
����������
�������

Citation: Yu, Z.; Wang, Y.; Wang, Y. A

Support Vector Machine and Particle

Swarm Optimization Based Model

for Cemented Tailings Backfill

Materials Strength Prediction.

Materials 2022, 15, 2128. https://

doi.org/10.3390/ma15062128

Academic Editor: Karim Benzarti

Received: 20 January 2022

Accepted: 7 March 2022

Published: 14 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

A Support Vector Machine and Particle Swarm Optimization
Based Model for Cemented Tailings Backfill Materials
Strength Prediction
Zhuoqun Yu 1,2 , Yong Wang 3 and Yongyan Wang 1,*

1 College of Electromechanical Engineering, Qingdao University of Science and Technology, Songling Road
No. 99, Qingdao 266061, China; yzqun2007@126.com

2 School of Mechanical and Automation, Weifang University, Dongfeng East Road No. 5174,
Weifang 261061, China

3 School of Mechanical and Automotive Engineering, Qingdao University of Technology, Fushun Road No. 11,
Qingdao 266033, China; wang_yong@qut.edu.cn

* Correspondence: 0019030005@mails.qust.edu.cn

Abstract: This study aimed to investigate the feasibility of using a model based on particle swarm
optimization (PSO) and support vector machine (SVM) to predict the unconfined compressive
strength (UCS) of cemented paste backfill (CTB). The dataset was built based on the experimental
UCS values. Results revealed that the categorized randomly segmentation was a suitable approach to
establish the training set. The PSO performed well in the SVM hyperparameters tuning; the optimal
hyperparameters for the SVM to predict the UCS of CTB in this study were C = 71.923, ε = 0.0625,
and γ = 0.195. The established model showed a high accuracy and efficiency on the prediction work.
The R2 value was 0.97 and the MSE value was 0.0044. It was concluded that the model was feasible to
predict the UCS of CTB with high accuracy and efficiency. In the future, the accuracy and robustness
of the prediction model will be further improved as the size of the dataset continues to grow.

Keywords: cemented tailings backfill materials; unconfined compressive strength; machine learning;
mechanical properties

1. Introduction

During the processing of mineral resources, a large amount of mine tailings was
produced as a major byproduct. It is estimated that contemporary mine tailings production
ranges between 5 and 7 billion tons per year worldwide [1]. However, most of the mine
tailings were dumped into tailings dams, which caused a series of problems, such as land
resources occupation and tailings dam failure [2]. Meanwhile, after mining an underground
ore body, the mined-out stopes usually need to be backfilled [3]. Therefore, cemented
tailings backfill (CTB) technology has been popular in recent years and has become an
important way to dispose tailings [4–6].

Tailings, binder, and water were the main components of the CTB material [7]. After
the mixing process, the CTB slurry was pumped into mine stopes through pipelines and
cured for strength development during the hardening process [8]. During the service life
of a CTB structure, it was important for the structure to have an acceptable mechanical
strength to provide a stable support for the roof. One of the most important and useful me-
chanical properties for CTB design is the unconfined compressive strength (UCS). Several
factors, such as the type of tailings, binder content, solid content, and curing age, could
significantly affect the UCS of CTB [9,10]. Researchers and engineers have made great
efforts to investigate the UCS of CTB in different situations; conducting a series of uncon-
fined compression tests is the most common approach [11–13]. These experimental results
have provided valuable information on the understanding of the strength development
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of CTB. However, experimental investigations were usually relatively time consuming.
More efficient approaches need to be studied to help mining engineers rapidly estimate the
UCS of CTB. Recently, several researchers have proposed various innovative approaches to
predict the UCS of CTB. The basic theory was to find out the relationship between some
values and UCS values, and thus to estimate the UCS of CTB based on the obtained values.
For instance, Yilmaz and Ercikdi [14] used ultrasonic pulse velocity tests to predict the UCS
of cemented paste backfill. They reported that there was a linear relation between the UCS
values and ultrasonic pulse velocity. Xu et al. [15] used electrical resistivity measurement
to assess the UCS growth of CTB material during the hydration process. They reported that
the electrical resistivity properties were highly associated with the UCS and microstructural
properties of cemented paste backfill material. Wang et al. [16] used viscosity to predict
the UCS of CTB. They found that there was a positive linear relation between the viscos-
ity and UCS of CTB. These researches have revealed the relationship between a certain
experimental physical quantity and the UCS. However, it would further lead to greater
efficiency gains and cost savings if the UCS of CTB could be predicted directly from the
influence factors such as the type of tailings, binder content, solid content, and curing age.
A major obstacle in capturing their relation is the significantly increasing complexity of the
mathematical expressions when dealing with multidimensional and non-linear problems.

