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Abstract: Alzheimer’s disease (AD) is an incurable neurodegenerative disease diagnosed by clinicians
through healthcare records and neuroimaging techniques. These methods lack sensitivity and
specificity, so new antemortem non-invasive strategies to diagnose AD are needed. Herein, we
designed a machine learning predictor based on transcriptomic data obtained from the blood of AD
patients and individuals without dementia (non-AD) through an 8 × 60 K microarray. The dataset
was used to train different models with different hyperparameters. The support vector machines
method allowed us to reach a Receiver Operating Characteristic score of 93% and an accuracy of
89%. High score levels were also achieved by the neural network and logistic regression methods.
Furthermore, the Gene Ontology enrichment analysis of the features selected to train the model
along with the genes differentially expressed between the non-AD and AD transcriptomic profiles
shows the “mitochondrial translation” biological process to be the most interesting. In addition,
inspection of the KEGG pathways suggests that the accumulation of β-amyloid triggers electron
transport chain impairment, enhancement of reactive oxygen species and endoplasmic reticulum
stress. Taken together, all these elements suggest that the oxidative stress induced by β-amyloid is
a key feature trained by the model for the prediction of AD with high accuracy.

Keywords: Alzheimer’s disease; data mining; machine learning; support vector machines; neural
network; logistic regression; oxidative stress; transcriptomic analysis; microarray; blood

1. Introduction

Alzheimer’s disease (AD) is a neurological disease that impairs the normal life of
millions of people worldwide and is considered a multifactorial complex pathology. It
is defined on the basis of β-amyloid accumulation in the brain and neurofibrillary tan-
gles. An early onset of the pathology is associated with a familial form of AD that can
be explained by genomic alteration. The genes that, most often, are mutated in these AD
cases are APP [1], PSEN1 [2] and PSEN2 [3]. Considering all AD cases, the familial form
represents 4–6% of cases [4]. In most cases, however, a sporadic form of AD is detected
with onset of pathology in older people (>65 years). Unfortunately, only neuroimaging
techniques such as computed tomography (CT), magnetic resonance imaging (MRI) or
positron emission tomography (PET) and clinical history are used to diagnose AD [5,6].
Moreover, it is also possible to evaluate AD biomarkers, specifically Aβ 1–42 and hyper-
phosphorylated tau, in cerebrospinal fluid (CSF) [7], but it requires an invasive procedure.
Also, it is only possible to diagnose AD once the symptoms are quite evident, and no
clinical procedure can reverse the status of the disease. For this reason, current research
is focused on identifying biomarkers that can be detected, in a minimally invasive way,
before the onset of symptoms. To assess the multifactoriality of the disease, transcriptomic
studies aimed at finding differentially expressed genes (DEGs) between healthy subjects
and patients affected by AD are frequently performed nowadays. Several studies confirm
that alterations in the expression levels of genes related to AD are evident in the brain
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but can also be observable in the blood of patients [8]. The vast majority of annotated
genes on the human reference genome are protein-coding genes, for which we have more
information compared with noncoding RNAs (ncRNAs) [9]. In this sense, it is easy to
understand the biological role of protein-coding genes, unlike ncRNAs. This imbalance
of information in favor of coding RNA makes it possible to extrapolate more information
about their biological role in the context of the disease being considered. Despite the huge
amount of information available for protein-coding genes, the expression of ncRNAs is also
altered in AD. Indeed, different studies show the importance of ncRNAs in the disease, and
their involvement at the transcriptomic level is intensely studied [10]. Also, our research
group has already identified several miRNAs in the AD brain compared with individuals
without dementia [11]. In spite of these considerations, Li et al. show that coding and
noncoding RNA are closely related to each other, and the study of both is important to
have a sufficient overview in a transcriptomic analysis [12]. Nevertheless, even if several
genes were identified as candidate biomarkers based on their levels of expression, there is
no way to discriminate between a healthy subject and an individual with AD without clear
expression of symptoms.

