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Open-Source Remote Gait Analysis: 
A Post-Surgery Patient Monitoring 
Application
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Timothy W. Tourville3, Michael J. Toth2,4 & Ryan S. McGinnis   1

Critical to digital medicine is the promise of improved patient monitoring to allow assessment and 
personalized intervention to occur in real-time. Wearable sensor-enabled observation of physiological 
data in free-living conditions is integral to this vision. However, few open-source algorithms have been 
developed for analyzing and interpreting these data which slows development and the realization of 
digital medicine. There is clear need for open-source tools that analyze free-living wearable sensor data 
and particularly for gait analysis, which provides important biomarkers in multiple clinical populations. 
We present an open-source analytical platform for automated free-living gait analysis and use it to 
investigate a novel, multi-domain (accelerometer and electromyography) asymmetry measure for 
quantifying rehabilitation progress in patients recovering from surgical reconstruction of the anterior 
cruciate ligament (ACL). Asymmetry indices extracted from 41,893 strides were more strongly 
correlated (r = −0.87, p < 0.01) with recovery time than standard step counts (r = 0.25, p = 0.52) and 
significantly differed between patients 2- and 17-weeks post-op (p < 0.01, effect size: 2.20–2.96), and 
controls (p < 0.01, effect size: 1.74–4.20). Results point toward future use of this open-source platform 
for capturing rehabilitation progress and, more broadly, for free-living gait analysis.

The digital medicine revolution is driven by advances in wearable sensor technology and the algorithms for 
analyzing and interpreting their data. These mobile health technologies enable improved remote patient monitor-
ing, personalized intervention, and could be used to provide improved continuity across care transitions. While 
transitional care has been recognized as a national priority1, and has been shown to improve outcomes, increase 
the efficient use of health care resources, and decrease health care costs2,3, current interventions are resource and 
personnel intensive4. Digital medicine innovations that harness existing cyber infrastructures, wearable sensors, 
and mobile devices may improve the efficiency and effectiveness of transitional care interventions. This approach 
could be transformative for a broad range of clinical domains, including for neurological5, musculoskeletal6, and 
mental health7,8 conditions.

Concerning current techniques for remote patient monitoring, physical activity is the most targeted health 
behavior, with a large commercial market. However, these measures are too general for most clinical applications 
as they provide minimal biomechanical or physiological insight at a joint- or limb-specific level. For both neuro-
logical and musculoskeletal disorders, physical activity (e.g. step counts) is often the primary outcome measure 
from free-living wearable sensor data9,10. In these clinical populations, traditional gait analysis provides far more 
valuable information concerning neuromusculoskeletal health and, in the aftermath of various clinical inter-
ventions, recovery of physical function11. However, these traditional assessments are constrained to specialized 
motion analysis laboratories which may not accurately reflect an individual’s free-living gait12. This motivates the 
pursuit of remote gait analysis techniques able to capture more clinically relevant biomechanics including quanti-
tation of motor control indices (e.g. muscle activation patterns13) and musculoskeletal dynamics14.

To answer this unmet need, several groups have started to explore methods for tracking free-living gait bio-
mechanics12,15–21. The general framework for remote gait analysis shared by these efforts has three steps: (1) 
identification of walking bouts, (2) stride detection, and (3) analysis. This approach has been used to detect 
and characterize bradykinesia in Parkinson’s disease patients15 and demonstrate that in-lab observations of gait 
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speed12 and gait asymmetry20,21 differ from daily-life. The components of this framework reflect recent advances 
in wearable sensor-based activity identification22, event detection23, and biomechanical analysis24–29. The develop-
ment and application of these solutions are multi-disciplinary efforts requiring research teams with expertise in 
medicine, data science, and engineering. Open-source solutions may allow analysis of wearable sensor data col-
lected in free-living conditions by teams without expertise in signal processing or machine learning. This reduces 
barriers to applying digital health solutions for remote patient monitoring.

