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Abstract

Dendritic cells (DCs) are the most effective professional antigen-presenting cell. They ferry

antigen from the extremities to T cells and are essential for the initiation of an adaptive

immune response. Despite interest in how DCs respond to chemical stimuli, there have

been few attempts to model DC migration. In this paper, we simulate the motility of DCs by

modeling the generation of forces by filopodia and a force balance on the cell. The direction

of fliopodial extension is coupled to differential occupancy of cognate chemokine receptors

across the cell. Our model simulates chemokinesis and chemotaxis in a variety of chemical

and mechanical environments. Simulated DCs undergoing chemokinesis were measured to

have a speed of 5.1 ± 0.07 μm�min-1 and a persistence time of 3.2 ± 0.46 min, consistent

with experiment. Cells undergoing chemotaxis exhibited a stronger chemotactic response

when exposed to lower average chemokine concentrations, also consistent with experi-

ment. We predicted that when placed in two opposing gradients, cells will cluster in a line,

which we call the “line of equistimulation;” this clustering has also been observed. We calcu-

lated the effect of varying gradient steepness on the line of equistimulation, with steeper gra-

dients resulting in tighter clustering. Moreover, gradients are found to be most potent when

cells are in a gradient of chemokine whose mean concentration is close to the binding of the

Kd to the receptor, and least potent when the mean concentration is 0.1Kd. Comparing our

simulations to experiment, we can give a quantitative measure of the strength of certain che-

mokines relative to others. Assigning the signal of CCL19 binding CCR7 a baseline strength

of 1, we found CCL21 binding CCR7 had a strength of 0.28, and CXCL12 binding CXCR4

had a strength of 0.30. These differences emerge despite both chemokines having virtually

the same Kd, suggesting a mechanism of signal amplification in DCs requiring further study.

Author summary

Dendritic cells harvest and display antigen to other immune cells, and motility is essential

to their function. Dendritic cells use filopodia to pull themselves forward, and orient their

filopodia based on signals received from chemokines. We developed a model of dendritic
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cell motion based on a force balance, in which pulling from filopodia (calculated from a

well-established model of filopodial adhesion-clutch dynamics) is counterbalanced by

adhesive friction, and where the angular orientation of filopodia is based on the strength

of chemotactic signal. The model can explain directional motion in chemotactic gradients,

as well as the effect of superposition of coincident gradients of chemokine on chemotaxis.

The model also identifies conditions in which dendritic cells can be focused at a single

location when confronted with countergradients of chemokine. The model makes specific

prediction regarding dendritic cell motion and defines conditions for the design of extra-

corporeal devices for focusing the position of dendritic cells.

Introduction

The adaptive immune system relies on antigen-presenting cells to bring antigen from periph-

eral tissues to secondary lymphoid organs (SLOs). Dendritic cells (DCs) are the most effective

antigen presenting cells and have become a subject of great interest in recent years [1–3].

Immature DCs migrate through peripheral tissues until exposure to inflammatory cytokines

or recognition of pathogenic antigen causes maturation [4]. Once mature, DCs migrate

quickly to SLOs and present antigen to T cells [5]. To fulfil their duties effectively, DCs must

be able to both move quickly and exhibit directional motion in response to chemical signals.

In mature DCs, the principal chemokine receptors are CXCR4 and CCR7 [6]. CXCR4 binds

the chemokine CXCL12, while CCR7 can bind to either CCL19 and CCL21. CCL19 and

CCL21 are both overexpressed in SLOs and are important for the recruitment of DCs [7], indi-

cating that CCL19 and CCL21 guide DCs towards SLOs.

Directional motion is governed by receptor occupancy of chemokine receptors; differential

occupancy leads to chemotaxis. In addition, cells in linear gradients exhibit a decreased che-

motactic response when the average concentration of ligand is too high [7,8]. This suggests

that cells do not directly sense differences in chemokine concentration, but differences in the

fraction of occupied receptors, a consistent feature of receptor-mediated chemotaxis [9].

Our lab has previously conducted experiments on the directional motion of dendritic cells

in response to gradients of chemokine using microfluidic gradient chambers [8]. Under the

gradient of a single chemokine, cells oriented so that their filopodia were directed toward the

higher concentration of chemokine (Fig 1, adopted from video data reported in reference 7).