A method used to mine data from transcriptomics information, already applied with
neurodegenerative diseases, is machine learning [13]. Machine learning methods are a sub-
field of artificial intelligence that can classify samples into different classes, minimizing the
cost function of the trained model. Among them, supervised learning is a machine learning
strategy in which the model is trained to learn labeled classes associated in clinics with
healthy or sick conditions. Recently, inspecting the expression profile, this technique has
been achieving excellent results in medical fields such as cancer [14,15]. The machine learn-
ing model can learn from different sources such as clinical and personal records, diagnostic
images, biopsies or microarray data [16]. Some machine learning models are trained in
neurodegenerative fields and also for AD. Most of them learned to predict AD through PET
or other neuroimaging techniques [17]. Machine learning approaches have also been used
to discriminate the disease at the epigenomic brain level [18]. Meanwhile, only a few of
them are based on blood samples. The latter are usually trained on relatively small cohorts
and are focused on ncRNAs such as miRNA [19–21]. The application of machine learning
predictors to personalized medicine can help clinicians to make a diagnosis quickly with
minimal errors. Using machine learning methods, it is also possible to discriminate which
are the genes that are most responsible for the differences between the AD and healthy
groups. The study of these genes makes it possible to discover and explore new possible
biomarkers for pathology. Transcriptomic studies are not only focused on coding genes;
also considering the implications of ncRNA in AD, many different research studies are
based on miRNA, long non-coding RNA (lncRNA) or other classes of ncRNA. In light
of the above, we designed a new machine learning predictor based on a microarray data
platform that collects probes from 180 samples, 90 with AD and 90 without dementia
(non-AD group), both for ncRNA and coding RNA. In particular, our model is able to
predict AD with high accuracy starting from blood samples, discriminating genes that
could be important markers for the early diagnosis of the pathology.

2. Results
2.1. Selected Features

To look at the variance in the original datasets, we performed Principal Component
Analysis (PCA). In particular, we searched for how many features were necessary to reach
95% of the variance, and we observed 117 components (Figure S1A). We observed that
the “mutual_info_classif” score function gave better results, so we selected all the features
whose score was higher than 3 variances after z-score normalization. We then recomputed
the PCA using only the features selected, and 95% of the variance was reached with
87 components (Figure S1B). Since the amount of features was reduced, we computed the
biotype distribution of the maintained ones. Thus, we plotted the biotype distribution
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on the selected features in Figure 1, and we observed a representation very similar to the
original dataset.
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Figure 1. Biotype distribution in the dataset. The biotype characterization of the probes before
(A) and after (B) feature selection. The two distributions are quite close to each other. Most of the
probes are protein-coding. Also, large amounts of lncRNA, processed pseudogenes and transcribed
unprocessed pseudogenes are present.

Then, the feature normalization step was performed using RobustScaler and MinMaxScaler.
We enriched the selected features with Gene Ontology using the Panther website. We

observed the over-representation of four ontologies in the category “biological process”,
which are shown in Table 1. Particularly, “mitochondrial translation” and “mitochondrial
gene expression” are very specific ontologies, while “cellular metabolic process” and
“cellular process” are very general and not very informative.

Table 1. Gene ontologies enriched for the selected features.

Gene Ontology ID Gene Ontology Description Genes Fold Enrichment False Discovery Rate

GO:0032543 mitochondrial translation 19 3.86 2.02 × 10−2

GO:0140053 mitochondrial gene expression 21 3.31 3.46 × 10−2

GO:0044237 cellular metabolic process 392 1.20 4.65 × 10−2

GO:0009987 cellular process 777 1.12 2.65 × 10−6

All of the enriched gene ontologies in the “biological process” category with statistical significance are shown.
The ontologies are sorted by fold enrichment.

Then, we also looked at the enriched features to see which of them was already associated
with the “Alzheimer Disease” pathway in the KEGG database. Indeed, this database collects
only manually curated information. The genes ATF4, ATP5PF, AXIN1, CDK5, COX7A2L,
EIF2AK2, ERN1, FZD2, HRAS, LRP6, NDUFB22, NDUFS5, NDUFS7, NFKB1, PSMA5, PSMD1,
PSMD8, SDHA, SDHC, SDHD, SLC39A9, WNT4 and XBP1 are the 23 selected features that
are included in the pathway and highlighted in red in Figure S2.

2.2. DEGs

Furthermore, we computed the DEGs of the condition AD against non-AD. The
differential analysis of the transcriptomic profiles revealed 4780 DEGs. Of these, 3562
are upregulated and more expressed in AD, whereas 1218 are downregulated and more
expressed in non-AD.

Thus, we enriched the 4521 DEGs for which the name of the probe was associated with
a HGNC symbol. We observed that 167 ontologies are significative as “biological process”.
Among them, we show in Table 2 the 10 ontologies with highest fold enrichment.
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Table 2. Gene ontologies enriched for the DEGs.

