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Abstract

When people carry out cognitive tasks, they sometimes suffer from distractions, that is,

drops in performance that occur close in time to task-irrelevant stimuli. In this research, we

examine how the pursuit of rewards contributes to distractions. In two experiments, partici-

pants performed a math task (in which they could earn monetary rewards vs. not) while they

were exposed to task-irrelevant stimuli (that were previously associated with monetary

rewards vs. not). In Experiment 1, irrelevant cues that were previously associated with

rewards (vs. not) impaired performance. In Experiment 2, this effect was only replicated

when these reward-associated distractors appeared relatively early during task perfor-

mance. While the results were thus somewhat mixed, they generally support the idea that

reward associations can augment the negative effect of distractors on performance.

Introduction

Distractions, which we define as performance decrements that occur closely after the onset of a

task-irrelevant stimulus, are believed to impair concentration and thwart people’s productivity

[1–3]. For instance, interruptions from colleagues harm work productivity [4], using one’s lap-

top or smartphone during lectures is related to worse academic outcomes [5,6], and using

one’s smartphone during driving can lead to fatal consequences [7]. Although the negative

consequences are well established, the underlying cognitive/attentional mechanisms of distrac-

tions are not yet entirely clear.

In the past, distractions have been mostly seen as originating from a stimulus-driven (i.e.,

bottom-up) attentional mechanism. That is, stimuli that are physically salient (e.g., because of

their abrupt onsets [8] or distinctive colors [9]) are more likely to attract attention–even if

these stimuli are irrelevant for the task at hand. This attentional mechanism can explain, for

example, why a blinking smartphone screen (with an abrupt onset and distinctive color)

attracts attention away from attending to a lecture or driving a car. Recent research, however,

shows that physical salience alone may not be able to fully explain distractions. There is rapidly

growing evidence that the extent to which task-irrelevant cues grab attention also depends on

how much value people associate with those task-irrelevant cues [10–14]. In these studies, par-

ticipants first learned to associate some stimulus features (i.e., color) with the delivery of valu-

able rewards (i.e., earning money). Later, in a test phase, they performed a visual search task,
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while the previously reward associated cues reappeared as distractors that needed to be

ignored. These studies repeatedly found that participants’ attention was captured by previ-

ously-rewarded stimuli, even though these stimuli were completely irrelevant to the task that

needed to be done.

While the effect of reward-associated distractors is well established in attentional and visual

search tasks (c.f., [15–17]), fewer studies investigated how reward-associated distractors

impact other cognitive processes [18,19]. Because real-life tasks (e.g., taking an exam, writing a

paper) often involve a large set of cognitive control operations (e.g., maintenance and updating

of goal relevant information) beyond visual attention, it is important to investigate whether

the impact of reward-related distractors is generalizable across different cognitive operations

[20–22]. If this possibility was true, it would suggest that reward-driven distractions have

important implications for real-life settings at work, education, and driving, in which optimal

performance requires central executive resources [23]. The first aim of this study, therefore, is

to expand the existing literature and investigate whether the negative effect of reward-related

distractors (i.e., reward-driven distraction) extends to cognitive control operations.

The second aim of this study is to test whether different motivational states influence this

reward-driven distraction effect. That is, if the extent to which people get distracted is depen-

dent on how much value they associate with distractors, it should also matter how much value

they associate to the current task. That is, people are expected to try to optimize performance

(i.e., to exploit) in a task as long as this task yields more valuable outcomes than its potential

alternatives [24,25]. In line with this idea, Müller and colleagues [26] found that monetary

incentives can reduce the impact of distractors and help the maintenance of task-relevant

information, which leads to better performance. However, when the outcome value of the task

decreases, people become less motivated and tend to search for (i.e., to explore) alternative

behaviors that could provide higher value to them—eventually leading to distraction from the

primary task [25]. Based on this line of reasoning, we tested whether distraction by reward-

related cues is especially strong in situations when the task does not yield any valuable out-

comes–in other words, we predicted that reward-driven distraction is most pronounced when

people are not motivated to pursue the current task.

To test these ideas, we developed a new experimental task, building on previous research

[10,14]. In short, in the first part of the task, participants learned to associate different colors

with monetary (vs. no monetary) rewards. Later, in a second part, they were solving math

problems while the previously reward-associated colors reappeared, but this time they had to

be ignored. To manipulate participant’s motivational states, some of the math problems were

incentivized with monetary rewards. Now, we introduce our experimental task in detail, lay

out our specific predictions, and present results from two experiments.