When two gradients in opposing directions were used, cells preferentially migrated up one of

the two gradients. Specifically, we exposed DCs to counter gradients of CCL19, CCL21, and

CXCL12. Cells always preferred to migrate up gradients of CCL19, even in the presence of

CCL21, which also signals through CCR7. However, cells showed little preference and

migrated randomly when subjected to counter gradients of CCL21 and CXCL12. Gradients of

CCL19 and a different chemokine required the slope of the CCL19 gradient to be up to 100

times shallower than the opposing gradient to cause random migration. In some cases, DCs

migrated directionally in counter gradients to a central point, which we call the “line of equisti-

mulation,” and then moved randomly in the vicinity of that line.

In order to move, DCs generate a traction force at their leading edge [10] by extending filo-

podia and binding them to a substrate by a set of “molecular clutches” [11]. So-called

“clutches” are a general descriptor for a set of intracellular adapter proteins and a membrane-

spanning integrin, which serve to connect the cytoskeleton to the extracellular space. Such a

connection allows for force transduction from intracellular motors to the extracellular matrix

as integrin-ligand bonds are stretched. This causes a force imbalance between the two ends of
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the cell and ultimately cellular motion. Previously, Chan and Odde modeled filopodial traction

force generation in neuronal filopodia using stochastic binding and unbinding of molecular

clutches [12]. Bound clutches were simplified to Hookean springs that would be stretched by

the retrograde flow of the F-actin bundle to which they were attached. This model correctly

predicted the effects of varying mechanical stiffnesses of substrate on filopodial movement in

forebrain neurons. These findings were later expanded on by Bangasser et al. to simulate ran-

dom migration of neurons [13]. They were able to predict the existence of an “optimum stiff-

ness” for force transduction for different types of cells. However, the focus of these models was

on force generation and neither allowed for modifications of a cell’s external chemical environ-

ment. Although originally proposed for neurons, the model presented by Chan and Odde is

general enough to be applied to the migration of many cell types, including DCs. Our lab has

previously measured the forces of DC filopodia pulling on micropost array detectors to be 0.5

nN [10], which will allow us to calibrate the model of filopodial dynamics to DC motility.

Here, we present a model of DC migration, which captures the role of receptor occupancy

and signaling in directional motion. We integrate a model of filopodial force dynamics with a

simple model of cell signaling that depends on receptor occupancy and a realistic phenomeno-

logical model for the placement of filopodia based on signal magnitude and direction. Filopo-

dia are placed stochastically around the cell periphery, and the formation and breakage of

adhesion is done using the Adhesive Dynamics methodology developed in our laboratory [14].

By combining these elements, we can recreate DC random and directed motility, and can pre-

dict the behavior of DCs in gradients and counter gradients of chemokine.

Fig 1. DCs crawl up chemokine gradients by focusing their filopodia along their direction of motion. Screenshots

were taken from videos used for calculations by Ricart et al. [8].

https://doi.org/10.1371/journal.pcbi.1007295.g001
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Methods

The basic schematic of our model is shown in Fig 2. DCs extend filopodia, which engage the

substrate and generate a traction force, which by Newton’s third law also act on the body force

on the cell. By force balance, the DC will move if it sees a differential force. The placement of

the filopodia is determined by sampling a signaling function, which depends on receptor occu-

pancy and the intracellular amplification of signals.

Modeling clutch dynamics

In modeling clutches and filopodia, we have adopted the stochastic model of Chan and Odde

[12], with some minor modifications. First, we calculated the probability of a clutch disengag-

ing based on Adhesive Dynamics [14,15], and second, when a clutch disengages, the force it

had exerted on the substrate is distributed to the rest of the engaged clutches. Otherwise, the

method is identical to that of Chan and Odde and is only briefly summarized here.

Molecular clutches are modeled as Hookean springs with a spring constant (σclutch) which

can reversibly engage a filopod’s F-actin bundles with rate constants kon and koff (see Fig 2A).

Because a time step on the order of the integrin bonding time is used, clutches are allowed to

either engage or disengage the F-actin filament only once. As a result, the probability that a

particular clutch will change its state in a given time step is given by:

P ¼ 1 � e� kDt ð1Þ

where k is a pseudo rate constant for the reaction, in this case either kon or koff for binding or

Fig 2. Schematic of the model. A) Filopodia are modeled as a set of molecular clutches that reversibly bind to an F-actin filament undergoing

retrograde flow. These clutches allow force transduction and deformation of the substrate. Each cell is modeled as a circle of radius Rc. The forces of all

filopodia, Ffi, are summed to a net force Ffilopodia (green), which is balanced by resistive forces Ffriction (orange) and Ffluid (purple) to produce a velocity

vcell (light blue). Also note position of the “front” and “back” of cell. B) Cells are simulated in linear, time-invariant gradients, each with a slope -εi and a

maximum concentration Ci. Each gradient is oriented at an angle θgi for the ith gradient.

