted OS driver genes 
and 0.97 for the 13 known biomarkers. This result revealed 
that the identified driver genes performed well compared with 
the known biomarkers, which demonstrated that the 15 OS 
driver genes are related to OS.

Discussion

Owing to the development of next‑generation sequencing, 
genomic sequencing is a new paradigm in disease 
research (24). A number of somatic mutations in cancer have 
been reported from sequencing data (5). As only a limited 
number of mutations are drivers, it is critical to screen 
driver mutations from passenger mutations (5). Since the 
somatic mutations in the COSMIC database were identi-
fied by genomic sequencing, some false positive somatic 
mutations exist, as the early methods for genome/exome 
sequencing somatic mutations were less reliable than the new 
method (25). Although multiple computational methods have 
been used to predict the pathogenicity of mutations, their 
utility is limited (5). The present study presented an approach 
for integrating mutation data and networks to identify OS 
driver genes. FATHMM is a tool combined with other tools 
to predict driver genes (9). However, the top ranked genes 
often receive more attention and are more important than the 
lower ranked genes (10,14,21).

The results revealed that the method was effective in 
detecting driver genes. A total of 15 driver genes were iden-
tified in the present study, of which 13 have been reported 
previously (11 genes in the OS gene database and 8 genes in 
the CGC). based on a literature search, among these identified 
genes in our study, TP53 mutations are one of the most common 
genetic aberrations in OS. evidence suggests that eGFR is 
implicated in the development and progression of OS (26). 
A meta‑analysis revealed that TP53 is an effective biomarker 
of survival time in patients with OS (27). epidermal growth 
factor receptor (eGFR) belongs to the protein kinase super-
family. eGFR mutations enhance the kinase activity of eGFR, 
which activates pro‑survival pathways, including RAS/MAPK 
pathway (28). evidence suggests that eGFR is implicated in 
the development and progression of OS (26). CRebbP (CReb 
binding protein) plays a central role in transcriptional activa-
tion. SMAD4 (SMAD family member 4) encodes a protein that 
is a part of the transforming growth factor β (TGF‑β) pathway, 
which has been implicated in cancer, including OS (29). Rb1 
(RB transcriptional corepressor 1) is a tumor suppressor gene, 
of which mutations are positively correlated with the survival 
rate of patients with OS. PTK2 (protein tyrosine kinase 2) 
encodes a cytoplasmic protein tyrosine kinase, which drives 
tumor growth through its pro‑proliferative and antiapoptotic 
functions (30). TRAF6 (TNF receptor associated factor 6) 
is an oncogene that plays a crucial role in RAS‑mediated 
oncogenesis in lung cancer (31). A previous study reported 
that the overexpression of TRAF6 is correlated with the 
invasion of OS cells (32). SYK serves a dual role as a tumor 

Table I. Genes ranked by the driver gene score developed in 
the present study.

  Which exist Which exist in OS
Gene Score in CGC? gene database?

TP53 10.29 Yes Yes
eGFR 8.08 Yes Yes
CRebbP 7.19 Yes Yes
SMAD4 5.87 Yes Yes
RB1 5.05 Yes Yes
PTK2 4.76 No Yes
TRAF6 4.61 No Yes
SYK 4.39 Yes No
PAK1 3.21 No No
RASA1 3.21 No No
FN1 3.06 No Yes
VIM 2.99 No Yes
KDR 2.47 Yes Yes
LRP1 2.33 No Yes
SOCS1 2.03 Yes No
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promoter in certain tumors, including B-cell lymphocytic 
leukemia, pancreatic cancer and lung cancer), and as a tumor 
suppressor in other types of cancer, including breast cancer 
and melanoma (33). A previous study suggested that SYK 
may be associated with OS (34). PAK1 [p21 (RAC1) activated 
kinase 1] is a kinase that confers chemoresistance and poor 

outcome in non‑small cell lung cancer (35). RASA1 (RAS 
p21 protein activator 1) acts as a tumor suppressor gene that 
is frequently inactivated in various types of cancer, including 
hepatocellular carcinoma (36). Compared with normal human 
osteoblasts, FN1 downregulation has been reported in human 
osteosarcoma cell lines (37). In addition, a random forest 

Figure 2. Comparison of the precision, recall and F1 scores for the top‑ranking genes using the method developed in the present study and MUFFINN. The 
x‑axis represents the number of top‑ranking genes involved in the precision, recall and F1 score calculation. The y‑axis represents the score of the given metric. 
MUFFINN, Mutations For Functional Impact on Network Neighbors.

Figure 3. OS‑related genes and known cancer genes. (A) A total of 900 known OS‑related genes were obtained from the OS database, 11 of which were 
identified by the method developed in the present study. (b) A total of 572 CGC genes were obtained from COSMIC, 8 of which were identified by the method 
developed in the present study. (C) OS‑related genes and known cancer genes obtained from COSMIC. OS, osteosarcoma; CGC, Cancer Gene Census; 
COSMIC, Catalogue of Somatic Mutations in Cancer.
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Figure 4. Interaction network with the predicted osteosarcoma driver genes. The interactions among the 15 genes were obtained from the Human Protein 
Reference Database. The red nodes represent the 15 identified genes, whereas the purple nodes represent the neighboring genes.

Figure 5. GO enrichment and ROC curves. (A) The GO enriched terms (P<0.05) of the 15 OS driver genes identified in the present study. (b) ROC curves 
obtained using the driver genes and published biomarkers (24). GO, Gene Ontology; ROC, receiver operating characteristic; AUC, area under the curve.
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classifier was used to demonstrate the ability of the predicted 
drivers to distinguish between OS and control samples, and the 
AUC values suggested a good classification performance. The 
15 driver genes outperformed the known biomarkers of OS, 
suggesting that the predicted driver genes are related to OS.

The present study had a number of limitations. 
experimental validation using small interfering RNA and 
cell viability assays was not performed. Therefore, future 
investigations are required to further validate the potential 
driver genes. Furthermore, despite the good performance for 
detecting OS driver genes, the model has certain shortcom-
ings. Firstly, the network information is incomplete, and genes 
that could not be mapped to the network were filtered out. 
Secondly, only the missense mutations were explored, and 
other types of mutations require further investigation as, for 
example, synonymous mutations have been reported to play a 
crucial role in cancer risk (38). Hence, the predictive power of 
the approach developed in the present study may be enhanced 
by additional functional network information.

Taken together, the present study developed a practical 
approach to mine COSMIC for potential OS driver genes. 
This approach may be generalized to identify new diagnostic 
biomarkers and therapeutic targets for OS. Additionally, 
although only OS‑related genes were explored in the present 
study, the method is broadly applicable to other cancer types 
available in COSMIC.

Inferring the driver genes in cancer is one of the goals 
of systems biology. Given that COSMIC provides a signifi-
cant amount of mutation data, the optimization of the use 
of these data to identify the driver genes in a given cancer 
type is important. In the present study, known interactions 
were used to consider the effect of mutated genes on a set 
of functional genes, and 15 OS driver genes were identified. 
These genes were functionally enriched in OS‑associated 
biological functions, indicating that these genes are involved 
in OS. Furthermore, the method developed in the present 
study outperformed the MUFFINN algorithm. Therefore, the 
network strategy of prioritizing OS genes described in the 
present study is effective.
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