
RESEARCH ARTICLE

Comparing machine learning with case-

control models to identify confirmed dengue

cases

Tzong-Shiann HoID
1,2☯, Ting-Chia WengID

3,4☯, Jung-Der WangID
3,5,6, Hsieh-Cheng Han7,

Hao-Chien ChengID
8, Chun-Chieh Yang8, Chih-Hen Yu5, Yen-Jung Liu8, Chien Hsiang Hu9,

Chun-Yu Huang8, Ming-Hong Chen9, Chwan-Chuen King10*, Yen-Jen Oyang8*, Ching-

Chuan Liu1,2*

1 Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng

Kung University, Tainan, Taiwan, Republic of China, 2 Center of Infectious Disease and Signaling Research,

National Cheng Kung University, Tainan, Taiwan, Republic of China, 3 Department of Occupational and

Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of China,

4 Department of Family Medicine, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of

China, 5 Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine,

National Cheng Kung University, Tainan, Taiwan, Republic of China, 6 Department of Public Heath, College

of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China, 7 Research Center for

Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China, 8 Institute of Biomedical Electronics

and Bioinformatics, College of Electrical Engineering & Computer Science, National Taiwan University,

Taipei, Taiwan, Republic of China, 9 Department of Medical Informatics, National Cheng Kung University

Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China,

10 Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University,

Taipei, Taiwan, Republic of China

☯ These authors contributed equally to this work.

* chwanchuen@gmail.com (C-CK); yjoyang@csie.ntu.edu.tw (Y-JO); liucc@mail.ncku.edu.tw (C-CL)

Abstract

In recent decades, the global incidence of dengue has increased. Affected countries have

responded with more effective surveillance strategies to detect outbreaks early, monitor the

trends, and implement prevention and control measures. We have applied newly developed

machine learning approaches to identify laboratory-confirmed dengue cases from 4,894

emergency department patients with dengue-like illness (DLI) who received laboratory

tests. Among them, 60.11% (2942 cases) were confirmed to have dengue. Using just four

input variables [age, body temperature, white blood cells counts (WBCs) and platelets], not

only the state-of-the-art deep neural network (DNN) prediction models but also the conven-

tional decision tree (DT) and logistic regression (LR) models delivered performances with

receiver operating characteristic (ROC) curves areas under curves (AUCs) of the ranging

from 83.75% to 85.87% [for DT, DNN and LR: 84.60% ± 0.03%, 85.87% ± 0.54%, 83.75% ±
0.17%, respectively]. Subgroup analyses found all the models were very sensitive particu-

larly in the pre-epidemic period. Pre-peak sensitivities (<35 weeks) were 92.6%, 92.9%, and

93.1% in DT, DNN, and LR respectively. Adjusted odds ratios examined with LR for low

WBCs [� 3.2 (x103/μL)], fever (�38˚C), low platelet counts [< 100 (x103/μL)], and elderly

(� 65 years) were 5.17 [95% confidence interval (CI): 3.96–6.76], 3.17 [95%CI: 2.74–3.66],

3.10 [95%CI: 2.44–3.94], and 1.77 [95%CI: 1.50–2.10], respectively. Our prediction models

can readily be used in resource-poor countries where viral/serologic tests are inconvenient
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and can also be applied for real-time syndromic surveillance to monitor trends of dengue

cases and even be integrated with mosquito/environment surveillance for early warning and

immediate prevention/control measures. In other words, a local community hospital/clinic

with an instrument of complete blood counts (including platelets) can provide a sentinel

screening during outbreaks. In conclusion, the machine learning approach can facilitate

medical and public health efforts to minimize the health threat of dengue epidemics. How-

ever, laboratory confirmation remains the primary goal of surveillance and outbreak

investigation.

Author summary

Identifying dengue cases early is crucial but challenging for healthcare professionals. This

challenge is increased during large epidemics and is a particular problem in non-endemic

areas with limited experienced staff. To improve dengue diagnosis, we investigated how to

exploit machine learning (ML)-based prediction models and identified four key variables

[age, fever, white blood cell counts (WBCs), and platelet counts], which are compatible

with clinical and epidemiological knowledge. With these variables, the ML prediction

models [decision tree (DT), deep neural network (DNN)] and the logistic regression

model developed for identifying laboratory-confirmed dengue cases produced areas

under curve (AUCs) of the receiver operating characteristic (ROC) curves ranging from

83.75% to 85.87%. This implies that the prediction models may serve as a pivotal compo-

nent of an integrated dengue surveillance system and they required only a single complete

blood count (CBC) examination. The sensitivities, positive prediction values, and accura-

cies for major risk factors in the two machine learning models were close to those of the

regression models. For future applications, the DNN models with superior performance

can be employed at epidemic sites with adequate computer facilities, while the DT and

regression models with interpretable prediction logic can be employed at sites with limited

or no computer facilities. Artificial intelligence and clinical parameters identified from

this study may aid when laboratories are overwhelmed, but should never replace labora-

tory confirmation.

Introduction

Outbreaks of dengue have continuously increased worldwide in recent decades [1, 2], while

global warming and extreme weather conditions have worsened [3]. Dengue is the most influ-

ential arbovirus disease in the world, according to global morbidities and mortalities [4, 5]. To

reduce the magnitude of dengue epidemics and to decrease fatalities, early detection of dengue

cases through surveillance to target high risk areas and populations has become one of the

most important public health strategies in many countries [6, 7]. However, the infection of

dengue virus (DENV) results in a wide clinical spectrum of symptoms, ranging from subclini-

cal infection, to mild dengue fever (DF), to severe dengue [8, 9]. Under-reporting or late recog-

nition of dengue is frequent when patients present atypical symptoms/signs, including

undifferentiated fever, gastrointestinal syndrome, and influenza-like illness, particularly in

children or patients at the febrile phase or at the early stage of epidemics [10, 11]. In the febrile

phase, dengue patients usually present non-specific symptoms/signs or viral syndrome when

they first visit primary care physicians [8]. At the population level, dynamic changes of clinical
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manifestations have occurred from early to middle and late stages of the same epidemic [10].