https://doi.org/10.1371/journal.pcbi.1007295.g002
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unbinding, respectively [14]. In the case of kon, integrins are assumed to be in excess. Once

attached, clutches are stretched by the retrograde flow of the F-actin bundle and begin building

up a force according to Hooke’s law. Imposing forces on the clutch in this manner weakens

the bond that joins them and leads to an exponential increase in koff as given by Bell’s Law

[16]:

k�off ¼ koff e
Fc
Fb

� �
ð2Þ

where Fb is the characteristic breaking force of the integrin-ligand bond and Fc is the force

exerted by a single clutch.

Filopodia and substrate

Filopodia are modeled as a set of myosin II motors pulling on a single F-actin bundle (Fig 2A).

Each filopod pulls on a substrate with a spring constant σsub, which represents the elastic

nature of the surfaces they move on. Every time step, the substrate’s displacement from equi-

librium is given by a simple force balance between forces exerted by the clutches and forces

exerted by the substrate. This strain causes the substrate to exert a force counter to the motors,

slowing them from their maximum velocity. In this case, the rate of retrograde flow is assumed

to slow down by a linear force-velocity relationship given by

vr ¼ vu 1 �
ssubDxsub
nmFs

� �

ð3Þ

where vu is the unloaded motor/retrograde flow velocity, nm is the number of motors, and Fs

is the stalling force of a single motor. Once this retrograde velocity is calculated, all engaged

clutches are stretched by vrΔt, and all clutches are permitted to both stretch and possibly

unbind, as dictated by Eq 1. If a clutch had a nonzero stretch, then disengaged, the force it had

exerted cannot simply disappear. Thus, after all clutches have been moved by the retrograde

velocity of the F-actin bundle, the forces of all previously-stretched clutches are equally distrib-

uted to the neng remaining engaged clutches. This induces a further stretch Δxd in all engaged

clutches, which is given by

D Dxcð Þ ¼ Dxd ¼
Pnd

1
Dxci

neng
ð4Þ

where nd is the number of clutches that have disengaged in a given time step and Δxci is the dis-

placement of the ith clutch from equilibrium. A demonstration that our adaptation gives the

same dynamics described by Chan and Odde [12] is given in section 2 of the supplement of

this paper (S1 Text).

Cellular motion

While others have articulated the mathematical principles of filopodial clutch dynamics and

force generation [12,14,15], we expanded on this work by integrating these filopodia into a

cell. The idea of combining multiple filopodia on a single cell is similar in principle to that

described by Bangasser et al., although we are now applying it to DC motion. The main part of

each cell body is modeled as a circle possessing a number of filopodia, with the ith filopod ori-

ented at an angle θfi from the y = 0 axis, as shown in Fig 2A. We assume these are normally dis-

tributed around a central angle θmean, which is further determined by the strength of signaling

(see below).

Dendritic cell migration
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Every time step, after all filopodia have calculated substrate displacement values, the cell

calculates the net force exerted by the ith filopod as Ffi = σsubΔxsubi. These forces are summed

to obtain a net filopodial force. Countering this filopodial force are two resistive forces: fluid

resistance and “molecular friction” caused by the continuous formation and breakage of clutch

bonds between the cell body and the substrate. These two forces are both velocity-dependent.

Because of the small Reynolds number of the system, all acceleration is assumed to be negligi-

ble, and the balance of forces is given by:

Ffilopodia þ Ffluid þ Ffriction ¼ 0 ð5Þ

In calculating fluid resistance, the cell is approximated as a uniform sphere of radius Rc mov-

ing through a fluid of viscosity μ at a velocity vc and thus experiences a resistive force given by

Stokes Law:

Ffluid ¼ � 6pmRcvc ð6Þ

To estimate the molecular friction, the cell is modeled as a circle of radius Rc moving at a

velocity vc over a two-dimensional substrate. In a time interval Δt, such a cell would pass over

an area ΔA = (2Rc)(vΔt). The circle is taken to have a constant receptor density δ = dn/dA.

Thus, in passing over such an area, the cell must break Δn = δ2RcvΔt receptor-ligand bonds.