Fortunately, the development of artificial intelligence (AI) technology has provided
efficient approaches to deal with the multidimensional and non-linear problems. In recent
years, various AI algorithms have been used to build prediction models. For instance, some
researchers have found that it was efficient to use support vector machine (SVM) to solve
complex regression and classification problems [17–19]. In order to further improve the
efficiency, some optimization algorithms were introduced and combined with the SVM. For
instance, Olatomiwa et al. [20] hybridized the SVM with firefly algorithm (FFA) to predict
the global solar radiation. The prediction model based on the hybrid machine learning
algorithms proposed in their study was proved to be an efficient and accurate way to predict
the global solar radiation. García Nieto et al. [21] hybridized the SVM with particle swarm
optimization (PSO) to predict the remaining useful life of aircraft engines. They reported
that the prediction model based on the hybrid PSO and SVM had good performance and
dispensed with previous operation states information. However, few researchers have used
the hybrid AI algorithms for UCS prediction. In 2018, Qi et al. [22] first used AI algorithms
to predict the UCS of CTB materials. They combined PSO and Neural network to model
the non-linear relationships between the influence variables and UCS of CTB materials.
Three years later, they proposed an improved hybrid model based on adaptive neuro fuzzy
inference system and artificial bee colony to predict the UCS, and they found the most
significant influence variables for the UCS of CTB materials [23]. These results paved
ways for the prediction of UCS of CTB materials using hybrid AI algorithms. Feasibility
investigations on using more different AI algorithms, more performance improvement
methods, and wider ranges of influence variables to predict the UCS of CTB are needed in
order to further promote the practical application of AI technology for CTB design. Based
on the previous studies on the AI prediction for UCS of CTB materials [22,23], curing time,
cement-tailings ratio, and solid content were the most significant input parameters for the
UCS of CTB. In addition, CTB with a lower binder content (3–10% of the mine tailings dry
mass) gained popularity recently for its lower costs [24–26].

Therefore, this study aimed to investigate the feasibility of using a hybridized particle
swarm optimization (PSO) and support vector machine (SVM) model to predict the UCS of
CTB with lower binder contents and more curing ages.

2. Materials and Methods
2.1. Materials

There were three types of tailings with different physical and mechanical properties
used for the sample preparation, named as “Iron1”, “Iron2”, and “Gold1”. As shown in
Figure 1, the three types of tailings used in this study were sampled from an iron mine in
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central Shandong Province, an iron mine in southern Shandong Province, and a gold mine
in the northeastern Shandong Province, respectively.
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Figure 1. Sources of the tailings used in this study.

In order to get the digital features for the machine learning approach, chemical and
physical properties of the used tailings were measured using a laser particle size analyzer
(Malvern, London, UK) and X ray fluorescence analyzer (Tianrui, Suzhou, China).

Figure 2 shows the particle size distribution of the three types of tailings. Table 1
shows the main physical and chemical properties of the three types of tailings obtained
from the particle size distribution curves and XRF results.

Materials 2022, 15, x FOR PEER REVIEW 3 of 13 
 

 

2. Materials and Methods 

2.1. Materials 

There were three types of tailings with different physical and mechanical properties 

used for the sample preparation, named as “Iron1”, “Iron2”, and “Gold1”. As shown in 

Figure 1, the three types of tailings used in this study were sampled from an iron mine in 

central Shandong Province, an iron mine in southern Shandong Province, and a gold mine 

in the northeastern Shandong Province, respectively. 