To this end, we present an open-source analytical platform which captures this general framework (Fig. 1) and 
could be applied for remote biomechanical analysis of any task (see https://github.com/M-SenseResearchGroup/
RemoteBMX). It has been designed with a modular structure to enable flexibility and to encourage improvements 
and customization from members of the scientific community. For example, customization could allow for the 
analysis of other tasks (e.g. stair ascent, running), the extraction of alternative clinical information, or the utiliza-
tion of different wearable sensors. These modifications are dependent on the patient population being monitored.

To demonstrate how the platform may be tailored for a specific patient population, it was deployed as a reha-
bilitation monitoring application in patients recovering from reconstructive surgery of the anterior cruciate liga-
ment (ACL-R). ACL-R is the most effective treatment for ACL rupture30. However, approximately 50% of patients 
who undergo ACL-R will go on to develop post-traumatic osteoarthritis (PTOA)31. Previous research suggests 
that altered gait biomechanics following ACL-R are responsible for this phenomenon31,32. Pathological gait is 
often characterized by inter-limb asymmetries which manifest early in the post-surgical period33–35, and develop 
into compensatory gait patterns over time11,36. It is imperative that these maladaptations are identified early so 
that corrective rehabilitative interventions can be pursued37. Thus, this application presents an ideal candidate for 
which to demonstrate the clinical utility of the proposed platform.

Platform modifications were context-specific and driven by the current understanding of the clinical problem. 
In the context of ACL-R, inter-limb gait asymmetry has been identified as a biomarker for recovery33,34,38. These 
asymmetries represent altered gait kinematics that are linked to PTOA-related knee joint contact forces in this 
population11,39,40. Quadriceps muscle dysfunction is common following ACL-R13,38,41,42 and may be responsible 
for the development of pathological gait. Thus, direct observation of asymmetric gait kinematics and quadriceps 
muscle activity in the early post-operative period could identify pathological gait and signal the need for remedial 

Figure 1.  Graphical summary of the proposed remote gait analysis. The proposed approach is comprised of 
three basic steps: (1) walking bout identification, (2) stride extraction and gait phase segmentation, and (3) 
biomechanical analysis of individual strides.
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actions to prevent developing PTOA. However, algorithms for extracting this information from wearable sensor 
data captured in free-living conditions do not yet exist.

To this end, patients recovering from ACL-R present an ideal population for which to specify and test the 
use of the proposed platform. Our analysis was tailored for monitoring gait asymmetries relating to spatiotem-
poral variables, and kinematic and muscle activation time-series. Our novel analysis quantifies asymmetry in 
the following gait measures: duty factor (DF); mean surface electromyography (sEMG) amplitude of the rectus 
femoris during the stance and swing phase of gait; muscle activation time-series; as well as cranial-caudal (CC), 
medio-lateral (ML), and antero-posterior (AP) thigh acceleration time-series. A composite asymmetry score 
was also defined as the average of these seven asymmetries. We show the ability of these asymmetry indices to 
discriminate between patients at different time points in the recovery process and compared to healthy controls. 
Step count estimates from a commercially available activity monitor worn by some of the patients also enables a 
comparison of the proposed analysis to current techniques for monitoring recovery.

Results
Subjects were categorized as either T1 (less than 6 weeks post-surgery), T2 (greater than 6 weeks post-surgery) 
or C (healthy controls). Data were collected for 20.24 ± 6.28 hours on average for each subject (except one T1 
patient for whom no walking bouts met the criteria for analysis) and a total of 41,893 strides were analyzed (T1: 
1,743 strides, T2: 9,616 strides, C: 20,939 strides). Estimated total time spent walking (hours) was strongly corre-
lated (r = 0.71, p = 0.03) with Actigraph step counts (Fig. 2) but showed a stronger correlation with recovery time 
(r = 0.63, p = 0.08) than Actigraph step counts (r = 0.25, p = 0.52), although neither was statistically significant. 
Importantly, the composite asymmetry score (r = −0.87, p < 0.01) and stride time (r = −0.91, p < 0.01) were both 
strongly associated with recovery time (see Fig. 3).