The experimental paradigm

Reward learning phase

In this task, we adopted a well-established reward learning and testing procedure (e.g.,

[10,11,14]). In the learning phase, each trial consisted of four stimulus-pairs: a letter and a

digit presented in close proximity (see Fig 1). Participants’ task was to indicate whether the let-

ters (e.g., W, X, Y, Z) appeared in the correct alphabetical order. One of these letters was always

colored in either red or blue. Although participants were told that they could earn money

based on correct responses, their reward was also dependent on the colored letter in the

sequence. That is, a red letter always predicted earning high rewards (+ 8 eurocents), whereas

blue always predicted no rewards (+ 0 eurocents) at the end of the trial (the colors were coun-

terbalanced across participants). We expected that via repeated exposure (150 trials),
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participants learn to associate rewards to these colors, and these colors, in turn, gain atten-

tional processing priority–a mechanism that has been repeatedly demonstrated in previous

research [11,27–30]. In other words, by repeated pairing with reward, these colors would

become more salient and therefore would attract attention more than other stimuli.

Reward-driven distraction phase

Our main objective was to examine whether these reward-associated cues harm performance

in a complex task. For this purpose, we chose a math task that requires a broad set of cognitive

functions that people use at work and education [31]. In this phase, participants again saw

sequences of four stimulus-pairs: a digit and a letter presented in close proximity (see Fig 2).

This time they had to add up the digits and report their sum. Importantly, in the sequence, one

of the letters was presented in the previously reward- (vs. no reward) associated color. These

colored letters were now task-irrelevant, so they needed to be ignored.

In general, we expected that colored letters that were associated high (vs. no) rewards,

would impair performance. Specifically, to get an insight of this performance decrement, we

have to zoom in the exact procedure of a trial. First of all, trials were not self-paced, meaning

that the digits were presented in a limited time window (700 ms/digit). So, participants had to

Fig 1. Sequence of events in the training phase. (A) An example of a no reward trial, where the red colored letter “X”

predicted no reward. (B) An example of a high reward trial, where the blue colored letter “Y” predicted high reward (8

cents).

https://doi.org/10.1371/journal.pone.0205091.g001
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perform mental additions rather quickly. This was especially demanding during presentation

of the second and third stimulus pair, in which participants had to (a) keep mental representa-

tions of the targets active (i.e., maintain the sum of the previous digits in working memory),

while (b) update this mental representation with new target information (i.e., the next digit in

the sequence). Reward-associated distractors appeared during these stimulus pairs. Impor-

tantly, as working memory prioritizes processing reward related information [32,33], we

expected that previously reward-associated distractors would be prioritized in working mem-

ory over the target digits. Consequently, there would be less capacity available to encode target

digits, which would weaken the mental representations of these digits and would make it more

difficult to update the representation with the subsequent digit, especially given the limited

available time. If mental representations would indeed become weaker because of the reward-

associated distractors, participants simply would not be able to compute the upcoming mental

operation within the allotted time, which would result in an incorrect response. Therefore, we

operationalized performance as the percentage of accurate responses on the math task.

We also tested whether reward-driven distraction would be especially strong when people

are not motivated to perform the task. In order to test this possibility, we manipulated

Fig 2. Sequence of events in the test phase. Examples of high or no task value trials with (A) a distractor (e.g., color

red “X”) that was previously associated with no reward (B) a distractor (e.g., color blue “Y”) that was previously

associated with high reward.

https://doi.org/10.1371/journal.pone.0205091.g002
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participant’s motivational states in the test phase by using a monetary reward procedure (e.g.,

[34–36]). That is, before the trial started, participants were told that they could earn 20 euro-

cents for a correct response. We expected that promising monetary rewards would induce a

high-motivation state, which has shown to boost cognitive resources and effort to perform the

task [37–39]. In turn, we expected that this high motivational state would shield mental repre-

sentations of goal-relevant information from distraction [26,40]. In sum, we expected that

high motivational states would suppress reward-driven distraction.

Hypotheses

In line with decades of research (e.g., [41–44]), we hypothesize that people are more accurate

in the math task when they can earn monetary rewards (Hypothesis 1). Second, more impor-

tantly, we hypothesize that people are less accurate on the math task when they are exposed to

distractors that were previously associated with high (vs. no) rewards (Hypothesis 2). Finally,

we hypothesize that people are less accurate when they are exposed to distractors that were

previously associated with high (vs. no) rewards, especially when their current task does not

yield rewarding outcomes (Hypothesis 3).