 

Figure 1. Sources of the tailings used in this study. 

In order to get the digital features for the machine learning approach, chemical and 

physical properties of the used tailings were measured using a laser particle size analyzer 

(Malvern, London, UK) and X ray fluorescence analyzer (Tianrui, Suzhou, China). 

Figure 2 shows the particle size distribution of the three types of tailings. Table 1 

shows the main physical and chemical properties of the three types of tailings obtained 

from the particle size distribution curves and XRF results. 

 

Figure 2. Particle size distribution of the tailings used in this study. 
Figure 2. Particle size distribution of the tailings used in this study.

Table 1. Main physical and chemical properties of the tailings.

Physical Properties Iron1 Iron2 Gold1 Chemical Composition Iron1 Iron2 Gold1

Specific gravity 2.76 2.45 2.81 SiO2 55.50 27.41 64.64
Specific surface area (cm2/g) 2640 1710 1600 Al2O3 2.93 8.89 16.79

D10 (µm) 20.41 73.17 1.58 Fe2O3 23.80 27.32 4.84
D50 (µm) 79.62 454.49 8.93 MgO 3.18 12.93 1.14
D90 (µm) 208.89 850.14 50.23 CaO 5.26 18.68 2.72

P.O. 42.5 cement was used as the binder in this study. It was produced in Yangchun
Cement Co. LTD, Zhucheng, China. Two cement contents (5% and 10% of dry tailings
weight) were determined in this study according to the practical situation of cemented
tailings backfill engineering [26–29]. City tap water that met the Chinese National Standards
GB5749 [30] was used as the mixing water for the samples preparation. Main physical and
chemical properties of the cement and water are shown in Table 2.



Materials 2022, 15, 2128 4 of 12

Table 2. Main physical and chemical properties of the cement and water.

Physical
Properties Cement Water Chemical

Composition Cement (%) Water (mg/L)

Specific gravity 3.10 1.00 SiO2 21.40 -
D10 (µm) 6.66 - Al2O3 4.31 -
D50 (µm) 33.2 - Fe2O3 4.91 -
D90 (µm) 81.2 - MgO 3.00 -

CaO 62.34 -
CaCO3 - 80.00

Sulphate - 32.80
Chloride - 21.34
Fluoride - 0.40
Nitrate - 2.18

2.2. Preparation of Samples

Based on the common solid contents of CTB [31–33]. In this study, solid contents
of these mixtures were determined to be 73%, 75%, 77%, and 79%. CTB samples were
prepared using plastic molds and curing chamber. The mixing ratios of all CTB samples are
shown in Table 3. First, dry tailings, cement and water were mixed in a laboratory mixer
(Yitian, Hangzhou, China) for 7 min [34]. Then the mixtures were poured into the plastic
cylindrical mold (50 mm in diameter and 100 mm in height) and left for 12 h. After being
cured for 12 h, the samples were demolded and set in the curing chamber (Shouyi, Beijing,
China) with a 95% relative humidity and 20 ◦C temperature. Curing ages were determined
to be 3, 7, 14, and 28 days. At least two samples were prepared and tested for each mix
ratio to ensure the repeatability of the results [35].

Table 3. Mixing ratios of all CTB samples.

Tailings Type Cement Content a (%) Solid Content b (%) Curing Ages

Iron1, Iron2, Gold1 5 73 3, 7, 14, 28
Iron1, Iron2, Gold1 10 73 3, 7, 14, 28
Iron1, Iron2, Gold1 5 75 3, 7, 14, 28
Iron1, Iron2, Gold1 10 75 3, 7, 14, 28
Iron1, Iron2, Gold1 5 77 3, 7, 14, 28
Iron1, Iron2, Gold1 10 77 3, 7, 14, 28
Iron1, Iron2, Gold1 5 79 3, 7, 14, 28
Iron1, Iron2, Gold1 10 79 3, 7, 14, 28

a Relatively to the dry tailings weight; b Relatively to the dry tailings + cement weight.

