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Abstract: Apoptosis of intestinal epithelial cells following oxidative stress is a major cause of mucosal
barrier dysfunction and is associated with the pathogenesis of various gastrointestinal diseases.
Although L-tryptophan (Trp) is known to improve intestinal integrity and function, a beneficial effect
of N-acetyl serotonin (NAS), a metabolite of Trp, on the apoptosis of enterocytes and the underlying
mechanisms remain largely unknown. In the present study, we showed that porcine enterocytes treated
with 4-hydroxy-2-nonenal (4-HNE), a metabolite of lipid peroxidation, led to upregulation of apoptotic
proteins, including Bax and cleaved caspase-3, and reduction of tight junction proteins. These effects
of 4-HNE were significantly abrogated by NAS. In addition, NAS reduced ROS accumulation while
increasing the intracellular concentration of glutathione (GSH), and the abundance of the Nrf2 protein
in the nucleus and its downstream target proteins. Importantly, these protective effects of NAS were
abrogated by Atra, an inhibitor of Nrf2, indicating a dependence on Nrf2 signaling. Taken together,
we demonstrated that NAS attenuated oxidative stress-induced cellular injury in porcine enterocytes
by regulating Nrf2 signaling. These findings provide new insights into a functional role of NAS in
maintaining intestinal homeostasis.

Keywords: N-acetyl serotonin; 4-hydroxy-2-nonenal; nuclear factor erythroid 2-related factor 2;
glutathione; intestinal epithelial cells

1. Introduction

The intestinal monolayer epithelium serves as the major site for the digestion and absorption
of nutrients, electrolytes, and water from the intestinal lumen, while preventing the permeation of
toxins, allergens, and pathogens from the gut lumen into mucosal tissue [1]. The enterocytes are
vulnerable to oxidative damage due to their constant exposure to reactive oxygen species (ROS)
generated from the luminal contents [2]. Oxidative stress, a state of imbalance between the generation
of ROS and antioxidant defenses [3,4], has been reported to induce cell apoptosis in both in vitro and
in vivo experiments, and therefore contributes to impaired intestinal mucosal barrier function [5,6].
Accumulating evidence shows that oxidative damage in the small intestinal epithelium is a major cause
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of gut dysfunction and plays a crucial role in the pathogenesis of various gastrointestinal diseases,
such as enterocolitis, gastrointestinal cancers, celiac disease, and inflammatory bowel disease [7,8].

4-Hydroxy-2-nonenal (4-HNE), a metabolite of lipid peroxidation in response to intracellular
damage, is associated with oxidative stress in various cells and tissues [9]. It has been reported
that 4-HNE can regulate B-cell lymphoma 2 (Bcl-2) family proteins, including both pro-apoptotic
(Bax, Bak, Bad) and anti-apoptotic (Bcl-2, Bcl-XL) proteins [10]. Activation of pro-apoptotic proteins
leads to the release of cytochrome c from the mitochondria to the cytoplasm, which in turn, activates
downstream targets of caspases, leading to the morphological and biochemical changes related to
apoptosis [11–13]. A recent study has shown that the nuclear translocation of nuclear factor erythroid
2-related factor 2 (Nrf2) signaling acts as a critical transcriptional factor associated with cell survival in
response to oxidative stress [14]. However, it remains elusive whether Nrf2 signaling is regulated by
4-HNE and therefore contributes to apoptosis in intestinal porcine epithelial cells.

N-acetyl serotonin (NAS), a metabolite of L-tryptophan (Trp), is a precursor for the synthesis of
melatonin [15]. Plasma concentration of NAS is ten-fold higher than that of melatonin in human [16].
Moreover, in vitro studies have shown that NAS has a more potent antioxidant capacity than
melatonin [15]. NAS administration protects ischemia-reperfusion-induced mucosal damage in
the jejunum and ileum of rats [17]. About 25% of dietary Trp is degraded by the porcine small intestine
during its first pass into the portal vein and leads to the generation of multiple metabolites including
serotonin, melatonin, and NAS [18]. In our recent study, we found that Trp supplementation to
the basal diet of weanling piglets improved growth performance and the mucosal barrier function.
Further studies revealed that this effect of Trp was associated with enhanced production of tryptamine,
a substrate for NAS synthesis in the intestine [19]. At present, the molecular mechanisms responsible for
this beneficial effect of Trp are largely unknown. We hypothesized that NAS attenuated 4-HNE-induced
oxidative damage and intestinal dysfunction by regulating Nrf2 signaling and contributed to mucosal
barrier function. This hypothesis was tested with an intestinal porcine epithelial cell line (IPEC-1),
which was originally isolated from the jejunum of an unsuckling piglet [20,21]. This cell line has
been validated to be used as a useful cell model for studying intestinal epithelial integrity and barrier
function [22,23].