Exploring reward-driven distraction

In addition to testing our hypotheses, we also explored two different aspects of our paradigm.

First, we explored whether the timing of reward-associated distractors mattered. That is, we

explored whether disruptions in performance were stronger when the previously reward-asso-

ciated distractors appeared early (i.e., during the second stimulus pair) vs. late (during the

third stimulus pair). Because people actively monitor the time flow of events and update their

expectancy about future events [45–47], the timing of distractors may well affect reward-

driven distractions.

Second, we explored whether reward-driven distraction influenced performance stability/

reliability. That is, on top of traditional performance measures (i.e., response times and accu-

racy), we computed performance variability. Indeed, previous research implies that high moti-

vational states lead to more stable performance (i.e., less fluctuations in performance; e.g.,

[40,48]). Based on this idea, it is plausible that increased motivation does not just have a gen-

eral effect on accuracy, but that it reduces the frequency of distractions and thus improves per-

formance stability.

Experiment 1

Method

Participants and design. This research has been approved by the Ethics Committee of the

Social Science Faculty (ECSW2017-0805-50).

Forty-seven students from Radboud University participated in the current study. Students

could participate if they (a) slept at least 6 hours during the night before the experiment, (b)

were not colorblind, and (c) were native Dutch speakers could participate. After data collec-

tion, 3 participants nevertheless reported to have slept less than 6 hours, so they were excluded

from the final analysis. Moreover, following similar prior studies (e.g., [27–30]), we excluded 9

participants who performed below 60% accuracy. We did this exclusion to make sure that the

final sample consisted only of participants who were capable of performing the task. As such,

the final sample consisted of thirty-five students (26 females and 9 males; mean age = 22.3

years, SD = 3.7). Participants received compensation in the form of a gift voucher based on
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their performance (ranging from 7.5–12.5 €). The study used a 2(task value: low vs. high) × 2

(distractor value: low vs. high) within-subjects design.

Procedure. Participants were seated in a cubicle in front of a computer. First, they signed

a consent form and filled out a questionnaire assessing demographics (age, sex), hours of sleep

at the previous night, and their need for money on a 1 (not at all) to 7 (very much) scale (“To

what extent are you in need for money at the moment?”). Afterwards, they carried out the task

(see below). Finally, they reported on a 1 (not at all) to 7 (very much) scale how motivated they

were and how demanding and difficult they felt the task was (for descriptive statistics, see

Table 1). The experiment took 40 minutes to finish. Upon completion of the experiment, they

were given the money they earned during the task.

Task.

Stimuli

The task was designed with E-prime 2.0. Our stimuli were made up of letters and numbers

presented in font size 24 in the middle of a monitor screen with a resolution of 1920x1080

pixels.

Training phase

Participants first saw a fixation cross, then four sequential displays of a number and a letter

presented (e.g., 8W, X5, 9Y, and Z7; see Fig 1). In this phase, letters were the targets and partic-

ipants were instructed to report whether they were in the correct alphabetical order (e.g., W,

X, Y, Z). They responded by pressing “Q” for correct and “P” for incorrect trials. On half of the

trials (n = 75), one of the letters had a different color. This colored letter could appear either

on the second or the third sub-trial. If this letter was blue (or red, counterbalanced across par-

ticipants), participants could earn a monetary reward (8 cents). If it was red (or blue, counter-

balanced), participants could earn no monetary reward. On low-value trials (e.g., red),

responses were followed by visual feedback indicating “Good” or “False”. High-reward trials

(e.g., blue) were additionally followed by reward feedback (+ 8 cents) and the total amount

that has been earned during the task so far. Participants were not informed about the reward

contingency beforehand. There was a 500 ms break in between trials. In total, participants

completed 4 practice trials and one block of 150 training trials.

Test phase

After the training phase, participants directly started the test phase. First, they received

instructions and then immediately started the math task. Participants first saw a fixation cross.