Stride times and most gait asymmetry measures decreased across groups (i.e. T1 > T2 > C). Pairwise sig-
nificant differences were found between C and T1 as well as T1 and T2 for stride times and all asymmetries (all 
with large effect sizes) except mean normalized sEMG which was trending towards significance (stance: p = 0.05, 
swing p = 0.12) (Table 1). All time-series (sEMG, CC, AP, ML), duty factor, and composite asymmetries were sig-
nificantly different (p = 0.01) between C and T1, but only the CC acceleration time-series, duty factor, and com-
posite asymmetries were significantly different between T1 and T2 (Table 1). There were no differences between 
C and T2 for any asymmetries.

The proposed framework enables the investigation of gait biomechanics continuously throughout the day. 
To demonstrate the utility of this application, composite asymmetry scores averaged over each 15-minute bin 
are illustrated in Fig. 4 for one patient with longitudinal observations at about 2 weeks post-surgery (red dashed 
line) and again 17 weeks later (blue dashed line). The solid lines illustrate the average trend of the other groups for 
comparison (T1: red, T2: blue, C: black).

Discussion
Herein, we present a new computational platform that enables multi-modal gait analysis in free-living conditions 
based on data from commercially available wearable devices. We demonstrate the utility of this platform in a 
sample of patients recovering from ACL-R. Results suggest that platform-derived gait measures agree with gold 
standard actigraphy but better discriminate between patients’ gait at different time points in the recovery process. 
Similarly, platform-derived measures are able to detect gait differences between patients at different stages of 
recovery, and with large effect sizes. We further discuss the implications of these results and how this new plat-
form could be deployed for remote gait analysis in a variety of clinical populations.

Currently, actigraphy technologies are broadly used for characterizing free-living physical activity and gait9,10. 
The statistically significant association we observe (Fig. 2; r = 0.71, p = 0.03) between actigraphy-derived daily 
step counts and platform-derived walking time suggest that the proposed analysis platform is valid for capturing 
free-living physical activity. Similar findings of agreement between different indices of physical activity have 
been reported elsewhere9. Although the correlation between recovery time and the platform-derived measure of 

Figure 2.  Scatter plot of the total time spent walking from the proposed method vs step counts estimated by 
Actigraph activity monitors.
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Figure 3.  Percent difference in the median Actigraph step counts (a), strides times (b), and composite 
asymmetry scores (c) between the T1 (red) and T2 (green) groups. Error bars denote the 25th and 75th quantiles.