Therefore, relying only on clinical surveillance of dengue, using the definitions of suspected or

probable dengue cases may jeopardize resource allocations during large-scale epidemics.

As dengue epidemics have become more and more severe globally over the years [12], epi-

demiological studies in Taiwan have demonstrated that epidemic severity increased from early

to middle and late stages of the same epidemics [13, 14]. Cuba also reported similar findings

[15]. In other words, promptly recognizing and monitoring dengue cases from beginning of

epidemics, enabling immediate implementation of prevention and control measures is neces-

sary to minimize epidemic severity. Unfortunately, most problems of dengue surveillance have

continued with little improvement. Major problems of global surveillance of dengue include

the following: (1) passive surveillance hinders accurate information of total dengue cases [10],

(2) many reported dengue cases were clinically defined rather than laboratory-confirmed [6,

16], and (3) under-estimates of mild dengue cases frequently occur when more severe or fatal

dengue cases appear [17]. Accordingly, how to accurately predict laboratory-confirmed den-

gue cases in areas with limited resources is a major challenge for public health decision-mak-

ers. In this study, we addressed this challenge by conducting comprehensive analyses on how

prediction models built with different types of machine learning algorithms and different vari-

able sets performed in identifying laboratory-confirmed dengue cases among those patients

with dengue-like illness (DLI). One of the most significant findings was that the prediction

models built with only 4 key input variables, being age, body temperature, count of white

blood cells (WBC), and count of platelets (PLT), were able to deliver the same level of perfor-

mance as the prediction models built by incorporating additional 14 variables, including gen-

der, hemoglobin level, patient’s triage levels at ED, vital signs, and comorbidities. This result is

in conformity with clinical knowledge as well as epidemiological characteristics and implies

that the prediction models can serve as a pivotal component of an integrated dengue surveil-

lance system by requiring only a single complete blood count (CBC) exam. The level of perfor-

mance observed in our experiments further implies that these prediction models built with

only 4 input variables can be employed to provide real-time syndromic surveillance in areas

without adequate medical resources and access to viral/serologic tests. On the other hand, in

areas with adequate medical resources, the prediction models can serve as complementary

tools to raise the sensitivity of an integrated surveillance system.

In fact, exploiting machine learning algorithms and statistical methods to facilitate dengue

diagnosis has been studied by scientists around the world for over 10 years [18–22]. In recent

years, researchers started to exploit more advanced machine learning algorithms such as the

Bayesian network [23]. All of these previous studies focused on how to predict dengue diagno-

ses, dengue phenotypes, or high-risk groups of severe illness and/or mortality but did not

address how to effectively exploit alternative machine learning algorithms with very different

application values. In this respect, it is particularly of interest to compare the performance

delivered by the state-of-the-art deep neural networks (DNN) models [24, 25] and the conven-

tional decision tree (DT) models [26]. It is generally observed that the DNN models can deliver

superior performance compared to alternative machine learning algorithms [27] but it is

almost impossible for a user to figure out how a prediction is made [28]. On the other hand,

the DT models are favored in many applications due to the explicit prediction logic output by

the DT algorithm. However, it is also well known that the prediction performance of the DT

models generally cannot match that of the prediction models built with advanced machine

learning algorithms such as the DNN, the support vector machine (SVM) [29], and the ran-

dom forest [30]. In this respect, Flaxman and Vos concluded their experiences and proposed

“using an explainable approach, even with a reduction in accuracy, can be superior” [29]. The

third approach investigated in this study was the conventional LR, which can output the crude
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and adjusted odds ratio (OR) for each input variable [31] and has been frequently applied in

epidemiologic studies with a case-control design. It is of interest to learn how the machine

learning based prediction models and the conventional statistics-based models compare.

Methods

Study population

An unprecedented dengue epidemic occurred in Taiwan during 2015 and resulted in 22,777

laboratory-confirmed cases [32]. S1 Fig shows the epidemic curve. With the data collected dur-

ing this epidemic, we then generated the dataset used in this study, which contained dengue-

like illness (DLI) cases admitted to the emergency department (ED) from January 1 to Decem-

ber 31, 2015 (the epidemic year) at National Cheng Kung University Hospital (NCKUH) in

Tainan City in southern Taiwan. All the clinical diagnoses of DLI were made by clinicians

according to the 1997 or 2009 WHO clinical definition of probable dengue [9]. By these defini-

tions, a patient was diagnosed to suffer DLI and coded with corresponding ICD codes, if the

patient had fever along with any two of the following clinical features: nausea/vomiting, rash,

aches and pains, tourniquet test positive or any warning signs. In total, there were 100,491 vis-

its to the ED of NCKUH (NCKUH-ED) during 2015. Among them, 3698 patients canceled the

emergency consultation and therefore were excluded. Furthermore, 6611 patients were re-

admitted to the ED of the NCKUH within 36 hours and therefore their records were merged.

Our analyses showed that these excluded cases and merged cases were evenly distributed by

months. In other words, the numbers of excluded cases and merged cases were not affected by

the dengue endemic. Fig 1 illustrates the procedure employed to generate the dataset used in

our analyses. Among the 100,491 patients admitted to NCKUH-ED in 2015, 6,368 patients

(6.34%) met our definition of a DLI case, given that (1) the patient was coded with ICD-9 061

(dengue), 0654 (mosquito-borne hemorrhagic fever), 0663 (other mosquito-borne fever), or

v735 (screening examination for other arthropod-borne viral diseases) for dengue fever; or (2)

the patient received one or more dengue serological and/or virological tests, including dengue

NS1, dengue-IgM, viral load of DENV, or dengue serotyping using polymerase chain reaction

(PCR) to detect DENV-1 and DENV-2. We then excluded those 1,302 DLI cases (excluded

group) who did not receive a dengue laboratory test and another 172 DLI cases due to missing

values in any of the 18 variables incorporated in our analysis, which include age, gender,

patient’s triage levels at ED, and the blood counts (CBC), vital signs, and comorbidities listed in

Table 1. In the end, we had 4,894 DLI cases included in our dataset with 2,942(60.12%) labora-

tory-confirmed dengue cases and 1,952 non-dengue control cases. The characteristics of these

two groups (confirmed dengue cases and the controls) are summarized in Table 1. Meanwhile,

the characteristics of the included group and the excluded group are summarized in S1 Table.