Then, they saw the monetary reward that they could earn by responding correctly on that trial

(see Fig 2). On half of the trials, participants could earn money (up to 20 cents); on the other

half of the trials, they could not (0 cent). Subsequently, participants saw four displays, like in

the training phase, each showing a number and a letter (e.g., 8W, X5, 9Y, and Z7). In this part,

numbers were the targets and participants were instructed to report whether the sum of the

presented numbers (e.g., 8 + 5 + 9 + 7 = 29) was higher or lower than the number presented in

the next display (e.g., 28). They responded by pressing “Q” for smaller and “P” for larger sums

Table 1. Descriptive statistics of subjective measures separately for Experiment 1 and Experiment 2.

Experiment 1 Experiment 2

Subjective Measures M SD M SD
Sleep 7.84 0.76 7.83 0.91

Task demands 5.69 1.13 5.35 1.20

Task difficulty 4.74 1.36 4.74 1.50

Fatigue 4.34 1.08 4.04 1.30

Motivation 6.11 0.90 6.11 0.84

Need for money 5.0 1.46 4.33 1.58

https://doi.org/10.1371/journal.pone.0205091.t001
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(29 is bigger than 28, so the correct response would be “P”). On no task value trials, responses

were followed by visual feedback indicating “Good” or “False”. High task value trials were

additionally followed by reward feedback (e.g., + 16 cents) and the total amount that has been

earned during the task so far (e.g., 4.54 €). The amount that could be won on a certain trial

decreased with time [36], so fast responses were encouraged. There was a 500 ms break in

between trials. Identical to the training phase, on half of the trials, one letter was always red

and the other half of the trials one letter was always blue (again, these colored letters could

only appear either on the second or the third sub-trial). In this case, the letters served as task-

irrelevant stimuli, previously associated with monetary (vs. no monetary) rewards. In total,

participants completed 10 practice and one block of 64 test trials (16 trials per condition).

Results

Data treatment and performance measures

Responses that were three standard deviations faster or slower than the participant’s mean and

responses (based on e.g., [12,49,50]) faster than 300 ms (which were considered guesses) were

deleted, which resulted in the exclusion of 5% of trials. For each condition, we computed three

performance measures. First, our major performance measure was accuracy, which indicated

the percentage of correct responses on the math task. Second, although we did not expect an

effect of task value or distractor value on participants’ speed, we explored this variable. So, we

computed response times mean (RTM) to explore the average response speed on the math

task. Third, we explored performance variability. That is, we computed RT coefficient of varia-

tion (RTCV) to assess relative speed variability on the math task–based on suggestions from

prior work [40,51]. Neither RTM, nor RTCV were influenced by task and distractor value

manipulations (all ps> .05; see descriptive statistics in Table 2, see S1 Appendix for RT analy-

ses, see Table 3 for variability analyses).

Confirmatory analyses

To test Hypotheses 1, 2, and 3, we performed a GLM analysis with task value (high vs. no) and

distractor value (high vs. no) as within subject independent variables, and accuracy scores as

dependent variable (see Fig 3A). Effect sizes were calculated based on Lakens 2013 [52]. In line

with Hypothesis 1, the main effect of task value was significant, F(1, 34) = 6.92, p = .013, η2 =

.03, indicating that participants were more accurate when they could earn money (vs. no

Table 2. Descriptive statistics of outcome measures separately for Experiment 1 and Experiment 2.

Experiment 1 Accuracy (%) RT (ms) Variability (%)

M SD M SD M SD
No Task Value No Distractor Value 77.7 12.7 996 509 41.94 17.32

High Distractor Value 74.7 14.9 1008 466 39.67 15.78

High Task Value No Distractor Value 81.1 11.1 1038 614 38.89 18.75

High Distractor Value 77.8 14.6 1044 776 36.46 16.01

Experiment 2 Accuracy (%) RT (ms) Variability (%)

M SD M SD M SD
No Task Value No Distractor Value 73.0 14.9 1103 487 41.15 17.36

High Distractor Value 73.0 15.6 1111 463 41.81 17.89

High Task Value No Distractor Value 78.5 13.5 1149 517 41.25 19.18

High Distractor Value 77.5 13.1 1174 564 40.25 16.34

https://doi.org/10.1371/journal.pone.0205091.t002
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money; see Table 2 for descriptive statistics). The main effect of distractor value was also signif-

icant, F(1, 34) = 11.66, p = .002, η2 = .03, showing that people were less accurate when they

were exposed to a high (vs. no) value distractor (in line with Hypothesis 2). The Task

value × Distractor value interaction was not significant, F(1, 34) = .79, p = .380, η2 = .003 –thus

showing no support for Hypothesis 3.