Gene Ontology ID Gene Ontology Description Genes Fold Enrichment False Discovery Rate

GO:0070129 regulation of mitochondrial translation 17 3.39 2.39 × 10−2

GO:0062125 regulation of mitochondrial gene expression 18 3.10 4.78 × 10−2

GO:0000154 rRNA modification 21 2.83 3.08 × 10−2

GO:0000387 spliceosomal snRNP assembly 21 2.76 3.75 × 10−2

GO:0140053 mitochondrial gene expression 76 2.73 1.58 × 10−8

GO:0032543 mitochondrial translation 59 2.73 1.39 × 10−6

GO:0006476 protein deacetylation 30 2.46 2.03 × 10−2

GO:0016575 histone deacetylation 28 2.41 3.78 × 10−2

GO:0001510 RNA methylation 43 2.33 1.93 × 10−3

GO:0042273 ribosomal large subunit biogenesis 33 2.29 2.10 × 10−2

The 10 enriched gene ontologies in the “biological process” category with statistical significance and higher fold
enrichment are shown. The ontologies are sorted by fold enrichment.

2.3. Differentially Expressed Features

Additionally, we specifically looked at the genes identified both via feature selection
and differentially expressed analysis. The Venn diagram in Figure 2 shows that 608 selected
features are not identified as DEGs and 4090 DEGs are not inspected by the feature selection.
Interestingly, the Venn diagram also highlights 431 genes that intersect the two categories.
Indeed, they are identified as DEGs by the transcriptomic analysis but these genes are also
used by the model as important features to make the prediction. In this sense, they are
differentially expressed features.
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Figure 2. Venn diagram for distribution of DEGs and selected features. Among all the 4521 DEGs,
the 4090 in the blue section are identified exclusively as DEGs. On the other hand, the 608 features
in the green section are not identified as DEGs. Interestingly, 431 DEGs are highlighted in both the
sections (intersection). Specifically, the genes included in the intersection are identified both as DEGs
in the differential analysis and as important features by the model.

Since the 431 differentially expressed features are identified both by differential expres-
sion and machine learning analysis, we speculate an important role for them as biomarkers.
Thus, we enriched the 431 DEGs, and the first 10 ontologies with the highest fold enrichment
are reported in Table 3.
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Table 3. Gene ontologies enriched for the DEGs included as selected features.

Gene Ontology ID Gene Ontology Description Genes Fold Enrichment False Discovery Rate

GO:0032543 mitochondrial translation 14 7.20 6.25 × 10−5

GO:0140053 mitochondrial gene expression 16 5.97 1.36 × 10−4

GO:0008380 RNA splicing 23 3.32 9.90 × 10−4

GO:0006412 translation 23 3.16 1.78 × 10−3

GO:0043043 peptide biosynthetic process 24 3.08 1.83 × 10−3

GO:0006397 mRNA processing 26 3.06 8.87 × 10−4

GO:0016071 mRNA metabolic process 35 3.04 6.37 × 10−5

GO:0006518 peptide metabolic process 28 2.70 2.65 × 10−3

GO:0006396 RNA processing 39 2.36 1.38 × 10−3

GO:0043603 cellular amide metabolic process 35 2.26 7.80 × 10−3

The 10 enriched gene ontologies in the “biological process” category with statistical significance and higher fold
enrichment are shown. The ontologies are sorted by fold enrichment.

Thus, we focus our attention on the first ontology based on fold enrichment, which is
“mitochondrial translation”. The DEGs included in the ontology are represented in Table 4,
and all of them are upregulated. Also, we have plotted in the heatmap in Figure 3 the
expression level of these DEGs among all the samples in the cohort.

Table 4. DEGs included in the “mitochondrial translation” biological process.

Gene Non-AD Mean Expression AD Mean Expression Fold Change q-Value

MRPL54 0.56 1.14 0.58 1.82 × 10−2

MRPS23 0.29 1.35 1.06 2.01 × 10−3

MRPL22 0.45 1.33 0.88 1.99 × 10−3

MRPS18A 0.58 1.28 0.70 1.20 × 10−2

MRPL24 0.40 1.16 0.75 4.19 × 10−3

MRPS9 0.33 1.19 0.86 4.52 × 10−3

MRPS30 0.38 1.44 1.05 3.68 × 10−4

AARS2 0.33 1.21 0.88 1.27 × 10−3

IARS2 0.34 1.02 0.68 4.30 × 10−2

AIP 0.50 1.17 0.66 2.65 × 10−2

GATB 0.48 1.20 0.72 2.02 × 10−3

MRPL15 0.49 1.23 0.74 7.25 × 10−3

MRPL20 0.57 1.13 0.56 3.85 × 10−2

MRPL4 0.34 1.25 0.91 1.28 × 10−3

The fold change for the analysis was computed using limma. All the values are rounded to the second decimal
digit. The q-Value stands for the p-Value after post-hoc Benjamini-Hochberg correction.
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2.4. Training and Test Sets