Variable selection

Our variable selection process began with identifying features at the initial clinical presentation

that might provide crucial information to assist in diagnosing laboratory-confirmed dengue

cases. Based on physicians’ medical knowledge and clinical experience, 18 variables were ini-

tially identified, including age, gender, and the data from complete blood count (CBC),

patient’s triage levels at ED, vital signs, and comorbidities. We then employed the cutoff values

shown in S2 Table to stratify these variables and computed the crude odds ratios of the 18 vari-

ables. The cutoff values represented the normal ranges of the tests (i.e. serving as reference val-

ues) which have been routinely used in the NCKU Hospital with greater differentiation of

“normal” versus “abnormal” (high or low). Based on the crude odds ratios shown in S3 Table,

we identified the following four key variables: age, body temperature, counts of WBCs and
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platelets. Aiming to evaluate whether these four key variables essentially provide all the crucial

information for identifying confirmed dengue cases, we further included hemoglobin (Hb)

and gender to form a six-variable feature set based on physicians’ suggestions and epidemio-

logical characteristics from past findings. The adjusted odds ratios shown in Table 2 confirmed

the robustness of the four key variables.

Prediction models

Aiming to evaluate the effectiveness of exploiting the key variables identified above to predict

laboratory-confirmed dengue cases from patients with DLI, we developed three types of pre-

diction models, two types of machine learning models, namely, the decision tree (DT) models

[26] and deep neural network (DNN) models [24, 25], and logistic regression (LR) models

[31]. The performance of the DT models was of interest due to its ease of interpretability, a

unique feature favored by many physicians. However, the algorithm for building a DT model

is based on univariate analysis and does not incorporate any linear or non-linear transforma-

tion. As a result, the prediction performance of the DT models may not match other types of

prediction models when applied to cases in which samples with different labels are separated

by non-linear boundaries. In this respect, due to the complicated non-linear transformations

Fig 1. Flow diagram for extracting 2942 laboratory-confirmed dengue cases (case group) and 1952 non-dengue

cases (control group) from source of study population.

https://doi.org/10.1371/journal.pntd.0008843.g001
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involved, the state-of-the-art DNN models generally can produce superior prediction perfor-

mance in comparison with other types of prediction models [27]. However, the DNN based

models generally contain a large quantity of coefficients and therefore it is almost impossible

for a user to figure out how the prediction model works. In this study, we further investigated

how the conventional LR models performed because logistic regression is widely exploited in

medical research and epidemiology, and many physicians are familiar with its mathematical

Table 1. Demographic and clinical characteristics of those included study subjects (laboratory-confirmed dengue and non-dengue cases) and excluded ED patients

at NCKU Hospital, Jan. 1 to Dec. 31, 2015.

Laboratory-confirmed

Dengue Cases

Non-Dengue Patients

(Control Group)

p-value� Excluded

Emergency Visits 2942 1952 1474

Age (years)

Age < 18 174 (5.91%) 183 (9.38%) <0.001 161 (10.92)

18� age < 65 1871 (63.6%) 1382 (70.8%) 935 (63.43%)

65� age 897 (30.49%) 387 (19.83%) 378 (25.64%)

Age (mean ± SD) 50.24± 21.47 41.68 ±23.14 <0.001 45.8±22.58

Gender

Female 1473 (50.07%) 945 (48.41%) 0.2565 783 (53.12%)

Male 1469 (49.93%) 1007 (51.59%) 691 (46.88%)

Epidemic periods

Pre-peak: wks� 35 399 (13.56%) 150 (7.68%) <0.001 361 (24.49%)

Peak: 35 < wks� 40 1912 (64.99%) 1077 (55.17%) <0.001 810 (54.95%)

Post-peak: 40 < wks 631 (21.45%) 725 (37.14%) <0.001 303 (20.56%)

Severity

Non-Hospitalized 2443 (83.04%) 1495 (76.59%) <0.001 1148 (77.88%)

Hospitalized 420 (14.28%) 389 (20.08%) <0.001 270 (18.32%)

ICU 36 (1.22%) 29 (1.49) 0.5115 24 (1.63%)

Death 43 (1.46%) 36 (1.84%) 0.2983 32 (2.17%)

Triage Vital Signs (mean±SD) (mean±SD)

Temperature (˚C) 38.33±0.98 37.97±0.99 <0.001 37.64±1.43

Systolic BP (mmHg) 135±22 133±22 <0.001 127±21

Diastolic BP (mmHg) 82±15 82±15 0.4068 79±20

Heart Rate (BPM) 100±19 102±20 0.0039 92±20

Respiratory Rate (/min) 20±3 20±3 0.0001 20±2

Blood Counts (mean±SD) (mean±SD)

WBCs (103/μL) 5.25±2.70 9.18±4.29 <0.001 4.81±3.33

Platelets (103/μL) 148.08±65.85 205.79±76.48 <0.001 114.63±79.80

Hemoglobin (g/dL) 13.39±1.71 13.03±2.07 <0.001 13.57±1.93

Comorbidities

Heart Disease 332 (11.44%) 213 (11.06%) 0.6850 153 (10.38%)

CVA 147 (5.06%) 118(6.13%) 0.1122 55 (3.37%)

CKD 653 (22.49%) 436 (22.64%) 0.9069 288 (10.54%)

Severe Liver Disease 250 (8.61%) 185 (9.61%) 0.2376 144 (9.77%)