Mean (SD) Pairwise Comparisons

T1 T2 C C-T1 C-T2 T1-T2

ST 1.34 (0.08) 1.14 (0.07) 1.10 (0.05) 4.08** 0.34 2.70**

DF 0.13 (0.05) 0.04 (0.02) 0.03 (0.01) 4.20** 0.61 2.48**

EMG St 0.22 (0.12) 0.13 (0.03) 0.15 (0.04) ANOVA p = 0.05

EMG Sw 0.41 (0.14) 0.27 (0.04) 0.29 (0.12) ANOVA p = 0.12

EMG(t) 0.41 (0.10) 0.29 (0.11) 0.25 (0.07) 2.10** 0.52 0.07

AP(t) 0.32 (0.13) 0.10 (0.05) 0.07 (0.04) 3.57** 0.49 0.08

ML(t) 0.38 (0.13) 0.28 (0.04) 0.24 (0.06) 1.74** 0.51 0.08

CC(t) 0.20 (0.08) 0.06 (0.04) 0.03 (0.02) 4.19** 0.26 2.20**

Comp. 0.29 (0.05) 0.17 (0.03) 0.15 (0.03) 3.78** 0.65 2.96**

Table 1.  Comparison of daily average stride times and asymmetries. ST: Stride Time; units seconds. Duty 
Factor (DF), EMG Stance (EMG St), and EMG Swing (EMG Sw) asymmetry scores are the percent difference 
between the healthy and injured leg (i.e. 0.5 indicates that the between leg difference is 50% that of the healthy 
leg). EMG(t), AP(t), ML(t), and CC(t) are pattern asymmetries for the sEMG time-series and the antero-
posterior, medio-lateral, and cranial-caudal thigh acceleration time-series respectively. Composite asymmetry 
score (Comp.) is the average value of the other seven asymmetry scores. Bold numbers in the pairwise 
comparisons are effect sizes (*p ≤ 0.05, **p ≤ 0.01) and non-bold numbers are the p values for non-significant 
pairwise differences.

Figure 4.  Composite asymmetry score throughout the day (averaged over every 15-minute bin) for a patient 
with longitudinal observations: 2.1 weeks post-surgery (red dashed line) and 19.1 weeks post-surgery (blue 
dashed line). The solid lines illustrate the average trends for the T1 (red), T2 (blue), and C (black) groups. The 
longitudinal patient’s data was not included in the group means.
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walking time (r = 0.63, p = 0.08) appears stronger than that for actigraphy-derived step counts (r = 0.25, p = 0.52), 
neither was statistically significant, which also agrees with previous work9. This finding is intuitive as there are a 
variety of extraneous variables that affect daily physical activity and have nothing to do with rehabilitation pro-
gress (e.g. weather, day of the week). These results suggest a fundamental limitation of physical activity indices 
for monitoring rehabilitation progression. The vast majority of research investigating pathological biomechanics 
characteristic of gait following ACL-R suggests the existence of more sensitive metrics including quadriceps acti-
vation43, ground reaction force33, and joint work34. However, these metrics currently require laboratory-based 
methodologies that are not widely transferable to clinical use.

The proposed platform answers this unmet need by capturing more subtle biomechanical changes in gait 
associated with recovery under free-living conditions. Our results demonstrate that platform-derived stride times 
are more strongly associated with recovery time (r = −0.91, p < 0.01) than both actigraphy-derived step counts 
(r = 0.25, p = 0.52) and platform-derived estimates of total walking time (r = 0.63, p = 0.08). These results are 
supported by previous work where decreased walking speeds have been associated with decreased joint health 
following ACL-R44 (stride times are associated with walking speed45). These results provide additional evidence 
in support of the utility of platform-derived measures of free-living gait biomechanics.

Stride time, walking speed, and other spatiotemporal parameters are informative biomechanical measures 
related to recovery in this population, and more broadly are important indicators of mobility impairment12,27,28,44. 
Nevertheless, a need has been recognized for more sensitive biomarkers. For example, it has been shown that 
spatiotemporal symmetry may manifest even in the presence of a true gait abnormality46. Further, research sug-
gests the pursuit of metrics that characterize the full waveform pattern of mechanical variables throughout the 
gait cycle47. In light of these results, the proposed platform has been designed to capture additional measures that 
may be more indicative of, and sensitive to, rehabilitation progress. Figure 3 and Table 1 report results from our 
efforts to define a novel gait asymmetry analysis that incorporates temporal (duty factor), kinematical (ML, AP, 
CC acceleration time-series), and neuromuscular (sEMG Swing, sEMG Stance, and sEMG time-series) measures. 
The effect sizes of the differences between groups were largest for the asymmetries relating to kinematic measures 
and duty factor. The mean normalized sEMG during stance and swing asymmetries were the only variables for 
which no significant difference was found, which may reflect increased within subject and group variance. The 
composite measure that captures asymmetries within each of these domains demonstrates significant differences 
between T1 and T2/C with large effect sizes (d = 2.96 and d = 3.78 respectively) suggesting that this measure may 
be useful for tracking biomechanical changes associated with rehabilitation progress.