2.3. Unconfined Compressive Strength Tests

The unconfined compressive strength (UCS) test methods based on previous stud-
ies [26,36] and ASTM C39 [37] guidelines were carried out. A mechanical press system
(Chaoyang tester manufacture, Chaoyang, China) was used as the test machine. Test sam-
ples that reached the specific curing age were placed axially between the bearing plates
and loaded at a constant displacement rate of 0.2 mm/min. Peak strength values were
recorded to obtain the UCS values. The experimental UCS values would be the core data of
the dataset.

2.4. Machine Learning Algorithms

Two machine learning algorithms were used for predicting the UCS values of CTB.
Support vector machine (SVM) was used as the predicting model and the radial basis
kernel function (RBF) was determined to be the kernel function for SVM. SVM has lots of
advantages when used for prediction and regression analysis, such as very little overfitting
and effectiveness in high dimensional spaces [18–20,38,39]. However, the hyperparameters
of SVM were very hard to tune manually, and the hyperparameters could determine the
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accuracy of the prediction model. Therefore, particle swarm optimization (PSO) was used
to tune the hyperparameters for SVM. PSO is a nature-inspired optimization algorithm
which was first built up by Kennedy and Eberhart [40]. It us a very effective optimization
algorithm that has been used in many cases [22,41–44]. Introduction of the principles of
PSO and SVM can be found in the previous study [45].

2.5. Establishment and Verification of the Prediction Model

The prediction model in this study was established by integrating the SVM and PSO
algorithms. First, the SVM would be trained with default hyperparameters on the training
set, then the PSO would tune the SVM hyperparameters in conjunction with the validation
process. The 5-fold cross validation was used to validate its high accuracy and efficiency.
The flowchart of the integrated PSO and SVM (P&S) model for the UCS prediction is
shown in Figure 3. In this study, PSO parameters were determined based on trial tests
and accumulated experience [21,22,38]. The swarm size and the maximum iteration were
set to be 40 and 30 respectively. The w, c1, and c2 were set to be 0.5 × ln 2, 0.5 + ln 2, and
0.5 + ln 2, respectively. R-square (R2) and mean squared error (MSE) were used to verify
the performance of the trained model.
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3. Results and Discussion
3.1. Unconfined Compressive Strength Dataset

The UCS values of CTB samples in this study are shown in Figure 4. It can be seen
that the UCS increased with the increase of curing age. The CTB sample with a higher
cement content had a higher UCS at the same curing age. These findings are likely to
be related to the increased curing age and cement content leading to the formation of
an increasing amount of cement hydration [12]. These results were consistent with the
previous researches [29,46]. However, as there was no obvious law between the tailings
type and the UCS value, it was hard to conclude or describe the effects of tailings type on
the UCS of CTB by preliminary observation.
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Figure 4. Unconfined compressive strength values of CTB samples.

The dataset was built based on the experimental UCS values. The input variables
were the curing age, cement content, solid content, and chemical-physical properties of
tailings. The output variable was the UCS values. There were 1248 values (96 samples
with 13 features) in this dataset. For instance, the 28 days cured CTB sample made of Iron2
tailings with 10% cement content and 75% solid content has 1 output value which is 1.22,
and 13 input values which are 2.45, 1710, 73.17, 454.49, 850.14, 27.41, 8.894, 27.32, 12.93,
18.69, 0.1, 75, and 28. Units were ignored because all data would be scaled to the [–1, 1]
range during the calculate process of P&S model.

3.2. Training and Verification of the P&S Model
3.2.1. Overall Randomly Segmented Dataset

The whole dataset was segmented into two subsets, with a size ratio of 8:2 randomly
to be the training set and test set, which is a common practice for predicting the UCS of
different materials using artificial intelligence technology [22,45]. The training set was
used for the P&S model training. The fitness values were recorded during the SVM
hyperparameter tuning process by PSO. The ranges of the SVM hyperparameters are
shown in Table 4.