DM 532 (18.33%) 348 (18.07%) 0.8206 253 (17.16%)

Hypertension 584 (20.12%) 354 (18.38%) 0.1352 264 (17.91%)

Cancer 528 (17.95%) 398 (20.39%) 0.0327 208 (14.11%)

Pre-peak: Before Epidemic Peak in the Epidemic Curve; SD: Standard Deviation; ICU: Intensive Care Units; BP: Blood Pressure; BPM: Heart Rate as Beats per Minute;

WBCs: White Blood Cells; CVA: cerebral vascular accident; CKD: Chronic Kidney Disease; DM: Diabetes Mellitus

https://doi.org/10.1371/journal.pntd.0008843.t001
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fundamentals. S4 Table summarizes the software packages employed to build the DT and LR

models and the main characteristics of the DNN models. With respect to the structure of the

DNN models, we actually investigated the performance of more complicated networks and

observed that the simple network structure shown in S4 Table delivered the same level of per-

formance in comparison with more complicated network structures. In this experiment, we

set the dimension of the network to either 16 or 64 and the number of layers to 3, 10, or 100.

The last issue with respect to building the prediction models was how the distributions of the

dataset should be handled. Since the dataset contained 2,942(~60%) positive subjects and

1,952(~40%) negative subjects, we did not employ any procedure to address this issue. This

issue is of concern only if the numbers of subjects in different groups, e.g. positive and nega-

tive, are highly unbalanced.

Performance evaluation procedures

In this study, the performance delivered by the three types of prediction models addressed

above, i.e. the DT, DNN, and LR models, was evaluated based on the area under the receiver

operating characteristic (ROC) curve [33], which is commonly referred to as the area under

curve (AUC). In the following discussion, we will elaborate on the procedures employed to

obtain the ROC curve for the DT models and then describe the procedures employed for the

DNN and the LR models. In order to obtain the receiver operating characteristic (ROC) curve

for the DT models, we set parameter prior to alternative values between 0 and 1. For each set-

ting of parameter prior, we carried out the 10-fold cross validation procedure [24] shown in

Fig 2 to evaluate the performance characteristics of the DT models with this particular setting.

During each iteration of the 10-fold cross validation procedure, a DT model was generated.

For example, S2 Fig shows one of the DT models generated during the 10-fold cross validation

procedure with prior set to 0.388. Assuming that this particular DT model was generated in

the k-th iteration of the 10-fold cross validation procedure, the performance characteristics of

this particular DT model was evaluated by feeding the k-th subset into the model. For this par-

ticular DT model, the following performance data was obtained: sensitivity = 90.1%, specific-

ity = 63.6%, PPV = 78.9%, NPV = 81.0%, and accuracy 79.6%. S3 Fig shows a DT model

generated with prior set to 0.636. For this particular DT model, the following performance

data was obtained: sensitivity = 66.3%, specificity = 80.5%, PPV = 83.7%, NPV = 61.3%, and

Table 2. The Crude and Adjusted odds ratios for both 4-variable set and 6-variable set.

Variables 4-variable set 6-variable set

Crude OR Adjusted OR 95% C.I. Adjusted OR 95% C.I.

Young/Adult 0.70 0.59 (0.46,0.76) 0.65 (0.50,0.84)

Elder/Adult 1.71 1.77 (1.50,2.10) 2.19 (1.84,2.62)

Fever 1.92 3.17 (2.74,3.66) 3.28 (2.83,3.79)

Low_PLTs 3.95 3.10 (2.44,3.94) 3.03 (2.38,3.87)

Low_WBCs 4.49 5.17 (3.96,6.76) 5.41 (4.13,7.10)

High_WBCs 0.10 0.08 0.08 (0.07,0.10)

Male/Female 0.94 1.22 (1.11,1.41)

Low_Hb 0.67 0.49 (0.42,0.58)

High_Hb 1.13 1.13 (0.86,1.49)

OR: Odds Ratios; 95% CI: 95% Confidence Intervals in parentheses

4-variable set: Age, Body Temperature, Counts of white blood cells (WBCs) and platelets (PLTs)

6-variable set: Age, Body Temperature, Counts of WBCs, PLTs, and hemoglobin (Hb), and Gender

https://doi.org/10.1371/journal.pntd.0008843.t002
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Fig 2. Performance evaluation procedure based on 10-fold cross validation. In each iteration of the 10-fold cross validation

procedure, 90% of the patients’ records in the cohort were used to build the prediction model. Then, the remaining 10% of the patients’

records without the end results were fed into the prediction model and the predictions made by the prediction model were compared

with the end results recorded in the cohort to evaluate how accurate the prediction model performed. The iteration was repeated 10

times with each of the 10 subsets being used for performance evaluation once and only once [24].

https://doi.org/10.1371/journal.pntd.0008843.g002

PLOS NEGLECTED TROPICAL DISEASES Machine learning to predict lab-confirmed dengue cases

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008843 November 10, 2020 8 / 21

https://doi.org/10.1371/journal.pntd.0008843.g002
https://doi.org/10.1371/journal.pntd.0008843


accuracy = 72.0%. For each specific setting of parameter prior, we repeated the 10-fold cross

validation procedure 20 times and computed the means and standard deviations of the main

performance metrics. Finally, with all the performance data collected by setting parameter

prior to alternative values, we drew the ROC curves accordingly.

For generating the ROCs with the DNN and logistic regression models, we followed a simi-

lar procedure to obtain the performance readings, with the exception being that the parame-

ters involved were the thresholds employed to convert numerical outputs to predicted

categorical outcomes.