We further explored whether participants’ (a) need for money (reported in S2 Appendix)

and (b) early vs. late distractor appearance affected the results. We corrected for multiple test-

ing by applying Pocock’s boundary [53] for 4 sequential analysis (i.e., same GLM 4 times: peo-

ple low in need for money, people high in need for money, early trials, and late trials) by

lowering the alpha level from 0.05 to 0.0182 –a procedure suggested by [54].

Exploratory analysis: Distractor timing

We examined whether the timing of (high vs. no reward) distractors in the sequence moderated

the effect of distractor value. To test this, we performed the same GLM analyses as above, but

now also including Distractor timing (early vs. late) as an additional within-subjects predictor.

We specifically examined the Distractor timing × Distractor value interaction, F(1, 34) = .98, p =

.329, η2 < .001, which was not significant (see Fig 3B). So, we found no clear evidence for the

idea that high (vs. no) value distractors affected performance differently based on whether it

appeared early or late.

For consistency with Experiment 2 (see below), we further explored the data and ran our

original GLM with a particular interest for the main effect of distractor value, separately for tri-

als in which the distractor appeared early (i.e., in the second stimulus screen) vs. late (i.e., in

the third stimulus screen). On early distractor trials, participants were less accurate on high

(M = 76%, SD = 16%) vs. no reward distractor (M = 81%, SD = 16%) conditions, F(1, 34) =

6.21, p = .018, η2 = .025. On late distractor trials, the main effect of distractor value was not sig-

nificant, F(1, 34) = 3.30, p = .078, η2 < .001.

Discussion

The results of Experiment 1 provide initial evidence for a motivational perspective on distrac-

tion. In line with Hypothesis 1, we found that people were more accurate when they could

earn money on the task. This is consistent with the idea that motivation (e.g., monetary incen-

tives) boost cognitive control processes that lead to better performance on cognitive tasks [38].

In line with Hypothesis 2, we found that people were less accurate when they were exposed

to irrelevant cues that were previously associated with high (vs. no) reward. This finding

Table 3. Results of the experimental effects on accuracy and performance variability both in Experiment 1 and Experiment 2.

Experiment 1 Accuracy Variability

dfs F p η2 F p η2

1. Task Value 1,34 6.92 .013 .030 2.10 .157 .027

2. Distractor Value 1,34 11.66 .002 .030 2.29 .139 .015

3. Task Value × Distractor value 1,34 .79 .380 .003 .002 .963 < .001

4. Distractor value × Timing 1,34 .98 .329 < .001 .958 .334 < .001

Experiment 2

1. Task Value 1,65 8.65 .005 .001 .139 .711 < .001

2. Distractor Value 1,65 .13 .721 < .001 .016 .899 < .001

3. Task Value × Distractor value 1,65 .22 .644 < .001 .437 .511 < .001

4. Distractor value × Timing 1,65 4.52 .037 .011 .204 .653 < .001

https://doi.org/10.1371/journal.pone.0205091.t003
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supports the idea that (a) distraction may be reward-driven [15,17] (b) that reward-associated

distractors interfere with the active, ongoing maintenance of task relevant information and

thus impair cognitive performance. We wanted to better understand when these reward-asso-

ciated distractors harm task performance the most. So, we further explored whether the timing

of distractors moderated this reward-driven distraction effect, but found no evidence for the

possibility.

Finally, contrary to Hypothesis 3, we found that participants were no more likely to be dis-

tracted (by high-reward distractors) when they were in a high (vs. low) motivational state. In

order to investigate whether the results were replicable, we conducted another experiment on

Fig 3. Results of Experiment 1. (A) Accuracy scores for no (gray bars) vs. high (black bars) value distractor trials both

in no vs. high task value conditions. (B) Mean accuracy scores by distractor value (high vs. low) on all trials (Overall),

on trials where the distractor appeared early, and on trials where the distractor appeared late. Error bars reflect

standard errors.

https://doi.org/10.1371/journal.pone.0205091.g003
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an independent sample. Before the start of data collection, we preregistered Experiment 2, a

direct replication of Experiment 1 at the Open Science Framework (https://osf.io/y74kx/). Spe-

cifically, we pre-registered our hypotheses, the planned sample size, and the analysis plan. As it

is important to distinguish between analyses that were planned before vs. not [55], we present

analyses that were preregistered as confirmatory and analyses that were not preregistered as

exploratory.