Table 4. SVM hyperparameters and their tuning ranges.

Hyperparameters Explanation Range

C Penalization parameter 1–100
ε Insensitivity 0.0001–0.1
γ Parameter of the kernel function 0.001–100

The fitness curves are shown in Figure 5. It can be seen that the best fitness decreased
from 0.1046 to 0.0757 at the second iteration, and then kept constant until the 22nd iteration.
After that, the best fitness decreased slightly and then kept nearly at 0.0578. It can also be
seen that the average fitness showed a decrease trend before the 20th iteration, and then
kept nearly at a constant. According to the tuning results, the optimal hyperparameters for
the SVM prediction model were C = 78.349, ε = 0.0001, and γ = 0.595.
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The prediction results and verification results on the training set and test set used
the established P&S model based on the obtained hyperparameters are shown in Figure 6.
It can be seen from Figure 6a that most predicted UCS values were almost equal to the
experimental UCS values. The data points were concentrated near the ideal prediction
line. Verification results also confirmed the high accuracy of this prediction model on the
training set, as a high R2 value of 0.9915 and a good MSE value of 0.00133 were achieved.
However, it can be seen from Figure 6b that the data points were scattered sparsely outside
the ideal prediction line, which means that there were relatively large errors between the
predicted values and the experimental values. A low R2 value of 0.5359 and a poor MSE
value of 0.08736 were achieved, which indicated the poor accuracy of this prediction model
on the test set. These results suggest that the obtained model may overfit the training
set and lost the generalization. This may be due to the fact that the dataset contained
four input variables from three different tailings; during the process of the training set
establishment, the data were fetched randomly from the whole dataset and the random
uniform dispersion of training data in different types of tailings was not considered enough.
It can be seen from Figure 7 that the distribution of the training data in each type of tailings
was not uniform. In addition, the dataset was relatively small due to the limitation of the
experimental investigation. The common training set establishment approach based on
the overall randomly segmented dataset may not achieve extensive uniform extraction
when dealing with the prediction work for different types of tailings. This may cause the
overfitting and result in the poor accuracy.
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3.2.2. Categorized Randomly Segmented Dataset

The P&S model was aimed to predict the UCS value of different tailings. Since the
dataset was composed of three different types of tailings experimental data, the whole
dataset was first segmented into three subsets according to the classification of the tailings.
Then each of the subsets was segmented into two subsets with a size ratio of 8:2 randomly
to be the training set and test set. Figure 8 shows the details of the training set and test set
based on the categorized randomly segmented dataset. It can be seen that the data of the
training set and the test set achieved a uniform distribution in each type of tailings.
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randomly segmented dataset.

The hyperparameters tuning process of the P&S model based on the categorized
randomly segmented dataset can be exhibited by the fitness curves as shown in Figure 9.
The ranges of the SVM hyperparameters are shown in Table 3. It can be seen that the
best fitness decreased from 0.0532 to 0.0335 before the 12th iteration. The average fitness
decreased continuously before the fifth iteration and then fluctuated around 0.09. The
tuning results showed that the optimal hyperparameters for the SVM were C = 71.923,
ε = 0.0625, and γ = 0.195.
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Figure 9. Fitness curves based on the categorized randomly segmented dataset.

Based on the obtained hyperparameters, the P&S model was trained on the training
set and tested on the test set. The prediction results and verification results are shown in
Figure 9. It can be seen from Figure 10a that the model performed well in the training set. A
high R2 value of 0.9854 and a good MSE value of 0.00247 were achieved and most prediction
data were almost equal to the experimental data. It can also be seen from Figure 10b that
the data points were concentrated near the ideal prediction line, and a high R2 value of
0.9416 and a good MSE value of 0.00489 were achieved. This indicated that the model
had been trained well and achieved high accuracy on both the training set and the test
set. The categorized randomly segmentation may be a suitable way to train the model for
predicting the UCS of different types of tailings backfill materials.
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3.3. Prediction Capability of the P&S Model