World Health Organization (WHO) clinical definition of dengue

The clinical diagnosis of dengue-like illness in Taiwan was usually made according to the 1997

or 2009 WHO clinical definitions. In light of epidemiological or laboratory evidence support-

ing a dengue virus infection, the 1997 WHO clinical definition of dengue was defined as fever

with two of the following clinical features: headache, arthralgia, retro-orbital pain, rash, myal-

gia, hemorrhagic manifestation or leukopenia [8]. On the other hand, the 2009 WHO clinical

definition of probable dengue was defined as fever with two of the following clinical features:

nausea/vomiting, rash, aches and pains, tourniquet test positive or any warning signs [9]. The

reported sensitivity and specificity of the 1997 and 2009 WHO definitions in predicting den-

gue [34] were also presented in the Fig 3 for better comparison.

Data validation

To ensure data accuracy, we independently repeated all the experiments presented in this arti-

cle at least two times. The results of AUCs, sensitivities, specificities, PPVs, and accuracies

from the two independent runs were very close. All original dataset and software codes will be

made available upon requests.

Ethics statement

This study was approved by the Institutional Review Board (IRB) of National Cheng Kung

University Hospital (NCKUH-IRB Approval Number: A-ER-108-209). Data were fully de-

identified and anonymized to protect participants’ privacy, and only aggregated data were

used for further analyses and statistical tests.

Results

Demographic analyses

Among 6,368 patients with dengue-like illness (DLI) admitted to the emergency department

(ED) of NCKUH in 2015, 2,942 cases (46.20%) were confirmed to have dengue due to one or

more positive results with dengue-NS1, IgM, PCR, or viral load of DENV tests, i.e. the “con-

firmed dengue group”. The “control group” comprised 1,952 cases with dengue-negative

results from laboratory tests. The remaining 1,474 cases were excluded from our dataset due to

either no laboratory results or missing values on one or more of the 18 variables in our initial

variable set. The demographic characteristics and clinical features of the confirmed dengue

cases group and the control group are summarized in Table 1. The confirmed dengue case

group was distinctive from the control group by the following characteristics: (1) significantly

older, (2) less likely to be hospitalized, (3) significantly higher mean of body temperature, (4)

significantly lower mean counts of white blood cells (WBCs) and platelets, and (5) higher

hemoglobin. Meanwhile, no major difference was observed with respect to gender distribu-

tions and proportions of the patients who suffered from the following six comorbidities: heart
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Fig 3. Performance delivered by two machine learning methods (decision tree, deep neural network) and logistic regression models with 4, 6,

11, and 18 input variables. AUCs with 4 input variables- DT: 83.75%±0.17%, DNN: 85.87%±0.54%, LR: 84.60%±0.03%; AUCs with 6 input

variables-DT: 84.49%±0.11%, DNN: 86.95%±0.45%, LR: 85.69%±0.09%; AUCs with 11 input variables- DT: 84.49%±0.14%, DNN: 86.40%±0.64%,

LR: 84.04%±0.07%; AUCs with 18 input variables- DT: 84.47%±0.14%, DNN: 86.35%±0.63%, LR: 84.07%±0.07%. The reported sensitivities/

specificities for determining dengue, based on the 1997 and 2009 definitions were 95.4%/36.0% and 79.9%/57.0%, respectively [34].

https://doi.org/10.1371/journal.pntd.0008843.g003
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disease, cerebrovascular disease, and chronic kidney disease, cirrhosis of the liver, diabetes,

and hypertension. Nevertheless, a lower percentage of the patients in the confirmed dengue

cases group suffered cancer than the patients in the control group but the difference is

marginal.

Performance evaluation

Fig 3 summaries how the DT, DNN, and logistic regression (LR) models performed with four

different variable sets, with 4, 6, 11 and 18 variables, respectively. The smallest variable set

included only the four key variables identified based on the analyses of crude odds ratios (S3

Table) and adjusted odds ratios (Table 2). The six-variable set was derived from the four-vari-

able set by adding gender and count of Hb. The 11-variable set was derived from the six-vari-

able set by adding the five vital sign features in our initial variable set. Finally, we incorporated

the initial 18-variable set involving seven comorbidity features. The overall performance of the

DT, the DNN, and the LR models with different variable sets is shown by the receiver operat-

ing characteristic (ROC) curves in Fig 3(A), 3(B), 3(C), and 3(D). Fig 3(E) summarizes the

areas under the ROC curves (AUCs) shown in Fig 3(A), 3(B), 3(C) and 3(D). Two interesting

observations deserve our attention. Firstly, all the AUC numbers shown in these figures were

close to or above 84% and the DNN models marginally outperformed the DT models and the

LR models. Secondly, incorporating more input variables did not necessarily lead to better per-

formance. In fact, for all three types of models, the performance differences due to incorporat-

ing different variable sets are marginal. This observation implies that the four key variables, i.e.

age, body temperature, counts of WBCs and PLTs, together provide essentially all the informa-

tion available at the initial clinical presentations for identifying confirmed dengue cases.

Subgroup analyses of confirmed dengue cases

For future applications of our prediction models, we conducted comprehensive analyses on

how these models performed with specific patient groups. We partitioned patients based on

age, gender, and major epidemiological characteristics. S5 Table summarizes the performance

of the DT, DNN and LR models that delivered sensitivity at the 90% level with four key vari-

ables. The detailed performance data with the three prediction models for DT, DNN, and LR

are shown in S6, S7 and S8 Tables, respectively. The first interesting observation is that all pre-

diction models delivered the highest level of sensitivity when applied to predicting patients

admitted during the pre-peak period. This is a favorable characteristic as detecting early cases

is crucial for prevention and control of dengue. In the meantime, all these models delivered a

higher level of specificity when applied to predicting those patients who were admitted during

the peak and the post-peak periods. Again, this is favorable, as high-specificity screening

mechanisms are desirable once outbreak occurs. The second interesting observation is that for

pediatric patients the DT model delivered higher sensitivity but lower specificity (95.5% sensi-

tivity and 54.8% specificity) than the DNN model, which delivered 87.1% sensitivity and 73.5%

specificity.