The dataset with the selected features was used to build the training set and the test
set. Specifically, we split the dataset into two parts in the proportion 80% (training)–20%
(test). After the splitting, we computed the statistics of the training set to be sure that the
proportion of personal characteristics was maintained. As shown in Figure 4, in the training
set 73 are non-AD individuals and 71 were affected by AD, while 74 are male and 70 are
female. On the other hand, the test set is composed of 17 non-AD individuals and 19 AD
patients, among which 18 are males and 18 are females. Furthermore, the mean age of the
training set is 76.65, whereas it is 75.67 in the test set.
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Figure 4. Dataset partition. The bar chart shows the distribution of statistics in training (on the left)
and test (on the right) sets. The blue palette identifies the condition (non-AD or AD) of the different
individuals. On the other hand, the orange palette shows the gender information (male or female).
The chart highlights that the ratios of condition or gender are very similar in the training and test sets.
The height of each bar shows the number of samples in the specific category.

2.5. Model Evaluation

We trained eight different models using our dataset: logistic regression, linear dis-
criminant analysis, decision tree classifier, Gaussian naive Bayes, k-neighbors classifier,
random forest classifier, neural network and support vector machines. Additionally, for the
model with the highest scores using default parameters, we performed a huge grid search
inspection training the model on several different hyperparameters as shown in Table S1.
Specifically, for the logistic regression method we tuned the penalty and consequently the
L1 ratio during the elastic net. For the k-neighbors classifier, we tried different numbers
of neighbors, and for the random forest classifier we used different estimators. The neu-
ral network was trained using different combinations of maximum iteration to converge,
different hidden layers and different learning rates. The support vector machines model
was validated on several different values of gamma and C for the three different kernel
functions. At the end, the higher scores for level of accuracy and Receiver Operating Char-
acteristic (ROC)-Area Under the Curve (AUC) were assigned to support vector machines
(Figure 5A), logistic regression (Figure 5B) and neural network (Figure 5C).
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for support vector machines (A), neural network (B) and logistic regression (C). (A) shows that the
ROC-AUC for the support vector machines model is 93%; (B) shows that the ROC-AUC for the neural
network model is 93%; (C) shows that the ROC-AUC for the logistic regression model is 93%.

In particular, the general highest scores shown in Table 5 were obtained for the support
vector machines with C = 22, gamma = 2−7 with the radial basis function kernel. High
scores were also obtained by the logistic regression with L1 penalty and the neural network
in 200 iterations, with 10 hidden layers at 0.001 learning rate. For each model we also
computed the accuracy, F1, Matthews Correlation Coefficient (MCC), precision and recall.

Table 5. Models that obtain the best performance.

Model ROC Accuracy F1 MCC Precision Recall

Support Vector
Machines 0.93 0.89 0.90 0.78 0.86 0.95

Neural Network 0.93 0.86 0.87 0.72 0.85 0.90
Logistic Regression 0.89 0.89 0.90 0.78 0.86 0.95

Among all the models, the support vector machines, neural network and logistic regression methods achieved the
best performance after grid search.