To this end, we further examine the association of these measures of free-living gait biomechanics with time 
since surgery. Both stride time and our new composite asymmetry score present strong relationships with recov-
ery time (r = −0.91, p < 0.01 and r = −0.87, p < 0.01 respectively), and are noticeably larger than that observed 
for any gross index of physical activity. Further, when comparing T1 and T2, the largest effect sizes were observed 
for the composite asymmetry (d = 2.96) which was also responsible for the largest percent difference between T1 
and T2 (−43%) when compared to both stride time (−19%) and step counts (+12%) (Fig. 3). This suggests that 
these more detailed biomechanical measures may provide increased sensitivity to recovery time in this popula-
tion and thus may be suitable candidates to pursue in developing novel digital biomarkers for tracking rehabilita-
tion progress and gait asymmetries that have pathological consequences33,34. The proposed asymmetry analysis 
also provides the clinician with insight into patient-specific adaptations and their particular mechanistic origin 
since it captures indices of both muscle activation and limb kinematics.

Having established the improved association between free-living measures of gait asymmetry and recovery 
time, we further examine how this new measure changes over the entire wear time for patients monitored in this 
study. Figure 4 reports the composite asymmetry score captured during every gait bout identified between 11 
am and 8 pm for a single patient with longitudinal observations and with the group average trend for subjects 
in the T1, T2, and C groups for comparison. The difference between groups based on asymmetry magnitudes 
alone reflects the same general pattern observed in Table 1, namely a convergent trend toward decreased gait 
asymmetries with increased recovery time. However, Fig. 4 provides additional insight whereby gait asymmetries 
appear more variable throughout the day for the early post-surgery time point when compared to the later time 
point and that of the control group. This supports the need for remote gait monitoring, as this variability would 
not be captured in a single gait assessment. Further investigation is necessary to understand the origins of this 
observation which may, for example, indicate an increased susceptibility to fatigue early in rehabilitation. The 
similar trends observed between the dashed lines (single patient, different time points) and the solid lines (aver-
age of all other patients within respective group) of like colors suggests the results of our cross-sectional design 
may mirror what would be seen in a longitudinal study. Further investigation using a longitudinal design is nec-
essary to confirm this conjecture.

Far fewer strides were identified and analyzed for patients in the T1 group (≈350 strides/day per patient) than 
for those in the T2 (≈1,600 strides/day per patient) and C (≈1,310 strides/day per patient) groups. One expla-
nation is that the T1 patients simply walk less, which is also supported by the Actigraph step counts. Intuitively, 
this may reflect a natural tendency for an individual to avoid an activity like walking which loads the recently 
reconstructed knee. Despite the difference in the number of strides analyzed for the T1 group compared to T2/C, 
we see this as an acceptable limitation as the availability of gait biomechanics characterizing even 350 strides per 
day is already a substantial improvement over the current standard which often yields fewer observed strides and 
with limited ecological validity.

In the approach to remote patient monitoring proposed herein, we chose sensor locations that would min-
imize user burden while also providing the kinematic and muscle activity data key to the presented analysis. A 
minimum of one sensor per leg was required to extract inter-leg kinematic and muscle activation asymmetries. 
Future work could consider additional sensor locations in an effort to provide improved clinical utility. For exam-
ple, if the muscle activity from a quadriceps antagonist (e.g. a knee flexor) were available it may provide insight 
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into co-contraction indices and would perhaps make the knee extensor muscle activation time-series more inter-
pretable. Inclusion of a sensor on the shank could allow for the extraction of knee joint kinematics48,49 that could 
add additional information indicative of recovery. However, current hardware constraints on the capacity of 
on-board memory and battery prevented use of gyroscope data and required a relatively low accelerometer sam-
pling frequency (31.25 Hz) in order to enable sEMG data collection over the recording durations considered 
herein. While higher sampling frequencies and additional sensor modalities would be useful, accelerometer data 
recorded at 31.25 Hz is likely sufficient for capturing the segment kinematics of interest which is supported given 
the accelerometer signal power spectrum (see Fig. 5) and the fact that traditional laboratory-based gait analysis 
often employs cutoff frequencies ≤ 8  Hz for lowpass filtering kinematic data45,50,51.