Discussion

The spreading of DENV has been expanding in recent years [4, 6, 7]. Global epidemiology of

dengue shows that the time interval between regional epidemics after World War II have

become shorter particularly in urban centers of Southeast Asian countries where dengue is

endemic [35, 36]. As a result, dengue has become a continuing global threat that may cause a

great loss of human life and a great impact on social welfare [37, 38]. In particular, large-scale
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or unanticipated epidemics of dengue often overwhelm healthcare systems [39, 40] and lead to

a large number of severe and fatal cases [39].

With such a great challenge, effective and efficient surveillance of dengue is essential for

timely detecting outbreaks early on, monitoring the trend of incidence, and evaluating preven-

tion and control measures [41]. If dengue cases are not detected early, continuous presence of

DENV in the community will result in selection of the virus strains or subvariants with

increasing percentages of severe cases occurring in later stages of the epidemic [13, 14, 42].

However, many primary health care professionals may not be familiar with important clinical

features of dengue [43]. Furthermore, many infectious diseases have dengue-like nonspecific

symptoms/signs [44]. Therefore, rapid detection of laboratory-confirmed dengue cases is cru-

cial in precise targeting for early intervention with better resource allocation. Early laboratory

diagnosis of DENV, which can assist in clinical case management and public health planning,

has many limitations. Three widely used approaches are costly [45, 46], including molecular

diagnosis of viral nucleic acid, antigen of non-structure protein 1 (NS1), and human antibody.

The PCR tests to detect DENV-RNA, is not suitable for patients who seek medical care late

and it is not feasible in areas with limited resources [47]. On the other hand, detection of

DENV-NS1 antigen is fast [48] but patients with secondary DENV infection show an earlier

decrease in NS1 levels [49]. Serological tests of DENV-IgM and IgG antibodies have to con-

sider cross-reactivities of other flaviviruses [50] and the timing of specimen taking [45, 46].

Therefore, laboratory diagnosis is time-consuming and requires expertise and tests with high

sensitivity and specificity [51], all of which usually limits its availability at local clinics or small

hospitals. With all these observations in mind, we resorted to machine learning approaches to

facilitate screening patients for dengue diseases.

In this study, we conducted comprehensive analyses to evaluate how prediction models

built with different types of machine learning algorithms and different variable sets performed

in identifying laboratory-confirmed dengue cases among those patients with dengue-like ill-

ness (DLI). In fact, as mentioned earlier, exploiting machine learning algorithms and statistical

methods to facilitate dengue diagnosis has been studied by scientists around the world for over

10 years [18–22] and researchers have started to exploit more advanced machine learning algo-

rithms in recent years [23]. Nevertheless, all these previous studies did not focus on how to

effectively exploit alternative machine learning algorithms with very different application val-

ues. For example, Potts and et. al. employed the decision tree algorithm to predict those pediat-

ric patients who were likely to suffer from severe symptoms [21]. In this respect, it is

particularly of interest to learn how the state-of-the-art DNN models perform in comparison

with the prediction models built with the conventional DT and LR algorithms. It is generally

observed that due to the multiple layers of non-linear transformations involved the DNN mod-

els can deliver superior performance to the prediction models built with the other machine

learning approaches. However, the complicated non-linear transformations involved also

make it almost impossible for a user to figure out the decision rules that the DNN model fol-

lows to make predictions [24]. Since for some medical and public health applications, the deci-

sion rules followed by the machine learning based prediction models can provide valuable

insights, Flaxman and Vos concluded their experiences and proposed “using an explainable

approach, even with a reduction in accuracy, can be superior” [28]. Accordingly, it is of inter-

est to evaluate the performance of the DT models because the DT models are favored for many

applications due to the explicit prediction logic output by the DT algorithm. However, due to

lack of linear or non-linear transformations involved the prediction performance of the DT

models generally cannot match that of the prediction models built with advanced machine

learning algorithms such as the DNN, the support vector machine (SVM) [29], and the ran-

dom forest [30]. The third approach investigated in this study was the conventional LR, which
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can output the crude and adjusted odds ratio (OR) for each input variable [31] and has been

frequently exploited in epidemiologic studies with a case-control design. The results in Fig 3

reveal that the three different types of prediction models investigated in our study basically

delivered the same level of performance with the DNN models slightly outperforming the DT

models and the LR models.

Another major finding of this study was that with only four key input variables, not only

DNN prediction models but also conventional DT models were able to provide performance

required for clinical applications. In particular, both the DT and DNN models with overall

sensitivities at 90% delivered higher sensitivities, 92.6% and 92.8%, respectively, when applied

to identifying laboratory-confirmed dengue cases in the pre-epidemic period than in other epi-

demic periods. This observation implies that the machine learning based prediction models

can be exploited in the pre-epidemic stage to provide medical practitioners with a real data

based objective diagnosis utility to complement clinical judgment solely based on personal

experiences. From a public health viewpoint, our high-sensitivity models can be an effective

surveillance tool in the pre-epidemic period. Once the number of cases dramatically climbs

during the peak and post-peak periods, prediction models with high specificity can be

exploited to identify laboratory-confirmed dengue cases. In this respect, our prediction models

with overall 80% specificity delivered reasonably good sensitivities ranging from 69.7% to

79.9%. Notably, the four key input variables identified in this study (age, body temperature,

and counts of both WBCs, and platelets) can be easily collected with minimal cost. Therefore,

the prediction models developed here can be widely exploited at outbreak sites for real-time

monitoring of epidemic trends. At sites with adequate computer facilities, the DNN models

can be applied to achieve the highest prediction performance. On the other hand, at sites with

very limited or even no computer resources, the DT models or the explicit prediction logic of

the DT models alone can be used to obtain reasonable prediction performance.