Increasing the number of receptor-ligand bonds broken in a given time step likewise increases

the force against which the cell must work by γ = dF/dn. This means γ is reasonably approxi-

mated by the mean breaking force of an integrin-ligand bond. Thus, the resistive force can be

approximated as

Ffriction � � 2
dF
dn
dn
dA

RcvcDt ¼ � 2gdRcDtð Þvc ¼ � kfrvc ð7Þ

Using these approximations for Ffluid and Ffriction, Eq 5 can be solved for velocity as

vc 2 C ¼
Ffilopodia

6pmRc þ kfr
ð8Þ

Once a cell’s velocity has been calculated, its x and y position are adjusted by vcΔt. Note that

in our simulations, kfr>>6πμRc, but the fluid resistive force has been retained to allow the

model to be generalized to situations where this is not the case. Changes in direction come

from changes in the filopodial dynamics and orientation (see below).

Calculation of frictional force

In order to provide accurate results, it was necessary to estimate the frictional force experi-

enced by cells. Others have done this by tracking individual clutches on the cell body [13], but

this can be simplified for the time scales of cellular motion by Eq 7. Friction was calculated

assuming a substrate coated with fibronectin, as we would compare model predictions to

experiments done on murine DCs migrating on glass slides coated with fibronectin [17].

We directly measured the radius of the murine dendritic cells used in this experiment from

video images (see Fig 1) as Rc = 5μm. We assumed all bonds would break at the mean breaking

force of a fibronectin-integrin bond of 85 pN [18,19]. Moreover, we assumed that the cell had

a constant receptor density of 490 μm-2 [20,21]. Finally, we used a time step of 5 ms, which

allows us to ignore viscous effects of the substrate, and which is small relative to the time scales

of cellular motion. Using these, we calculated the frictional coefficient to be 2.1�106 μg�s-1 (see

S1–S4 Tables for a table of all constants used). This value was used throughout all simulations.

Dendritic cell migration
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Linear gradients

All simulated chemotaxis data have been collected assuming linear, temporally invariant che-

mokine gradients. There are several reasons for this, primarily that it allows for analysis of DC

decision-making in the absence of potentially confounding variables, such as time and position

dependence of gradient slopes (as might be seen in point-source diffusion, for example). This

also allowed us to compare results with past experiments that have used linear gradients [8].

Linear gradients are recreated in simulation by placing a line of high concentration at an x

position xgradient far beyond the region the cell could conceivably reach in the time it is given.

These gradients decrease linearly with a slope -ε from a maximum ligand concentration of C0.

Using these parameters, the concentration for a cell at x position xcell is given by

CðxcellÞ ¼ C0 � εjxcell � xgradientj ð9Þ

Eq 9 could be readily modified to allow for time-dependence, and nonlinearity in gradients,

which would allow the model to work with almost any chemical environment created

experimentally.

Cellular signaling

Cells will reorient filopodia based on their chemical environments. We modeled this behavior

by first calculating “individual signals” from each gradient, which are composites of three val-

ues: the concentration-based signal strength of the ith gradient, denoted Sgi, its direction of

strength, denoted θgi, and its “intrinsic” signal strength, denoted agi. These are used to create

an “overall signal” which can be used to reorient filopodia. The details of the signal transduc-

tion network inside the cell are undoubtedly much more complex than this, but this simple

approximation will inform us about the relative signaling strength of the simulation.

The signal from each chemokine receptor, Sgi, derives from the its fractional occupancy

f ([L]). The fractional receptor occupancy can be thought of as either the fraction of receptors

that are occupied in a given local area, or as the probability that a randomly selected receptor

within an area will be bound to a ligand. We assumed that the cell’s receptors are in chemical

equilibrium with their surroundings. This means that the fractional occupancy is given by

f ½L�ð Þ ¼
½L�

½L� þ Kd
ð10Þ

where [L] is the ligand concentration and Kd is the dissociation constant of the ligand [9]. Sgi is

defined as the difference in fractional occupancy across the “front” and “back” of the cell. The

“front” of the cell (FOC) is taken to be the position at the tip of a filopod with a length lf ori-

ented along the direction of the cell’s motion (Fig 2A). The “back” (BOC) is defined as the

rearmost part of the cell along its direction of motion. Thus, Sgi may be mathematically defined

as

Sgi ¼
CðFOCÞ

CðFOCÞ þ Kd
�

CðBOCÞ
CðBOCÞ þ Kd

�
�
�
�

�
�
�
� ð11Þ

where C(FOC) and C(BOC) can further be described by Eq 10 in terms of Rc, lf, and the cell’s

direction of motion φ:

CðFOCÞ ¼ C0 � εjfxcell þ ½Rc þ lf � cos φg � xgradientj ð12Þ

CðBOCÞ ¼ C0 � εjfxcell � Rc cos φg � xgradientj ð13Þ

Dendritic cell migration
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θgi is defined as the angle made by a horizontal vector going from (xcell, ycell) to (xgradient,

ygradient = 0) (Fig 2B). This is distinct from the direction of the cells motion φ, which refers to the

actual motion of the cell, rather than where the gradient is directing it to go. This distinction is

important when modeling counter gradients. Finally, αgi is used to account for the strong cellu-

lar “preference” DCs exhibit for some chemokines over others [8]. Until the physical basis for

such preference is better understood, such constants must be set phenomenologically.

Rearrangement of filopodia

Cells periodically rearrange individual filopodia. We assume this rearrangement is done on

an average rearrangement time scale, τ. At the beginning of every simulation, τ is randomly

assigned according to a narrow but normal distribution with a mean μ = T and standard devia-

tion σ = T/10. T is a simulation-wide parameter meant to approximate how often murine DCs

rearrange their filopodia. Once τ time steps have passed, a single filopod is reoriented towards

a new angle, a new filopodial rearrangement time is calculated, and the cycle begins again.

Once a cell has determined it needs to reorient a filopod, it must calculate a new angle θnew

at which to place it. This calculation is based on a normal distribution of possible angles, and

thus a cell must first calculate a mean angle and standard deviation of that angle, based on the

magnitude of the signal the cell senses. This, in turn, requires the calculation of a composite

signal strength Sc and a composite angle of stimulation θc. They are both weighted averages,

and are given for ng gradients as

Sc ¼
Png

1 SgiagiPng
1 agi

ð14Þ

yc ¼

Png
1 ygiSgiagiPng

1 Sgiagi
ð15Þ

Sc is then scaled appropriately based on a maximum value of Sc within the positional bounds

of the simulation, Smax, and mapped to a standard deviation (of a normal distribution) σθ
between a minimum and maximum value as such:

sy ¼ �
smax � smin

p

h i
tan� 1 p tan

pSc
Smax
�
p

2

� �� �

þ
smax þ smin

2
ð16Þ

The above phenomenological function was crafted to give a graph with the following features:

1) mapping Smax to σmin, and 0 to σmax, thus giving weak signals a lack of directionality, 2)

exhibiting an inflection point at Sc = Smax/2, so that the function has reasonably positive curva-

ture at Sc < Smax/2 and negative otherwise, 3) having a useful domain of (0, Smax) and a range

of (σmin, σmax).

In the case of gradients varying only in the x direction, θc is converted to a new angle θmean

by normally distributing it around a mean of either μ = π or μ = 0, depending on the quadrant

in which θc lies. θmean is given by a normally distributed random variable N(μ,σ), where μ is

the mean of the normal distribution, and σ is the standard deviation.

ymean ¼

Nðm;sÞ ¼ Nð0; syÞ if yc is in �
p

2
;
p

2

� �

Nðm;sÞ ¼ Nðp; syÞ if yc is in � p; �
p

2

� �
[

p

2
; p

� �

8
><

>:
ð17Þ

Finally, once both a mean and standard deviation have been calculated, a filopod can finally

Dendritic cell migration
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be assigned an angle θnew as a normal distribution with a mean μ = θmean and standard devia-

tion σ = σθ. In reorienting a filopod, all molecular clutch bonds are assumed to break, and the

filopod must build up new attachments.

In this model, we have fixed the number of filopodia to be 4 (a reasonable number based on

images in Fig 1). Of course, this can be varied, depending on the strength of the signal, but as

will be seen, giving all DCs 4 filopodia captures the basic physics of motion quite well. Also, we

set the length of filopodia to be a fixed number, L. This can be varied in future versions of the

method.

Results

Filopodial force

We began by checking that the mechanics of filopodial force generation matches the value

determined by past experiments. To calculate the average force per filopod, we logged the net

force exerted by every filopod at every time step. After simulating 400 cells, we arrived at a

mean filopodial force of 183 ± 94 pN. This is consistent with both past simulated results of

~250 pN for stiff substrates [estimated from data provided by 11]. It is also consistent with

experiments done by Ricart et al., which showed the average force to be 550 ± 400 pN [10].

Any discrepancy between the results is likely due to Ricart’s use of micropost arrays, which

have been shown to increase speed of cells [17], and thus likely the force exerted by individual

filopodia. Our model also exhibited the same load-and-fail dynamics for softer substrates that

have been reported by others [12], which is the leading cause of the large standard deviation of

the net filopodial force (see S1 Text, section 1).