2. Materials and Methods

2.1. Reagents

NAS was purchased from Sigma Chemical Co. (St. Louis, MO, USA). 4-HNE was bought
from Cayman Chemical Co. (Ann Arbor, MI). DMEM/F12 and fetal bovine serum (FBS) were
obtained from GIBCO BRL (Grand Island, NY). Antibodies against Nrf2, Bax, Bcl-2 and GAPDH were
obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Primary antibodies against tight junction
proteins, including zonula occluden (ZO)-1, claudin-1, and occludin were purchased from Invitrogen.
Antibodies against cleaved-caspase-3, glutathione synthetase (GSS), heme oxygenase-1 (HO-1), and
glutamate-cysteine ligase catalytic subunit (GCLC) as well as the specific antibodies against NAD(P)H
quinine oxidoreductase-1 (NQO-1) were purchased from Cell Signaling Technology (Beverly, MA).
Peroxidase-conjugated goat anti-rabbit and goat anti-mouse secondary antibodies were purchased
from Huaxingbio Biotechnology Co. (Beijing, China). The annexin V-FITC&PI kit was from Jiamay
Biotechnology (Beijing, China). All other reagents used in this study were ordered from Sigma.

2.2. Cell Culture and Treatment

IPEC-1 cells were cultured as previously described [24]. Briefly, the IPEC-1 cells were grown in
DMEM-F12 medium supplemented with 10% FBS and 1% penicillin-streptomycin (Gibco, NY, USA)
and were incubated at 37 ◦C in 5% CO2. IPEC-1 cells were pre-treated with NAS (0-250 µM, 12 h)
and then were incubated for another 2 h in the absence (served as control) or presence of 4-HNE
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(20 µM) to induce oxidative damage as has been previously described [20,21]. The doses of NAS used
in the present study were based on published studies [14].

2.3. Cell Viability

Cells (10,000/well) were seeded in a 96-well plate in DMEM-F12 supplemented with 10% FBS
to allow for cell adherence, and then were pretreated by different concentrations of NAS (0 µM,
50 µM, 100 µM, and 250 µM) for 12 h, followed by the treatment of 4-HNE (20 µM). Cell viability was
assessed by using a cell-counting kit (Zoman Biotech) according to the manufacturer’s instructions.
The absorbance of the assay solution was determined at 450 nm by using the microplate reader
(Molecular Devices, CA, USA). Results are expressed as a percentage relative to that of controls.

2.4. Measurement of Intracellular Reactive Oxygen Species Level

The levels of intracellular ROS were measured by using DCFH-DA (2’,7’-dichlorofluorescein
diacetate) as previously described [25]. Briefly, after 2 h incubation of cells with 4-HNE in the presence
or absence of NAS, the cells were stained with 10 µM DCFDA and incubated at 37 ◦C for another
20 min. The intracellular ROS levels were determined by a fluorescence microscope (Zeiss Axiowert)
at an excitation wavelength of 485 nm and an emission wavelength of 525 nm, respectively.

2.5. Measurement of Intracellular Glutathione

The intracellular glutathione (GSH) concentrations were measured by following the previous
method [26]. Briefly, cells were collected and were washed with PBS twice, and then suspended in
PBS buffer containing 1 mM EDTA. The mixtures were then vortexed and centrifuged at 12,000 rpm
for 15 min at 4 ◦C. Supernatants separated from cell homogenates were analyzed for GSH level using
a Quanticrom Glutathione Assay Kit obtained from BioAssay Systems (Hayward, CA, USA) according
to the manufacturer’s protocol.

2.6. Apoptotic Cell Death Assay

Cells were treated as indicated and apoptotic cell death was determined by Hoechst 33342/PI
staining and flow cytometric analysis according to the previous method [20]. Briefly, IPEC-1 cells
preincubated with or without NAS were subjected to 4-HNE treatment. Cells were then harvested and
washed with 1× PBS twice, and then were stained with Annexin V-FITC and PI for 15 min at room
temperature. Stained cells were analyzed by a flow cytometer (BD Biosciences) with the Cell Quest
analysis software.