The results presented herein demonstrate the clinical utility of the proposed analysis platform for remote 
monitoring of patients recovering from ACL reconstruction surgery. Our analysis describes an unprecedented 
evaluation of muscle activation concurrently with kinematical time-series during free-living gait. These consti-
tute a novel asymmetry analysis which presents a substantial improvement over current techniques utilized for 
remote monitoring. Further investigation is necessary to fully realize the practical application of the proposed 
approach for continuous patient monitoring with a larger sample, longitudinal design, and more frequent obser-
vation (i.e. more than just two time points) during the recovery process. The underlying MATLAB code has been 
open-sourced and structured in a modular fashion so that users can easily add/edit functionality for their specific 
use case. For example, different activity classification models or stride segmentation algorithms that incorporate 
data from other wearable sensors located on different body segments could be inserted that are more precisely 
tuned for a given patient population. There are certainly algorithmic improvements and additions that could 
be made for the proposed remote gait analysis such as automatic anatomical calibration or estimation of other 
biomechanical variables. The modularity of the platform is intended to promote these improvements so that 
the platform may serve as a basis upon which to build a comprehensive approach for remote gait analysis. This 
contribution comes at a critical time in the use of wearable sensors for providing free-living patient monitoring 
capabilities. An open-source platform will promote cross-disciplinary efforts to further advance remote patient 
monitoring paradigms and digital medicine. Future research should investigate similar applications in other clin-
ical contexts and begin the difficult task of understanding how to translate the detailed, big-data evaluations 
enabled by continuous monitoring paradigms into optimizing patient-specific interventions.

Methods
Study design.  Our system was deployed to evaluate gait in three groups of subjects: (1) subjects less than 
six weeks after ACL-R (T1: 3 male, 3 female, recovery time (mean ±SD) = 2.1 ± 1.6 weeks, age = 26 ± 11 yo, 
height = 1.74 ± 0.11 m, mass = 70.52 ± 16.21 kg), (2) subjects at least six weeks after ACL-R (T2: 2 male, 4 female, 
recovery time = 17.2 ± 2.0 weeks, age = 26 ± 6 yo, height = 1.70 ± 0.13 m, mass = 77.82 ± 15.44 kg), and (3) 
healthy controls (C: 8 male, 8 female, age = 23 ± 5 yo, height = 1.74 ± 0.11 m, mass = 70.51 ± 13.17 kg). Each 
subject wore a single sensor (BioStamp, MC10 Inc., Lexington, MA) on the muscle belly of the rectus femoris of 
each thigh, which recorded tri-axial accelerometer (sampling frequency: 31.25 Hz, range: ± 16 g) and surface 
electromyography (sEMG) (sampling frequency: 250 Hz) data during daily life for one day. Daily step counts from 
a waist worn activity monitor (Actigraph, Pensacola, FL) were also available for nine ACL-R patients (T1: N = 4, 
T2: N = 5). These enable a comparison between the proposed analysis and current standards (e.g step counts9) in 
their respective sensitivity to patient recovery. This study was approved by the University of Vermont Institutional 
Review Board. All study activities were in accordance with the relevant guidelines and informed consent was 
obtained from all participants.

Figure 5.  Stride detection and segmentation example. (a) Foot contact (red circles) and foot off (green 
triangles) events are identified using the CC-axis accelerometer time-series lowpass filtered with a 5 Hz cutoff 
(black trace) and with cutoff frequencies equal to the approximate step frequency (orange trace) and stride 
frequency (blue trace). Step and stride frequencies are approximated using the power spectral density of the raw 
accelerometer signal (b).
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Remote gait analysis platform.  The general approach to biomechanical analysis of any task in daily life 
using the proposed platform takes on the following form: (1) activity identification, (2) event detection, and (3) 
analysis. The specifications for the current ACL-R patient monitoring application are described graphically in 
Fig. 1. This framework easily allows future users to make application-specific modifications to analyze differ-
ent tasks (e.g. crutching, stair ascent) or analyze differently the same tasks presented in the current study. For 
monitoring ACL-R patients, the proposed analysis requires, at a minimum, raw accelerometer data to operate. 
Herein, we also consider sEMG data to provide a more complete picture of free-living gait biomechanics in this 
population.