Random motility

We then simulated the motion of DCs in uniform fields of chemoattaractant and created scat-

tergrams of the motion (Fig 3B). We could then extract the speed S and persistence time P

from the time lag of the mean squared displacement. These values could be directly compared

with available literature data. This represents a further check on our simulations.

Analysis of positional data gave speed values of 5.07 ± 0.07 μm�min-1 and persistence time

values of 3.17 ± 0.46 min, which is in good agreement with the experimental values observed

by our laboratory for the motion of DCs, which are of 4.00 ± 0.18 μm�min-1 and 4.88 ± 0.46

min, respectively [17]. The trajectories of individual cells are also in good qualitative

Fig 3. A) A typical path for a cell undergoing chemokinesis, where red filopodia exert large forces on the cell, and blue ones exert small forces. B)

Scattergram of 25 cells undergoing chemokinesis. Dots represent the cell’s final position. C) Mean squared displacement vs. time. Trajectories

accurately fit with the Dunn equation, from which a speed and persistence time can be elucidated.

https://doi.org/10.1371/journal.pcbi.1007295.g003

Dendritic cell migration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007295 October 7, 2019 9 / 16

https://doi.org/10.1371/journal.pcbi.1007295.g003
https://doi.org/10.1371/journal.pcbi.1007295


agreement with those of actual DCs (Fig 3). Based on these results, our model appears to be

able to model random motion well, exhibiting the proper behavior both at the filopodial and

cellular level.

Counter gradients and points of equistimulation

When exposed to a single gradient, simulated cells consistently migrated towards higher con-

centrations of chemokine. While doing so, they exhibited faster speeds and longer persistence

times than cells undergoing random motion, indicating a chemotactic response. The degree of

cellular response varied widely with both the relative strength of the gradient and its mean che-

mokine concentration, as shown in Fig 4. Gradients with higher relative strengths gave rise to

a stronger response and higher chemotactic indices. Interestingly, however, we found that

combining gradients gave rise to a higher chemotactic index than a simple sum of each chemo-

tactic index would suggest. At constant relative strength, cellular response depended heavily

on the mean chemokine concentration. Cells exhibited stronger responses when the mean

concentration of chemokine was close to the Kd (Fig 4). If the mean concentration was much

lower than the Kd, the cell produced weak responses as a result of a general lack of chemokine

(small fractional occupancy), while higher mean concentrations also produced weaker

responses due to receptor saturation. As cells migrated farther up each gradient, resulting in

increased average levels of chemokine, the strength of their chemotactic responses decreased.

As a result, cells changed the direction of migration more frequently, causing a reduction in

directional motion. Presumably, this is the result of receptor saturation disabling the cells’ abil-

ity to sense the gradient.

Fig 4. Plot of chemotactic index (CI) as a function of average chemokine concentration, shown for both three

individual gradients and for two gradients working together. In all cases, the CI is a maximum when the average

chemokine concentration is equal to the Kd, while returning to zero at concentrations well above and below the Kd. In

addition, CI scales with relative strength of the gradient: stronger gradients lead to larger vales of CI, and also a wider

range of concentrations over which CI is high. In the case of a coincident gradient, the effect of combining two

gradients of relative strength of 1 and 0.3 is much greater than would be predicted by simply adding their CIs. Values

are plotted as mean ±ME.

https://doi.org/10.1371/journal.pcbi.1007295.g004
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When exposed to counter gradients, cells generally exhibited one of three behaviors. In

most cases, groups of cells found a single, well-defined line of equistimulation, with the group

exhibiting a stable mean x position with typical standard deviations between 10μm and 30μm.

This is similar to past experiments performed by our lab, in which cells along a line of equisti-

mulation exhibited standard deviations of approximately 25μm [8]. Such lines of equistimula-

tion are visually extremely distinct, as shown in Fig 5B and 5C. These lines were less well-

defined in shallower gradients, as the region in which cell motion was random was wider.

Cells in shallow gradients also exhibited relatively larger standard deviations of position. Even

in this situation, cells exhibited the characteristic lack of net directional migration associated

with a line of equistimulation. If one of the gradients became particularly weak relative to

another, cells sometimes failed to exhibit any line of equistimulation, as shown in Fig 5D.

This is equivalent to a limiting case in which one gradient becomes so flat as to provide no net

directional signal, and migration resembled that of a single gradient.