After the well trained P&S model was obtained, the whole experimental data were
used to test the capability of the P&S model on the UCS prediction. Figure 11 intuitively
shows the comparison between the experimental UCS values obtained from the unconfined
compression test and the UCS values predicted by the trained P&S model. On the right
half of Figure 11, the experimental UCS data are arranged in descending order from the
largest to the smallest. The predicted UCS data on the left half of the figure correspond to
the experimental data on the right half of the figure. It can be seen that most predicted UCS
values were similar to the experimental UCS values. The shape consisting of the predicted
and experimental UCS value bars is basically symmetrical. The R2 value was 0.97 and
the MSE value was 0.0044, which indicated a high prediction accuracy of the P&S model.
The whole computation time for the prediction work was 4 s, using MATLAB 2017a on a
personal computer with Intel Core i5 processor. This indicates the high efficiency of the
P&S model.
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prediction.

It can also be seen from Figure 11 that several predicted UCS values have relatively
large errors. This may have been due to the inadequate training caused by the relatively
small size of the dataset. Future research should be undertaken to obtain more experimental
UCS values with more refined curing ages and mix material proportioning settings. Denser
data points will allow for better training of the P&S model, which could lead to a higher
accuracy achievement.

In this study, UCS of CTB samples made of three types of tailings were tested and
used for the training and verification of machine learning prediction work. However, in
order to achieve the UCS prediction for CTB with any types of tailings, more CTB samples
made of different types of tailings should be prepared and tested to let the prediction model
find out the relationship between the physical and chemical properties of tailings and the
UCS of CTB, to thus improve the robustness. An online database that can be accessed
by researchers around the world could be very helpful to rapidly expand the size of the
dataset [23].

As a result, the P&S model had a good capability of predicting the UCS of CTB with
different types of tailings, different curing ages, and different mixing proportioning settings.
In the future, the accuracy and robustness of the prediction model will be further improved
as the size of the dataset continues to grow. This could be helpful to assist the CTB design
process with a high efficiency and accuracy.

4. Conclusions

The current study investigated the feasibility of using an AI prediction model based
on P&S to predict the UCS of CTB with lower binder contents. Based on the results, we
offer the following conclusions:

(1) The common approach for the establishment of training set based on the overall
randomly segmented dataset may cause overfitting and result in the poor accuracy (a
low R2 value of 0.5359 and a poor MSE value of 0.08736 were achieved on the test set)
when dealing with the prediction work for CTB with different types of tailings.

(2) The categorized randomly segmentation may be a suitable way to train the model
for predicting the UCS of different types of tailings backfill materials. Compared to
the overall randomly segmentation approach, a much higher R2 value of 0.9416 and
a better MSE value of 0.00489 were achieved on the test set after the training of the
P&S model.

(3) PSO performed well in the SVM hyperparameters tuning. The optimal hyperparame-
ters for the SVM to predict the UCS of CTB in this study were C = 71.923, ε = 0.0625,
and γ = 0.195.

(4) The P&S model showed high accuracy and efficiency on the prediction work. The
R2 value was 0.97, the MSE value was 0.0044, and the whole computation time was
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4 s. It is feasible to use the P&S model to predict the UCS of CTB with lower binder
contents, different curing ages, and different types of tailings.

This study provided an approach based on the P&S model to predict the UCS of
CTB. However, due to the limitation of obtaining a wider variety of tailings, only three
types of tailings were used to train the model. In the future, more types of tailings will be
used to train the model and new types of tailings could be used for the verification of the
trained model.
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algorithm-based model for global solar radiation prediction. Sol. Energy 2015, 115, 632–644. [CrossRef]
21. Nieto, P.J.G.; García-Gonzalo, E.; Lasheras, F.S.; de Cos Juez, F.J. Hybrid PSO–SVM-based method for forecasting of the remaining