3. Discussion

AD is a neurodegenerative disease that affects millions of people worldwide. To date,
there is no way to confirm diagnosis of AD during life. The suggestion of AD diagnosis
starts from clinicians when mild cognitive impairment flanks with problems in language,
memory and other severe cognitive impairments. Clinicians can suppose AD after CT, PET,
MRI or other imaging techniques. Each neuroimaging technique can focus on different
aspects of the disease, but all of them lack specificity or sensitivity [22]. To date, brain
autopsy is the only method that can be used to diagnose AD. For this reason, new predictive
biomarkers are needed to reveal the early onset of AD antemortem. Levels of β-amyloid in
the cerebrospinal fluid can be used as a biomarker for AD. Nevertheless, sampling the CSF
is a highly invasive strategy [23]. Conversely, blood-based biomarkers are considered a very
promising non-invasive strategy for early AD diagnosis [24]. Herein, we used a cohort of
90 AD patients and 90 individuals not affected by AD as control samples. Data for our
cohort come from blood samples obtained in a non-invasive way. Specifically, the RNA was
extracted from the blood, and the transcriptome was then sequenced through microarray.
After a first step of data cleaning and manipulation, we split our cohort using 80% of the
samples for the training set and 20% for the test set. Specifically, the mean ages of the
samples in the training set and in the test set are quite close to each other. Additionally, as
shown in Figure 4, the training set and test set are also similarly split in terms of disease
condition and gender. This situation is required in order to build a reliable model that
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can equip healthcare staff in the clinical procedure. Thus, we trained the seven different
machine learning models as shown in Table S1, testing whether any model was able to
predict the two classes of AD patients and non-AD individuals. We observed that the linear
discriminant analysis, decision tree classifier and Gaussian naive Bayes were not very good
at discriminating between non-AD and AD. K-neighbors and random forest classifiers
obtained better results but still not so impressive. The best performances were obtained
by support vector machines, neural network and linear regression. Nevertheless, a huge
grid search inspection was necessary. Indeed, with certain hyperparameters, even these
three models performed very badly. We selected the best model on the basis of ROC score
and accuracy. Then, we also computed F1, MCC, precision and recall scores. The ROC
of the support vector machines reaches 93% (Figure 5A) and the accuracy reaches 88.8%
with the radial basis function kernel. Also, the ROC of the neural network reached 93%
(Figure 5B) but the accuracy was slightly lower (86.1%). Conversely, logistic regression has
an accuracy of 89% but the ROC score is only 89% (Figure 5C). For this reason, the highest
score is obtained by the support vector machines model.

Since the scores of the predictor were quite high, we focused our attention on the
kind of features selected to train the model. In particular, we investigated the specific
biotype of the features that were used. We extracted this information for most of the
probe using biomaRt. Figure 1A shows that most of the probe in the original dataset was
made up of protein-coding genes. Then, a wide representation of lncRNA, processed
pseudogenes and transcribed unprocessed pseudogenes is present. Thus, the feature
selection procedure was trained using only miRNA, only lncRNA, only protein-coding or
using all the features. We observed that the score of the protein-coding was quite close
to the one that considers all the features. On the other hand, taking into consideration
only the non-coding genes, the different scores drop a little bit. This consideration should
also be taken into account because different models are trained just on the inspection of
non-coding RNAs. Nevertheless, we have to take into consideration that the number of
protein-coding genes overwhelms the number of non-coding RNAs in our set of features.

Once we had selected one specific gene biotype to run the study, or all the types, our
models were not trained using the entire set of features. Indeed, we based our choice on
PCA evaluation. Firstly, we searched for the number of linear combinations able to reach
95% of the variance. Now, we focus our attention on the models trained with all the biotypes
since they reached the highest scores. In particular, these models count 899 protein-coding,
97 lncRNA and 69 processed pseudogenes along with other classes with less representation.
Interestingly, the biotype distribution after feature selection, represented in Figure 1B,
shows a very similar representation to the distribution of the features of the original dataset.
Before feature selection, we had 117 components. We tried different “mutual_info_classif”
and “f_classif” score functions to reduce the number of components. We observed that
the final scores were quite close. Nevertheless, “mutual_info_classif” produced better
results so we chose this function to evaluate the test set. After feature selection, we have
87 components. The high scores obtained by the model allow us to speculate that the
selected features may be quite important to classify AD. For this reason, we want to inspect
the biological meaning of our features.