Experiment 2

Method

The design, procedure, and task were identical to Experiment 1. The preregistration, experi-

mental materials, and the data can be found in OSF (https://osf.io/y74kx/). We conducted a

power analysis with Glimmpse [56], which suggested that a sample size of N = 54 should be

sufficient to detect all effects of interest with power = .90. Because of our rather strict exclusion

criteria (see below), we wanted to be on the safe side. Therefore, we recruited seventy-three

students from Radboud University. The same a priori exclusion criteria were applied as in

Experiment 1. One participant reported to sleep less than 6 hours during the night before the

experiment and five participants performed below 60% accuracy, so they were excluded from

the final analysis. The final sample consisted of sixty-six students (50 females and 16 males;

mean age = 23.4, SD = 5.4). For descriptive statistics of subjective measures, see Table 1. Partic-

ipants received monetary compensation in the form of a gift voucher based on performance

(ranging from 7.5–12.5 €).

Results

Responses that were three standard deviations faster or slower than the participant’s mean and

responses faster than 300 ms (which were considered guesses) were deleted, which resulted in

the exclusion of 2% of trials. As pre-registered, to test Hypotheses 1, 2, and 3, we performed a

GLM analysis with task value (high vs. no) and distractor value (high vs. no) as within-subject

independent variables, and accuracy scores (percentage of correct responses) as the dependent

variable (see Fig 4A).

Confirmatory analyses. In line with Hypothesis 1, replicating results of Experiment 1, the

main effect of task value was significant, F(1, 65) = 8.65, p = .005, η2 = .001, indicating that par-

ticipants were more accurate when they could earn money (vs. no money; see Table 2 for

descriptive statistics). Unlike in Experiment 1, the main effect of distractor value was not sig-

nificant, F(1, 65) = .13, p = .721, η2 < .001,–showing no support for Hypothesis 2. As in Experi-

ment 1, the interaction effect was also not significant, F(1, 65) = .22, p = .644, η2 < .001 (i.e., no

support for Hypothesis 3).

Exploratory analyses on participants’ response times and need for money are in S1 Appen-

dix and S2 Appendix. Like in Experiment 1, we corrected for multiple testing by applying

Pocock’s boundary [53] for 4 sequential analysis (i.e., same GLM 4 times: people low in need

for money, people high in need for money, early trials, and late trials) by lowering the alpha

level from 0.05 to 0.0182.

Exploratory analysis: Distractor timing. We ran our original GLM, but now adding dis-

tractor timing as a factor. The Distractor timing × Distractor value interaction was significant,

F(1, 65) = 4.52, p = .037, η2 = .011, suggesting that the timing of the distractor moderated the

effect of distractor value. Follow up analyses revealed that, the main effect of distractor value

was neither significant on early-distractor trials, F(1, 65) = 3.47, p = .067, η2 < .001, nor on

late-distractor trials, F(1, 65) = 1.34, p = .251, η2 < .001.
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In short, in Experiment 2, while the Timing × Distractor value interaction was significant,

we found no main effect of distractor value separately in early and late timing trials. On the

contrary, in Experiment 1, the Timing × Distractor value interaction was not significant, but

the early impact of distractors seemed stronger than late. To provide the most reliable effect

size estimates we can provide at this point, we re-ran the analysis on the pooled data from both

experiments, a procedure suggested by Lakens [57]. We explored the Distractor timing × Dis-

tractor value interaction, which was significant, F(1, 100) = 4.21, p = .043, η2 = .006. Inspection

of Fig 5B suggests that the effect of distractor value was the largest for early distractors (η2 =

.013), compared to late distractors late (η2 < .001). So, considering both studies together, we

Fig 4. Results of Experiment 2. (A) Accuracy scores for no (gray bars) vs. high (black bars) value distractor trials both

in no vs. high task value conditions. (B) Mean accuracy scores by distractor value (high vs. no) on all trials (Overall),

on trials where the distractor appeared early, and on trials where the distractor appeared late. Error bars reflect

standard errors.

https://doi.org/10.1371/journal.pone.0205091.g004
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found some support for the possibility that early high-reward distractors had a stronger impact

than late high-value distractors. We note that this finding should be interpreted with caution,

as these analyses were not pre-registered and because the effect size was small.