Identification of walking bouts.  A support vector machine (SVM) binary classifier (Gaussian kernel) 
was used to identify walking bouts. The model was trained using annotated tri-axial accelerometer data from the 
healthy control group recorded during various activities including multi-speed walking and running over ground 
and on a treadmill, stair ascent and descent, crutching, sitting, standing, and lying down. Annotated walking, 
crutching, lying down, sitting, and standing data were also available from three ACL-R patients. Data from each 
activity were partitioned into four-second, non-overlapping windows. This yielded a total of 3,102 observations 
(1,318 walk; 1,784 not walk) for training the walking classifier.

The constant thigh relative sensor attitude was determined for each leg by considering accelerometer data 
during a standing calibration trial (as in24) and used to project raw accelerometer data onto the thigh-fixed 
cranial-caudal axis (referred to as CCi, i ∈{R, L}, R: right, L: left, directed proximally). The first principal com-
ponent of acceleration in the transverse plane during each four-second window was assumed to coincide with 
the antero-posterior axis of the thigh (referred to as APi, points anteriorly, see48), from which the medio-lateral 
axis (referred to as MLi, points laterally) can also be determined. Accelerometer data were projected onto these 
three anatomical axes and used to extract a total of 152 time and frequency domain features. Performance of the 
classifier was evaluated using leave-one-subject-out (LOSO) cross-validation where, for each iteration, data from 
one subject was removed for testing and a classifier was trained on the remaining data using only those features 
from the training set with a Davies-Bouldin index52 (DBI) less than two. From the LOSO validation, the classifier 
achieved 98.32% accuracy, 97.04% sensitivity, 99.27% specificity, and the area under the ROC curve (AUC) was 
1.00. The classifier made no misclassification errors (100% accuracy) on the 132 observations from the three 
ACL-R patients during the LOSO validation, which supports its use to identify gait in this population.

Following this performance characterization, annotated data from all sixteen healthy controls and the three 
ACL-R subjects were used to train the classifier deployed for the proposed analysis. Davies-Bouldin feature selec-
tion (DBI < 2) indicated six features to use as input to the classifier: (i) average 25th quantile of CCR and CCL, (ii) 
average correlation between CCR with APL and CCL with APR, (iii) correlation between CCR with CCL, (iv) average 
skewness of APR and APL, (v) average percentage of signal power contained below 0.25 Hz for APR and APL, and 
(vi) average median value of APR and APL.

These six features were extracted from each four-second window of raw accelerometer data collected during 
daily life from all subjects and were used as input to the SVM classifier to identify each window as walking or not 
walking. This enabled an estimate of the total amount of time spent walking which we used as an indicator of gross 
physical activity. Windows labeled as walking were aggregated into walking bouts if (1) at least two consecutive 
windows (8 seconds) were classified as walking, and (2) the posterior probability of the window’s walking clas-
sification was at least 0.8. This threshold was determined as the point that minimized the distance between the 
classifier’s ROC curve and the point (0,1) on the true positive rate-false positive rate plane. A very small subset 
(451 observations or approximately 0.19%) of bouts containing clipped sEMG (e.g. due to sensor delamination 
from skin) and/or accelerometer signals were removed.