With respect to practical applications of machine learning based prediction models, the

computer resources available impose a major concern. Both the DT and LR algorithms can be

efficiently executed on a typical personal computer. On the other hand, due to the nature of

the back-propagation algorithm [52], which is the prevailing approach to train a DNN model

and involves a lot of array processing, a computer equipped with a graphic processing unit

(GPU) is normally required to carry out the training efficiently. Furthermore, if we add more

layers to a DNN structure, then the training time will increase dramatically. Therefore, a sim-

pler DNN structure is favored, if it can deliver the same level of prediction performance as a

more complicated structure. In this respect, we evaluated the prediction performance deliv-

ered by more complicated DNN structure with 10 and 100 layers and observed no significant

performance difference in comparison with the simple structure with only 3 layers (S4 Table).

Although training a DNN model requires special hardware, once the training process is com-

pleted, the DNN model can be executed on a typical personal computer efficiently. This

implies that the training process of a DNN model can be executed in a centralized computer

facility and then the model can be distributed to local clinics equipped with minimal computer

hardware.

One of our unique findings is to link the two machine learning approaches and conven-

tional method of LR. In this study, we simultaneously collected subjects as cases and controls,

and the collection procedure was unrelated to any exposure or risk factors, which could be

regarded as one form of density sampling so that the odds ratios in Table 2 can be interpreted

as a rate ratio [53, 54] for major risk factors of cases, and this finding is consistent with current

understanding of dengue pathophysiology and epidemiology. In other words, an LR model

based on domain knowledge on dengue epidemiology could be used to corroborate the results

and interpretation of machine learning models of DT and DNN algorithms. The adjusted
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odds ratios from the LR model from high to low are quite similar to the ranking of variables

located from top to bottom in the DT model. In other words, DT can verify the selected vari-

ables from the DNN model and LR can further verify the DT results by ranking the adjusted

ORs. Moreover, LR models can be constructed on personal computers or laptop at low cost.

Once the prediction model is built at central lab, we may still utilize the models in remote

areas through the internet and cloud technology.

An ideal dengue test should distinguish dengue from other infectious diseases, be highly

sensitive, easy to use, inexpensive, rapid in getting results, and have stable reagents which are

stable at temperatures above 30˚C for usage in settings with limited or no optimal storage

options [55]. The four input variables identified in this study to predict confirmed dengue

cases meet all these criteria. Although many prediction models of dengue have focused on

trends in incidence of dengue [56] or severe dengue cases [57, 58], very few studies predicted

confirmed dengue cases. Among the relevant clinical variables, leucopenia, thrombocytopenia,

elevated aminotransferases, low C-reactive protein (CRP) and prolonged activated partial

thromboplastin time (aPTT), were useful predictive markers for early diagnosis of dengue dur-

ing the 2007 DENV-1 outbreak in Tainan [59]. However, data of CRP and aPTT may not be

available in primary health care settings. In fact, our four predictors have been frequently used

in clinical risk scores for adult dengue cases [57]. In Singapore, the best decision tree prediction

for hospitalized adult patients with DHF included a history of clinical bleeding, serum urea, and

serum total protein but that model offered positive predictive value of 7.5%, and accuracy of

48.1% [58], and both serum urea and total protein may not be frequently measured. Comparing

all those findings, our four input variables involving fever (body temperature≧38˚C), numbers

of WBCs and platelets, and age, which are consistent with clinical observations of dengue [8, 9],

are most feasible for wide application. Low WBC count and low platelet count, are important

clinical parameters for suspicion of dengue [9]. Moreover, age is an important risk factor

because most of Taiwan’s fatal dengue cases in 2015 were elderly [32]. In other words, measur-

ing body temperature and a single CBC tube, plus age in a dengue non-endemic area like Tai-

wan can be employed for clinical surveillance in real time to assess where high-risk areas and

populations are. Furthermore, our novel DNN algorithm approach employing an advanced

machine learning method also verified the four variables highly selected by the DT algorithm,

and this DNN approach is much simpler, without requiring many variables of symptoms/signs

as each of most dengue clinical guidelines. We also built prediction models with larger sets of

input variables, but found no statistical performance difference.

This study has seven major limitations. First, most Taiwan dengue patients are adults, and

are caused by a predominant, single serotype of DENV that is different from dengue-endemic

countries, where cases are mostly pediatric, involving multiple DENV serotypes co-circulating

and detected through visiting primary health care settings. In addition, our study population

was collected from the emergency department of a tertiary hospital during a large-scale out-

break caused by DENV-2 resulting in many severe cases (i.e. a highly selected dengue patients)

that might be different from patients infected with other serotypes and from mostly primary

health care clinics. Therefore, our results should not be generalized to other settings or den-

gue-endemic areas. Second, our models aimed to differentiate laboratory-confirmed dengue

from non-dengue cases but those cases with missing data or in which laboratory tests were not

ordered, or which were regarded as non-dengue cases might be dengue-positive cases due to

limitations in the specimens taken or sensitivities of the tests. Third, we had not used con-

firmed cases of other infectious diseases with similar clinical presentations [44] to verify

because of lower case numbers of malaria, chikungunya, other flaviviruses, and rickettsia dis-

eases in Taiwan in recent years. Fourth, our selection of 90% sensitivity and 80% specificity

may not be suitable in all epidemiological settings. Besides, in the current model, the machine
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was trained to pick up laboratory-confirmed dengue cases from a specific pool of dengue-like

illness, which rely on clinicians making a diagnosis of DLI and requesting diagnostic testing of

dengue. Therefore, the sensitivity, specificity, and predictive value of our algorithms depend

upon the distribution of other clinical diagnoses in the study population. Fifth, patients who

came to NCKU around day 1–3 of dengue-like illness might still have high levels of WBCs and

platelets before declining, which might lead to misdiagnosis. Since we did not have data on

day of illness (fever day) at presentation, it’s impossible to know which phases of dengue natu-

ral course the patient was at. In fact, many patients came to the emergency department on

their first or second day of fever during the 2015 Tainan epidemic. As a result, the cases

included in our dataset were likely to be in the early phases, while the cases excluded but with

thrombocytopenia were likely to come in later phases of disease through referral or for second

opinions. Indeed, we agree fever day is an important feature in dengue diagnosis and manage-

ment [60]. We are trying to include this information into the entry in our electronic medical

record (EMR) system in the near future. Sixth, we investigated only the performance with the