Discussion

The purpose of Experiment 2 was to replicate the results of Experiment 1. As in Experiment 1,

people were more accurate when they could earn money in the task (Hypothesis 1). Unexpect-

edly, however, we did not replicate the negative effect of reward-associated distractors on per-

formance (Hypothesis 2), i.e., people were not less accurate when they were exposed to

distractors that carried high (vs. no) value. As this null effect was somewhat surprising given

Fig 5. Pooled data from Experiment 1 and Experiment 2. (A) Accuracy scores for no (gray bars) vs. high (black bars)

value distractor trials both in no vs. high task value conditions. (B) Mean accuracy scores by distractor value (high vs.

low) on all trials (Overall), on trials where the distractor appeared early, and on trials where the distractor appeared

late. Error bars reflect standard errors.

https://doi.org/10.1371/journal.pone.0205091.g005
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the strength of the effect in Experiment 1 (η2 = .03), and given the fact that the task was identi-

cal, we again explored whether early vs. late distractors have had different effects on accuracy,

but now on the pooled sample (N = 101). We found that the impact of reward-associated dis-

tractors was more pronounced when it appeared early vs. late in the math sequence. Although

this analysis was not pre-registered (and should thus be interpreted with caution), this finding

suggests that the effect of distractor value may be more pronounced in the early stages of task

performance (for interpretations, see General Discussion). In Experiment 2, like in Experi-

ment 1, we did not find that people’s current motivational state affected the impact of high-

value distractors; thus, findings do not provide support for Hypothesis 3.

General discussion

In this research, we had two major aims: (a) to test whether reward-associated distractors

harm cognitive control processes and (b) to test whether this reward-driven distraction effect

can be eliminated by high motivational states. Two identical experiments yielded strong evi-

dence for the positive effect of monetary incentives on cognitive performance (Hypothesis 1),

some evidence that reward-associated distractors disrupt cognitive control processes (Hypoth-

esis 2), and no evidence that high motivational states (i.e., promising monetary rewards)

reduce reward-driven distraction (Hypothesis 3). We will discuss each of these findings in

detail below.

In line with Hypothesis 1, both experiments showed that people were more accurate in solv-

ing mental additions when they could earn money. This finding is in line with the well-estab-

lished idea that monetary incentives boost cognitive processes (c.f., [37,38,41]), particularly the

active maintenance of information in working memory [58,59].

On the contrary, evidence for reward-driven distraction (Hypothesis 2) was somewhat

mixed across studies. In Experiment 1, we found direct support for this hypothesis: people

were more distracted by high (vs. no) reward-associated distractors–independently of whether

distractors appeared early vs. late during task performance. However, in Experiment 2, support

for Hypothesis 2 was less clear: the timing of reward-associated distractors moderated the dis-

traction effect. When we explored this idea further in a combined analysis of both studies in

order to get the most reliable effect size [52], we found that early distractors were indeed more

harmful than late distractors (η2 = .013 vs. η2 = .000; see below for interpretations). Yet, as the

latter finding was done using a non-pre-registered analysis, it should be interpreted with some

caution. In sum, results from two studies provide preliminary support for the idea that (a)

irrelevant, but rewarding cues may disrupt cognitive control processes and (b) that this effect

may be stronger when distractors appear early in a sequence of cognitive control operations.

This finding extends prior research and shows that reward-associated distractors do not only

slow down visual search [11,13], but they likely interrupt more complex cognitive control

operations (i.e., maintenance and updating task-relevant information). These conclusions are

consistent with growing literature that distractions may stem from a reward-driven mecha-

nism [15,39].

Reward-driven distraction, in this study, seemed to be influenced by the timing of distrac-

tor in the math sequence. More specifically, we expected that high (vs. no) reward-associated

distractors will gain priority in working memory over goal-relevant information [32,33],

which will weaken the mental representations of targets, which will result in incorrect

responses. Unexpectedly, this effect seemed strongest when high reward associated distractors

appeared early (vs. late) in the math sequence. This finding could be explained by conditional
probability monitoring [45–47,60,61]. Specifically, conditional probability monitoring is the phe-

nomenon that people continuously monitor the flow of events, and update their expectancy
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about upcoming events; this expectancy, in turn, affects how they deal with future, unexpected

events. Applying this to our paradigm, it seems likely that participants learned that each trial

contained a distractor. Also, participants may have learned that when the distractor did not
appear early (i.e., in the 2nd stimulus pair), it definitely had to appear late (i.e., in the 3rd stimu-

lus pair). As a result, when the distractor appeared late, participants had the opportunity to

prepare for it helping them to shield goal-relevant information from the reward-associated dis-

tractor. Conversely, such preparation could not happen when the distractor appeared early. As

pooled data from both experiments were in line with this explanation, it would be interesting

to test this idea in a confirmatory manner. Such confirmatory work would shed more light on

the circumstances under which reward-associated distractors disrupt cognitive control pro-

cesses. Conditional probability monitoring may well be part of the explanation.