We used Gene Ontology enrichment to observe which processes, functions and com-
ponents are related. Table 1 shows the very interesting results obtained by the enrichment
of the selected features in the biological process ontology. Indeed, we observed two very
specific ontologies related to the expression and translation of genes in mitochondria. In
addition, we enriched the biological process of the 4521 DEGs obtained analyzing the
transcriptomic profile of the whole cohort. Given the high number of DEGs, we found
a high number of ontologies. Nevertheless, we found several ontologies related to mi-
tochondrial and ribosome activity to be highly enriched (Table 2). To understand the
biological meaning of the features used by the model, we also took advantage of the Venn
diagram in Figure 2 to look at the features identified by the analysis of DEGs. Among
the 431 differentially expressed features, Table 3 highlights the 10 most enriched ontolo-
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gies, which are again related to the expression and translation of genes in mitochondria.
Particularly, we focus our attention on the “mitochondrial translation” ontology, which
is the most specific enriched ontology that we found. The ontology is represented by
MRPL54, MRPL22, MRPL24, MRPL15, MRPL20, MRPL4, MRPS18A, MRPS30, MRPS23,
MRPS9, AARS2, IARS2, GATB and AIP. Interestingly, all of them are upregulated. MRPL54,
MRPL22, MRPL24, MRPL15, MRPL20 and MRPL4 are genes that encode for the large 39S
mitochondrial ribosomal subunit. On the other hand, MRPS18A, MRPS30, MRPS23 and
MRPS9 are components of the small 28S mitochondrial ribosomal subunit. Mitochondrial
ribosomes, also known as mitoribosomes, are organelles active in the mitochondria that act
in the matrix translating mitochondrial mRNA [25]. Gonçalves et al. showed that several
mitochondrial ribosomal proteins (MRPs) are implicated in apoptosis and also associated
with delayed cell proliferation and cell cycle progression. Also, MRPs have already been
associated with neurodegenerative diseases such as Parkinson’s disease [26]. Sylvester
et al. studied how MRPs can be implicated in mitochondrial disease [27]. Alterations in
proteins involved in mitochondrial protein synthesis, including MRPs, were also described
in mitochondria-associated membrane in the APP/PS1 mouse model of AD [28]. The
inhibition of an MRP was found to reduce amyloid aggregation in models of AD, through
an increase in mitochondrial proteostasis [29]. Interestingly, our study pointed out the
importance of mitochondrial translation, highlighting that the genes involved, including
MRPs, could also be important to discriminate AD samples from non-AD ones. These
results indicate that they may represent new biomarkers and that their role in the pathology
needs to be explored more deeply. Furthermore, AARS2, IARS2 and GATB are involved in
tRNA synthesis. In particular, AARS2 belongs to the class-II aminoacyl-tRNA synthetase
family and IARS2 to the class-I aminoacyl-tRNA family. GATB is part of the glutamyl-
tRNA(Gln) amidotransferase complex and biosynthesizes glutaminyl-tRNA(Gln). IAP
encodes for the cytoplasmic Aryl Hydrocarbon Receptor Interacting Protein. Yano et al.
showed that in cultured cells this protein acts in a multiprotein complex along with other
mitochondrial proteins to enhance the import of mitochondrial preproteins [30].

Additionally, we also inspected the “Alzheimer Disease” pathway in the KEGG
database. Specifically, we searched for whether any of the features we had selected was
already known to be associated with AD. In particular, PSMD1 and PSMD8 encode for the
19S proteasomal subunit while PDMA5 encodes for the 20S proteasomal subunit, part of
the 26S proteasome. The aim of the 26S proteasome is the degradation of proteins marked
by ubiquitins. Nevertheless, following oxidative stress, the proteasome’s activity is altered
and the ability to degrade proteins can be lost [31]. In this way, the lack of degradation
of proteins supports the accumulation of β-amyloid and hyperphosphorylated tau in AD.
In turn, β-amyloid accumulation can aggravate the process. Indeed, β-amyloid peptides
have been shown to inhibit the 26S proteasome’s proteolytic activities [32]. β-amyloid has
the propensity to accumulate in the mitochondrial cristae through the translocase of the
outer membrane (TOM) [33]. Sirk et al. showed that the accumulation of β-amyloid in the
TOM hinders the crossing of proteins encoded by the nucleus inside the mitochondria [34].
As positive feedback, the aforementioned mitochondrial ribosome proteins, which are
encoded from nuclear DNA, cannot cross into the mitochondria. In turn, the mitochondrial
DNA cannot encode the proteins of the mitochondrial complexes, impairing the electron
transport chain and enhancing the production of free radicals and, consequently, oxidative
stress [35]. Among the features used to train the model, we found NDUFB11, NDUFS5,
NDUFS7, SDHA, SDHC, SDHD, COX7A2L and ATP5PF, which encode for mitochondrial
complexes I, II, IV and V. Mitochondrial complexes physiologically produce reactive oxygen
and nitrogen species, which in AD cannot be fully erased, leading to oxidative stress [36].
NDUFB11, NDUFS5 and NDUFS7 encode for complex I and COX7A2L for complex IV.
These complexes are strongly associated with the oxidative stress condition that seems
linked to β-amyloid accumulation [37]. Additionally, the accumulation of β-amyloid inside
the mitochondria seems, in AD, to alter the stability of complex V, whose subunit is encoded
by ATP5PF, inducing reactive oxygen species (ROS) production. Differently to the other
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complexes, complex II is encoded only from nuclear genes. Here, SDHA, SDHC and SDHD
features are used. Interestingly, it has already been associated with neurodegenerative
disease, and it seems to produce ROS through reverse electron transfer [36]. Furthermore,
in AD, ROS also lead to stress of the endoplasmic reticulum (ER) [38,39] with the activation
of the unfolded protein response (UPR). Indeed, to reduce the stress, IRE1α (encoded by
ERN1), XBP1 and ATF4 are recruited. Interestingly, these proteins were used to train our
model. Specifically, IRE1α is a stress sensor protein involved in the canonical UPR pathway
that activates XBP1. XBP1 is a transcriptional factor that upregulates several genes involved
in protein and organelle quality control. On the other hand, the transcriptional factor ATF4
is encoded to induce an antioxidant response [40].