Here, we have mostly studied outcomes where cells exhibit a stable line of equistimulation.

We did so by simulating similar conditions to those examined by Ricart [8], with one gradient

increasing as the x co-ordinate decreased–the “negative” gradient–and another increasing as

Fig 5. A) A typical path for a cell undergoing chemotaxis, illustrating 1) the typical time frame for a filopod to be

reoriented, 2) the focused arrangement of filopodia while the cell is undergoing chemotaxis, 3) the formation of a

single preferred x-value around which the cell doesn’t move, and 4) the disappearance of focus in filopodia once that

line is reached. B) Representative positions of 25 cells clustering in a line, where both gradients have identical slopes,

strengths, and Kd values. C) Cells do not have to cluster around x = 0, but can cluster at many other locations to reach

their destination. D) If the counter gradient is too shallow, cells will not find an equilibrium position.

https://doi.org/10.1371/journal.pcbi.1007295.g005
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the x co-ordinate increased–the “positive” gradient. We set the relative strength of the negative

gradient to 1, and the slope of the positive gradient such that concentration values ranged

from 0-2Kd. We chose to keep these factors constant so as to avoid a gradient having both a

shallow slope and a low relative strength, thus effectively removing its effect on cells. Using

these two constant parameters, we varied the slope of the negative gradient (ε1) and the relative

strength of the positive gradient (α2), and recorded the mean x position at which cells eventu-

ally exhibited no net x-directional motion. Here, we refer to this mean x position of cells in

equilibrium as the x position of the line of equistimulation. The results of this computer exper-

iment are plotted in Fig 6. Combinations of low ε1 and high α2 values produced significant

motion towards one pole, as shown by the sharp peak in Fig 6A. Conversely, low α2 and high

ε1 values produced nearly the opposite effect, strongly stimulating cells to go towards the nega-

tive pole, as shown by the deep valley in Fig 6A. When only varying α2, we found that increas-

ing the relative strength of a gradient was found to increase its effectiveness at directing cells,

but did so logarithmically (Fig 6B). We curve-fitted the data (average R2 of 0.96), and used

our lab’s previous findings [8] to assign numerical values to the strengths of CCL19, CCL21,

and CXCL12. Normalizing all strengths around αCCL19 = 1, we gave CCL21 and CXCL12

strengths of 0.28 and 0.30, respectively. This assignment of a relative strength to a gradient can

also be seen graphically by computing the x-intercepts of the constant-slope (constant average

concentration) lines of Fig 6B. At the x-intercept, the negative gradient (with the specified

slope) and the positive gradient (with the calculated relative strength) attract a cell with equal

strength.

We found that the mean x position stayed roughly constant for sufficiently low values of a

gradient’s slope, presumably because cells have difficulty distinguishing it from a constant che-

mokine field. Once ε1 was increased enough that cells could sense the gradient, it exhibited a

minimum of effectiveness when the average concentration was roughly Kd/10, and a maxi-

mum of effectiveness when the average concentration was equal to the Kd, as shown by the

peaks and valleys of Fig 6C, respectively.

At every constant α2, there were often multiple slopes that would cause cells to localize at a

given x position (for greater detail on producing a line at x = 0, see S2 Fig). Consider the case

where cells line up at x = 200 (the black line in Fig 6C), and α2 = 1.2. When the slope is almost

zero, cells will line up at x = 200 because they can barely sense the negative gradient, and are

almost solely compelled by the positive gradient until the signal from the negative gradient

increases. When ε1 is increased such that the average concentration of the negative gradient

moves beyond the minimum-effectiveness Kd/10, it is possible to compel cells to line up at

x = 200 again. This is because cells are finally able to sense the negative gradient better than

they could before, getting closer to the balance between there being enough ligand to perceive

the gradient, but not too much as to saturate receptors. When the slope is increased such that

the average concentration is equal to the Kd, the negative gradient is at its most effective. Fur-

ther increases to ε results in less directional motion, as the average chemokine concentration

prevents the cell from sensing the gradient.

Discussion

Here, we have presented a model for dendritic cell directional motion and chemotaxis. We

have been able to replicate several experiments, ranging from filopodial force dynamics to cel-

lular motion and chemotaxis. We can successfully simulate the force of an individual filopod

and find our results are consistent with both past experiments and past simulations. Moreover,

we have been able to numerically quantify cellular preference for certain chemokines. Our

model can predict where cells will likely cluster based on both their chemical composition and
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steepness of gradient. More importantly, the model presented here can be applied to an arbi-

trary set of experimental conditions and chemokine gradients. This could potentially open

the door to modeling the same chemical environment to which DCs are exposed in the body.