Although participants performed better when they could earn monetary rewards on the

task, both experiments showed no evidence for Hypothesis 3 –i.e., the prediction that reward-

driven distraction would be the strongest when participants are not motivated to perform the

task. This is somewhat surprising, given that several contemporary models of motivation and

task performance suggest that people’s performance is determined by a computation between

the value of the outcomes of the present task and the value of alternatives [62–64]. Also, we

expected that higher motivational states would help protect mental representations of goal-rel-

evant information [26,40] from reward-associated distracting information. By contrast to

these ideas, our findings suggest that task-irrelevant stimuli (that are associated with rewards)

may impact performance independently of whether people are currently motivated to perform

well. Future research is necessary to better understand whether—and, if so, under what condi-

tions—rewards for current task can shield people from distractions. Perhaps it may have been

confusing for participants that both the value of distractors and the value of the task was

manipulated with monetary rewards. To circumvent this issue, future studies could apply sim-

ple “try harder” instructions, which has been shown to be efficient in inducing stable perfor-

mance, which shields against the impact of distractors [40].

Adopting a reward-driven perspective on distraction [14] has implications for practice.

First, optimal performance at work and school is known to rely on central executive resources

[23], which we found to be disrupted by task-irrelevant stimuli associated with rewards. Smart-

phones may be an instance of such stimuli: at least, smartphones are pervasive sources of dis-

traction [65] that indeed interfere with work [66] and study [5]. Assuming that smartphones

have rewarding properties [67], this way of thinking about smartphones—i.e., as reward-

related distractors—may support new models of smartphone-related behavior (e.g., smart-

phone addiction could be conceptualized, and treated, as a condition similar to Gambling

Disorder)

Strengths and limitations

Throughout this project, we aimed to work in an open and transparent way, in line with recent

discussions in psychology [55,68,69]. Specifically, we preregistered the second experiment and

tried to directly replicate our results, aiming to actively avoid drawing false conclusions that

would eventually distort the literature on the topic [70].

However, in this replication attempt (Experiment 2) we found evidence for reward-driven

distraction only when the distractor appeared early in the math sequence. Thus, we have to be

careful with drawing strong conclusions. Although, it is plausible that out of multiple studies

testing the same hypotheses, some tests turn out to be non-significant [57], the inconsistency

between studies is surprising as the effect of rewarding distractors on attentional capture has

been well established by prior work [15]. We should mention, however, that our experiments
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are different from most prior experiments [11,14] in this field in two major ways. Below, we

address these two aspects and provide methodological suggestions.

First, unlike previous experiments, we manipulated participants’ current motivational state

in the test phase (to test Hypotheses 1 and 3). Specifically, in half of the trials, people could

earn money for performing well. Possibly, these performance incentives affected people’s

motivational state throughout the task, on all trials, in a sustained way (e.g., [51]). Very specu-

latively, such sustained changes in motivational state may have reduced the potency of high-

value distractors. In future research, it may be promising to solely examine the effect of

rewarding distractors, independently of current motivational states.

Second, an important difference between the present research and previous experiments

[14] in this field concerns the spatial position of target and distractor. Although previous stud-

ies used a search task, in which stimuli are typically located far apart, we used a task in which

target and distractor were close next to each other, in the center of the screen. Importantly,

this central part of the visual field is processed most efficiently [71]. This enhanced processing

efficiency can potentially explain why our task may be less sensitive to the effects of high-value

distractors. To further investigate this possibility, future studies may use a task in which the

location of target and distractor is farther from each other, more like in visual search

paradigms.

Concluding remarks

The present research provides some first steps in investigating when and how rewarding irrele-

vant cues disrupt executive control processes. We found that people sometimes perform worse

on a math task when they are exposed to a stimulus that was previously-rewarded (vs. not

rewarded) and when this stimulus appears early during task performance. This effect was not

moderated by people’s current motivational states. Our studies join a growing body of litera-

ture [11,14,19,59] that suggests that it may be fruitful to think of distractions from a reward-

driven perspective.
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