A strong connection is present among all these elements because the mitochondrial ri-
bosome plays a key role in the translation of mitochondrial mRNA responsible for proteins
involved in mitochondrial complexes. We speculate that impairment of mitochondrial ribo-
somes causes alterations in mitochondrial translation, leading to an abnormal expression of
mitochondrial DNA and, as a consequence, to dysfunctions of the mitochondrial complexes.
This leads to an oxidative stress condition because mitochondria are responsible for 90% of
the endogenous ROS. In association with oxidative stress, the accumulation of β-amyloid
and unfolded proteins, caused by proteasome inhibition, leads to ER stress and UPR. Thus,
dysfunctional mitochondria could represent a major source of oxidative imbalance present
in AD and also in the early stage of the pathology [41–43].

The results we have obtained in this work open up for us the possibility of future
studies to improve the model and facilitate the early diagnosis of AD. First of all, the model
could be designed to include additional personal information for the samples in the cohort.
In this way, genomics information, clinical record and imaging could be used to increase the
accuracy of the model. Secondly, blood samples for each patient could be used additionally
to train the model to learn how the transcriptomic profile changes over time.

4. Materials and Methods
4.1. Microarray Dataset Selection

We searched the AD dataset from blood in the Gene Expression Omnibus (GEO)
repository [44]. We then filtered for Homo sapiens (9606), microarray expression profile
on the relative filter section. We selected the experiment with BioProject ID PRJNA338435.
The original dataset is composed of 180 individuals, among whom 90 are AD patients and
90 are individuals without AD. The mean age of the AD patients is 77.68, while 75.23 is the
mean age of the other individuals. Also, the cohort is composed of 92 males and 88 females.
No information about other comorbidities was provided.

4.2. Sample Preparation

As reported by the authors who deposited the data, the total RNA of the people was
extracted from the peripheral blood cells. Then, the high quality of the RNA was preserved
by following the manufacturer’s instructions for the Ribopure Blood RNA Purification
kit (Ambion Technologies, Austin, TX, USA). After treatment with an on-column agent
for DNase digestion agent, through the NanoDrop-1000 spectrophotometer the RNA was
quantified, and the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA)
was used to monitor it. Then, following the instructions of the manufacturer, RNA was
labeled with Cyanine-3 (Cy3) using the One-Color Low Input Quick Amp Labeling kit
(Agilent). After purification with the RNeasy column (QIAGEN, Valencia, CA, USA), dye
was incorporated and the NanoDrop ND-1000 spectrophotometer was used to perform the
last quality check. The sample hybridization was performed on Agilent Whole Human
Genome Oligo Microarrays (G2534A). After washing, the Agilent microarray scanner
G2505B (Agilent Technology) provided the scans using 8 × 60 k array slides as settings for
one-color scan.
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4.3. Matrix Reconstruction and DEG Analysis

The original dataset sequenced using the microarray technology provided a matrix
with the samples for columns and the probes for rows. In detail, the matrix had 180 columns,
among which 90 were the patients with AD and 90 were the individuals without AD. On
the rows, 42,545 were the probes, and they are related both to coding and non-coding
genes. Firstly, we proceed with a normalization step of the features on R (version 4.1.2)
using the package limma (version 3.50.1) [45] of Bioconductor [46]. Limma uses different
statistical principles in a way that is adapted for large-scale expression studies. It provides
the functions “backgroundCorrect” and “normalizeBetweenArrays”. The function “back-
groundCorrect” allows correction of the expression of the intensities in the microarray. On
the other hand, “normalizeBetweenArrays” normalizes their expression, and we used the
quantile normalization method, which is the most efficient strategy [47]. Then, the type of
molecules for each probe was obtained using the package biomaRt [48], which provided
a link to the Ensembl database [49] for the GRCh38.p13 version of the human genome. The
details of the gene biotype were obtained using the attribute “gene_biotype”. Additionally,
with biomaRt the information about the name symbol of the probes was retrieved through
the attribute “hgnc_symbol”. Among all the features, some have the same symbol associ-
ated with different biotypes. We kept just one of them. Also, we searched for all the probes
that biomaRt associates with the same gene. Additionally, we excluded probes that are not
associated with biomaRt. Finally, we observed that among the 33,416 features, 21,488 are
unique genes and for 2228, “hgnc_symbol” does not result assigned to any symbol. Along
these lines, we collected all the probes with non-unique gene symbols, and we replaced
them with their mean value for samples. The final number of probes is 23,716, among
which most are protein-coding as shown in Figure 1A. Several biotypes are also lncRNA,
processed pseudogenes or transcribed unprocessed pseudogenes.