useful life for aircraft engines and evaluation of its reliability. Reliab. Eng. Syst. Saf. 2015, 138, 219–231. [CrossRef]
22. Qi, C.; Fourie, A.; Chen, Q. Neural network and particle swarm optimization for predicting the unconfined compressive strength

of cemented paste backfill. Constr. Build. Mater. 2018, 159, 473–478. [CrossRef]
23. Qi, C.; Ly, H.-B.; Le, L.M.; Yang, X.; Guo, L.; Thai Pham, B. Improved strength prediction of cemented paste backfill using a novel

model based on adaptive neuro fuzzy inference system and artificial bee colony. Constr. Build. Mater. 2021, 284, 122857. [CrossRef]
24. Qi, C.; Chen, Q.; Fourie, A.; Zhang, Q. An intelligent modelling framework for mechanical properties of cemented paste backfill.

Miner. Eng. 2018, 123, 16–27. [CrossRef]
25. Sheshpari, M. A review of underground mine backfilling methods with emphasis on cemented paste backfill. Electron. J. Geotech.

Eng. 2015, 20, 5183–5208.
26. Yi, X.W.; Ma, G.W.; Fourie, A. Compressive behaviour of fibre-reinforced cemented paste backfill. Geotext. Geomembr. 2015, 43,

207–215. [CrossRef]
27. Jiang, H.; Qi, Z.; Yilmaz, E.; Han, J.; Qiu, J.; Dong, C. Effectiveness of alkali-activated slag as alternative binder on workability and

early age compressive strength of cemented paste backfills. Constr. Build. Mater. 2019, 218, 689–700. [CrossRef]
28. Mangane, M.B.C.; Argane, R.; Trauchessec, R.; Lecomte, A.; Benzaazoua, M. Influence of superplasticizers on mechanical

properties and workability of cemented paste backfill. Miner. Eng. 2018, 116, 3–14. [CrossRef]
29. Fall, M.; Belem, T.; Samb, S.; Benzaazoua, M. Experimental characterization of the stress–strain behaviour of cemented paste

backfill in compression. J. Mater. Sci. 2007, 42, 3914–3922. [CrossRef]
30. China State Bureau of Standards. Standards, Standards for Drinking Water Quality, GB5749; China State Bureau of Standards:

Beijing, China, 2006.
31. Hou, C.; Zhu, W.; Yan, B.; Guan, K.; Du, J. The effects of temperature and binder content on the behavior of frozen cemented

tailings backfill at early ages. Constr. Build. Mater. 2020, 239, 117752. [CrossRef]
32. Xu, W.; Li, Q.; Liu, B. Coupled effect of curing temperature and age on compressive behavior, microstructure and ultrasonic

properties of cemented tailings backfill. Constr. Build. Mater. 2020, 237, 117738. [CrossRef]
33. Niroshan, N.; Sivakugan, N.; Veenstra, R.L. Flow Characteristics of Cemented Paste Backfill. Geotech. Geol. Eng. 2018, 36,

2261–2272. [CrossRef]
34. Huang, S.; Yan, E.; Fang, K.; Li, X. Effects of binder type and dosage on the mode I fracture toughness of cemented paste

backfill-related structures. Constr. Build. Mater. 2021, 270, 121854. [CrossRef]
35. Jiang, H.; Fall, M.; Cui, L. Freezing behaviour of cemented paste backfill material in column experiments. Constr. Build. Mater.

2017, 147, 837–846. [CrossRef]
36. Chen, X.; Shi, X.; Zhou, J.; Chen, Q.; Li, E.; Du, X. Compressive behavior and microstructural properties of tailings polypropylene

fibre-reinforced cemented paste backfill. Constr. Build. Mater. 2018, 190, 211–221. [CrossRef]
37. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2002.
38. Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine learning predictive models for mineral

prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev.
2015, 71, 804–818. [CrossRef]

39. Shamshirband, S.; Mohammadi, K.; Khorasanizadeh, H.; Yee, P.L.; Lee, M.; Petković, D.; Zalnezhad, E. Estimating the diffuse
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