Extension of the model to three-dimensional environments would only require some topologi-

cal information about the environment, and the models of motion could be adapted. This

potentially would allow the simulation of DC migration from the periphery to secondary lym-

phoid organs, which in turn could be used to better understand antigen trafficking as a whole.

This understanding could allow for the creation of more computationally efficient models of

Fig 6. A) 3D plot of the conditions varied and their effects on the x position of the line of equistimulation. Note the

peaks and troughs, which represent where the positive and negative gradient is most effective, respectively. Also note

the relative flatness of the graph for sufficiently small slope values. B) Logarithmic plot of the relative strength of the

positive gradient’s effects on the point of equistimulation, with the positive gradient’s slope (ε2) and average

concentration held constant at 0.012044μm-4 and the Kd, respectively. Each line represents a different slope (ε1) for the

negative gradient. C) Logarithmic plot of the effects of varying the slope and average concentration of the negative

gradient on the point of equistimulation, with the negative gradient’s relative strength (α1) held constant at 1. Each line

represents a different relative strength of the positive gradient. Note 1) the constant-slope region when ε1 is negligible,

2) the maximum at ε1 = 0.0012044μm-4, corresponding to an average concentration equal to Kd/10, indicating the

negative gradient is least effective when this is the case 3) the minimum at ε1 = 0.012044μm-4, corresponding to an

average concentration equal to the Kd, indicating the negative gradient is most effective when this is the case.

https://doi.org/10.1371/journal.pcbi.1007295.g006

Dendritic cell migration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007295 October 7, 2019 13 / 16

https://doi.org/10.1371/journal.pcbi.1007295.g006
https://doi.org/10.1371/journal.pcbi.1007295


antigen trafficking once the population dynamics of DC migration are better understood. Fur-

ther extensions of the model would allow for incorporating different material properties of the

material, such as migration through regions of different compliances, or regions of gradients

of stiffness (so called durotaxis).

While the model faithfully recreates the notion that DCs can find lines of equistimulation,

there are two phenomenological features of the model that can be improved with additional

biological information. First is the manner in which the signal of receptor occupancy is ampli-

fied. Here we choose to model the behavior by a simple amplification function that is the prod-

uct of receptor occupancy that seems to capture the essential essence of the signaling response.

An increased understanding of the interactions between the intracellular signaling cascades

downstream of receptor-ligand binding might allow for estimation of the amplification coeffi-

cients a priori. Future models could incorporate this signaling behavior, provided parameters

could be estimated to get an accurate measure of signaling strength. We have also chosen to

approximate how cells decide to place their filopodia. As illustrated in Fig 1, in a strong che-

motactic field, DCs orient their filopodia to one pole; in random migration, the filopodia are

organized randomly. The cells must integrate the signaling information it receives to decide

where the filopodia are placed, and this must be done by spatially organizing actin polymeriza-

tion centers around the cell periphery in response to the signal. We lump the details of this

organization into a simple functional form that indicates the most likely angle of orientation in

response to the gradient. Although certain aspects were recreated phenomenologically, this is

quite commonplace in cell motility modeling and captures the zeroth order essence of the

response (see for example, Iglesias et al. [22]). Future work can include mechanisms of local

actin organization and polymerization to allow for spontaneous filopod formation.

Supporting information

S1 Fig. Graph of the variation of the substrate displacement (y axis, in nanometers) from

equilibrium as time (x axis, in seconds) progresses. The blue curve represents a relatively

compliant substrate, while the red curve represents a relatively stiff substrate.

(TIFF)

S2 Fig. Combinations of relative strength and slope that lead to no net directional motion

(i.e. a line of equistimulation at x = 0). Using the data and parameters from Fig 6, we have

approximated a smooth curve that shows all combinations of ε1 and α2 that should lead to

approximately no directional motion, and thus which lead to equally effective gradients.

Above the line, cells will move in the negative direction; below the line, cells will move in the

positive x-direction.

(TIFF)

S1 Table. Filopodial parameters. Definitions, values and sources of filopodial parameters.

(DOCX)

S2 Table. Cellular parameters. Definitions, values, and sources of all cellular parameters.

(DOCX)

S3 Table. Gradient parameters. Definitions, values, and sources of all gradient parameters.
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S4 Table. Simulation-wide parameters. Definitions, values, and sources of all system wide

parameters.
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