DNN, DT, and conventional logistic regression models due to our conjecture that the perfor-

mance with the prediction models built with other advanced machine learning algorithms

such as SVM [29] and random forest [30] will deliver comparable performance. Nevertheless,

it would be of interest to investigate whether an aggregated approach may improve prediction

performance. Finally, dengue and coronavirus disease 2019 (COVID-19) are difficult to distin-

guish because they share common clinical and laboratory features [61]. According to the

recent data, lymphopenia, fever were common features in COVID-19 patients. Failing to con-

sider COVID-19 because of a positive dengue rapid test result has serious implications not

only for the patient but also for public health [62]. Whether the current COVID-19 pandemic

caused by a similar pathogen SARS-CoV-2 pose similar difficulties on differential diagnoses is

an important concern. In fact, during SARS in Singapore in 2003, overlapping parameters

were found for dengue and SARS [63].

Here, we must emphasize that laboratory-confirmation still remains the ultimate method of

surveillance and outbreak investigation. Artificial intelligence and other utilities may be help-

ful when laboratories are overwhelmed. However, it should never replace laboratory-confir-

mation, even in low and middle income countries. Furthermore, we focused on the prediction

power with four key features, without taking into consideration of environmental factors

(mosquito indices, female mosquito infection rate, and meteorological factors) that were

incorporated in some other studies [64].

Global epidemiology of dengue involves dengue-endemic and non-endemic countries in

which the majority of dengue cases are children and adults, respectively. Future efforts require

international collaboration, considering levels of endemicity, all four DENV serotypes, areas

where vectors of Aedes aegypti versus Aedes albopictus are the main transmitting DENV vec-

tors, various levels of local resources, types of medical care facilities, population densities, pres-

ence of other infectious disease agents with dengue-like clinical presentations, and the scale of

epidemic. Most importantly, we sincerely recommend establishing an integrated surveillance

and epidemiological informatics, involving clinical, entomological, microbiological/serologi-

cal, epidemiological, meteorological, and environmental information, as well as measurements

of biomarkers important in viral/immuno-pathogenesis of dengue, so that both the magnitude

and severity of dengue epidemics can be better predicted. Such integrated surveillance must be

community based or even school based [65] for more efficient community mobilization at epi-

demic sites. In other words, area adjustment using different local data sets to overcome the

weaknesses of a certain data set is necessary. This novel approach using machine learning can

also extend to other globally important vector-borne infectious diseases [66] to assist in target-

ing for mosquito control more precisely.
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S1 Fig. Epidemic curve of the 2015 dengue outbreak in Tainan city and monthly case dis-

tribution trend in current study.
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S2 Fig. A decision tree generated with prior set to 0.388. This particular tree produced

90.1% sensitivity but only 63.6% specificity. The prediction algorithm traverses the decision

tree starting from the root, which is the node at the top of the tree. Each of the branches origi-

nating from a node is associated with a criterion of the attribute values. The prediction algo-

rithm moves down along the tree based on the attribute values of the subject for which a

prediction is to be made. The “n+” and “n-” symbols in each node respectively denote the

number of positive subjects and the number of negative subjects in the training dataset that

meet the criteria specified along the path from the root to this particular node. If n+ in a node

is larger than n-, then the node is colored by red. Otherwise, the node is colored by blue.

(PDF)

S3 Fig. Decision tree generated with prior set to 0.636. This tree produced 66.3% sensitivity

and 80.5% specificity. The prediction algorithm traverses the decision tree starting from the

root, which is the node at the top of the tree. Each of the branches originating from a node is

associated with a criterion of the attribute values. The prediction algorithm moves down along

the tree based on the attribute values of the subject for which a prediction is to be made. The

“n+” and “n-” symbols in each node respectively denote the number of positive subjects and

the number of negative subjects in the training dataset that meet the criteria specified along

the path from the root to this particular node. If n+ in a node is larger than n-, then the node is

colored by red. Otherwise, the node is colored by blue.

(PDF)

S1 Table. Comparison of the excluded patients and included cases of ED patients at NCKU

Hospital, Jan. 1 to Dec. 31, 2015 in this study. Pre-peak: Before Epidemic Peak in the Epi-

demic Curve; SD: Standard Deviation ICU: Intensive Care Units; BP: Blood Pressure; BPM:

Heart Rate as Beats per Minute, WBCs: White Blood Cells; CVA: cerebral vascular accident

CKD: Chronic Kidney Disease, DM: Diabetes Mellitus.

(PDF)

S2 Table. Cut-offs employed to stratify numerical variables for building prediction models.
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S3 Table. Crude Odds Ratios with 95% Confidence Intervals in parentheses. SBP: Systolic

Blood Pressure; DBP: Diastolic Blood Pressure, WBC: White Blood Cells; GCS: Glasgow Coma

Scale, CVA: cerebral vascular accident; CKD: Chronic Kidney Disease, DM: Diabetes Mellitus.

(PDF)

S4 Table. The software packages employed to build the prediction models and the main

characteristics of the DNN model.
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S5 Table. Summary of sensitivities, specificities, Positive Prediction Values (PPVs), and

accuracies on subgroup analyses with the three prediction models [Decision Tree (DT),

Deep Neural Network (DNN) and Logistic Regression (LR)]. CVA: cerebral vascular acci-

dent; CKD: Chronic Kidney Disease, DM: Diabetes Mellitus.

(PDF)
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S6 Table. Subgroup analysis in the Decision Tree (DT) Model. CVA: cerebral vascular acci-

dent; CKD: Chronic Kidney Disease, DM: Diabetes Mellitus.
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S7 Table. Subgroup analysis in the Deep Neural Network (DNN) Model. CVA: cerebral vas-
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S8 Table. Subgroup analysis in the Logistic Regression (LR) Model. CVA: cerebral vascular
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