All aspects of the walking classifier presented herein (feature extraction, training, validation, etc.) were per-
formed using the MATLAB R2018a Statistics and Machine Learning Toolbox (Version 11.3) and our open-source 
platform specifically designed for wearable sensor-based activity identification. This platform streamlines the 
development of activity classifiers by enabling the building of population-specific feature sets, the extraction of 
novel features, feature manipulation (e.g. PCA, DBI), training and testing of various classification models, and 
automated leave-one-subject-out cross-validation with detailed error analysis. For more details see https://github.
com/M-SenseResearchGroup/ActivityIdentification.

Stride extraction and gait phase segmentation.  Gait events were identified for each walking bout 
by considering the CC accelerometer signal passed through a bank of lowpass filters with cutoff frequencies at 
5 Hz and the stride and step frequencies (fstride, fstep). Stride and step frequencies were estimated for each walking 
bout from Welch’s power spectral density (PSD) of the signal (see Fig. 5). As illustrated in Fig. 5, local minima 
and maxima in the fstride- and fstep-filtered signals indicate the initiation of the swing phase of gait (i.e. foot off). 
The first transition in the 5 Hz-filtered signal from below to above 1 g following foot off indicates the initiation 
of the stance phase of gait (i.e. foot contact). Constraints were placed on the stride time (0.91 s–1.57 s) and duty 
factor (DF, percentage of stride cycle spent in stance) (0.44–0.73) of identified strides to avoid accidental analysis 
of non-walking data45. To be considered for further analysis, an eight-second walking bout had to include at least 
two strides.

Biomechanical analysis.  Accelerometer and sEMG signals from each extracted stride were used to com-
pute discrete biomechanical variables to evaluate gait. We quantify asymmetries in gait kinematics and muscle 
activity between legs during each stride using accelerometer data in each anatomical direction lowpass filtered 
at a frequency of 6 Hz (as per51) and the envelope of the sEMG data (computed as per51). These four time-series 
(sEMG, CC, AP, ML) were normalized by stride time so that each sample corresponds to a percentage of the gait 
cycle.
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Eight indices of asymmetry (referred to as asymmetries) were computed for each eight-second walking bout. 
Three of these asymmetries (ak, k ∈{1, 2, 3}) were the relative difference between discrete biomechanical variables 
of each leg as per

=
−a I H
H (1)

k
k k

k

where Ik and Hk are the values of discrete variable k for the injured and healthy leg respectively. The three discrete 
variables for this analysis were mean sEMG during stance, mean sEMG during swing, and DF. The other four 
asymmetries (am) are defined as per

= − .a r1
2

(1 )
(2)m m

where m ∈{sEMG, CC, AP, ML}, and rm is the correlation coefficient of the ensemble means of like time-series 
between the injured and healthy legs. The final index of asymmetry was a composite asymmetry score equal to the 
mean of the aforementioned asymmetries.

Statistical analysis.  Outlier asymmetries were identified for each patient and removed after the biome-
chanical analysis as a final check to remove potentially errant data. A one-way analysis of variance (ANOVA) 
was used to compare the daily average of gait asymmetries and stride times between the three groups. Normality 
was checked using the Kolmogorov-Smirnov test. If the assumption of normality was violated, group distribu-
tions were compared using the Kruskal-Wallis test. If a significant difference was detected, post-hoc pairwise 
comparisons were made using Tukey’s honest significant difference criterion. Effect sizes (Cohen’s d) were com-
puted where the ANOVA revealed significant differences and were interpreted qualitatively as weak (d < 0.25), 
small (0.25 ≤ d < 0.5), medium (0.5 ≤ d < 1.0), and large (d ≥ 1.0)53. The agreement between our estimate of gross 
physical activity (total time spent walking) and the Actigraph step counts estimate was evaluated using Pearson’s 
correlation.

To compare the sensitivity of physical activity with that of our composite asymmetry score and estimated 
stride times to time spent in recovery, we also determine the correlation between recovery time with composite 
asymmetry, stride time, Actigraph step counts, and estimated time spent walking for each ACL-R patient using 
Spearman’s rank correlation. The level of significance was set to 0.05 for all statistical tests.
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