Thus, the final matrix, stored in Table S2, has 23,721 columns and 183 rows. There
are 180 samples (on the rows), and there are 23,716 probes (on the columns). The first
three rows are the header, the gene symbol and the biotype information. The first fifth
columns are the row names, geo accession, age, gender and disease condition.

Then, we used limma to observe how the transcriptomic profiles of AD patients differ
from those of the non-AD ones. We did not use any fold change cutoff, but we did filter out
all the genes with p-value corrected by Benjamini–Hochberg higher than 0.05.

4.4. Feature Selection and Normalization

Firstly, we split the original dataset into two parts where the larger one (80% of the
samples) was used as the training set and the smaller one (20% of the samples) as the test set.
To reduce the number of features and train the model, we used Python 3.8. In particular, the
scikit-learn library (version 1.0.2) was used to perform the Principal Component Analysis
decomposition. It is based on the numpy (version 1.20.3) [50] and scipy (version 1.8.0) [51]
libraries. PCA was used to visualize the amount of variability inside our original dataset.
Thus, we searched for the number of components that represent 95% of the variance of
our dataset. To reduce the number of components, reducing the possibility of overfitting,
we adopted the feature selection procedure. Specifically, we used univariate selection
strategies to avoid the redundancy of the features. Due to the nature of our dataset, we
used both “mutual_info_classif” and “f_classif” as score functions. Then, we chose the
number of features to keep for building the model. We normalized the score of the features
obtained by the univariate selection through z-score normalization. After normalization, we
used only the feature whose normalized score was higher than 3 variances over the mean
(z-score > 1.96). Finally, we normalized the features to be used to train the models using
the package preprocessing of scikit-learn. Firstly, we normalized using the RobustScaler
function, which removes the median values according to the quantile range. Then, we used
the MinMaxScaler function to shrink all the values in a range from 0 to 1.
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4.5. Feature and DEG Enrichment

We then enriched the features selected and the DEGs with Gene Ontology using the
Panther [52] website. We used the default parameters. Thus, Fisher’s exact test was used
to compute the statistical relevance, while we took advantage of the false discovery rate to
correct the p-value. Additionally, we used the package “KEGGREST” on R and “pathview” of
Bioconductor to observe which of the selected features are already known to be associated
with the “Alzheimer Disease” pathway (hsa05010) on the KEGG [53] database.

4.6. Model Construction and Hyperparameter Tuning

We then built different models based on 8 different classifiers: logistic regression,
linear discriminant analysis, decision tree classifier, Gaussian naive Bayes, k-neighbors
classifier, random forest classifier, neural network and support vector machines. Also, we
built the models using several different combinations of the hyperparameters (Table S1).

For each model, we collected the following parameters: accuracy, recall, precision,
F1-score, Matthew’s correlation coefficient and the ROC. We provided each parameter both
for training and test sets to understand whether the model was first of all able to learn from
the data and to avoid overfitting.

5. Conclusions

Machine learning models can be a very useful instrument to support clinicians in
the diagnosis of neurodegenerative diseases such as AD. Herein, we demonstrate that
a support vector machines model trained on transcriptome data extracted from blood
samples can reach an ROC score of 93% and accuracy of 88%. Interestingly, the predictor
uses features involved in oxidative stress. Specifically, the mitochondrial translation process
mediated by mitochondrial ribosomes is suggested to have a pivotal role in discriminating
AD from non-AD samples. Furthermore, β-amyloid accumulation could impair the electron
transport chain, increase oxidative stress and induce ER stress. In this way, oxidative stress
seems to be a key feature that characterizes the model for the prediction of the early onset
of AD with high accuracy.
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