2.7. Extraction of Proteins and Western Blot Analysis

IPEC-1 cells were exposed to 20 µM 4-HNE in the absence or presence of NAS. Cells were
lysed on ice for 30 min in RIPA buffer (10 mmol/L Tris-HCl, pH 7.4; 150 nmol/L NaCl; 10 mmol/L
EDTA; 1% NP-40; 0.1% SDS) containing protease and phosphatase inhibitors, followed by 12,000 rpm
centrifugation for 15 min at 4 ◦C. The supernatant fluid was collected. The proteins were extracted
from the nucleus and the cytosol of cells were conducted by using a kit from the Beyotime Institute of
Biotechnology (Haimen, China). Protein concentration was determined by the Pierce BCA protein
Assay Kit (Huaxingbio, Beijing). Samples of total protein lysates (25 µg/sample) were injected into 10%
SDS-PAGE gels and transferred onto PVDF membranes (Millipore, Billerica, MA). The membranes
were blocked with 5% skimmed-milk solution in Tris-buffered saline containing 0.05% Tween-20 (TBST)
for 30 min at 25 ◦C, and then were incubated with one of the indicated primary antibodies (1: 2000)
overnight at 4 ◦C. Thereafter, the membranes were washed with TBST three times and then were
incubated with the horseradish peroxidase (HRP)-conjugated secondary antibody (1:5000) for 1 h.
The protein bands were developed by an enhanced chemiluminescence kit (Applygen Technologies
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Inc., Beijing, China) using the ImageQuant LAS 4000 mini system (GE Healthcare). Quantification of
band density was performed by using the Quantity One software (Bio-Rad Laboratories).

2.8. Immunofluorescence Microscopy

IPEC-1 cells fixed with 4% paraformaldehyde were blocked with 10% BSA and then incubated
with a primary antibody (1:300) against ZO-1 overnight at 4 ◦C. The cells were incubated with an
appropriate secondary antibody (1:500) at 25 ◦C for 1 h. Nuclei were stained with the use of Hoechst
33258 (1 mg/mL). Distribution of ZO-1 protein was visualized under a fluorescence light microscope
(Axio Vert.A1, Zeiss, Oberkochen, Germany).

2.9. Statistical Analysis

Experimental data on apoptosis, the relative protein grayscale and the relative gene expression
levels were expressed as means ± SEM and were analyzed by one-way ANOVA and the Duncan
multiple comparison method with the use of the SPSS statistical software (SPSS, Inc., Chicago, IL,
USA). P-values < 0.05 were taken to indicate statistical significance.

3. Results

3.1. NAS Attenuated the 4-HNE-Induced Apoptosis of IPEC-1 Cells

Compared with the control, cells treated with 4-HNE had a reduced cell viability, which was
significantly attenuated by NAS in a dose-dependent manner (Figure 1A). Among the doses of NAS
used in our study, cells treated with 100 µM of NAS had greatest protection as shown by enhanced cell
viability, compared with cells exposed to 4-HNE. Treatment with NAS alone had no effect on the viability
of IPEC-1 cells (Figure 1A). Western blot analysis showed that 4-HNE treatment led to enhancement of
the protein level of cleaved caspase-3, a characteristic of apoptosis, which was abrogated by 100 µM of
NAS (Figure 1B and 1C). The protein level of pro-apoptotic Bax was upregulated by 4-HNE, however,
was not affected by the presence of NAS. The protein level of Bcl-2 was not affected by 4-HNE single
treatment. In contrast, anti-apoptotic protein Bcl-2 was markedly increased by the 4-HNE plus NAS
co-treatment (Figure 1B and 1C). The flow cytometric analysis indicated that 4-HNE-induced cell death
was significant alleviated by NAS (50-100 µM), with 100 µM of NAS showing a greater protective effect
(Figure 1D and 1E). These results suggested that NAS administration attenuated the 4-HNE-induced
apoptosis of IPEC-1 cells.
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Figure 1. N-acetyl serotonin (NAS) attenuated the 4-HNE-induced apoptosis of IPEC-1 cells. IPEC-1
cells pre-treated with NAS (0- 250 µM, 12 h) were treated with or without 4-HNE (20 µM) for 2 h.
Cell viability (A), the protein abundances of Bax, cleaved caspase-3, Bcl-2, and GAPDH (B), protein
band density (C), apoptosis (D), and its statistical analysis (E) are shown. Representative results from
three independent experiments were provided, and values are means ± SEMs, n = 3. Means without
a common letter differ, p< 0.05.

3.2. The Effect of NAS on ROS and Intracellular GSH Concentrations

To investigate the involvement of ROS in the death of 4-HNE-hallenged cells and its contribution to
cell death, intracellular ROS levels were determined in the present study. Compared with the controls,
4-HNE treatment led to increased intracellular ROS levels as shown by the DCFH-DA probe, a classic
method to detect the generation of ROS by fluorescence staining. Addition of NAS to cell culture
reduced the intracellular levels of ROS in a dose-dependent manner (Figure 2A). The Quanticrom
Glutathione Assay was used to determine intracellular GSH concentrations. We found that cells treated
with 4-HNE had a decreased (P < 0.05) level of GSH, as compared with the control (Figure 2B), and
this effect of 4-HNE was reversed by NAS administration. Moreover, morphological observation using
a phase contrast microscopy demonstrated that 4-HNE treatment increased the number of floating
cells, the appearance of cell shrinkage and boundary contraction, as compared with the control cells,
and these effects of the oxidant were reversed by NAS supplementation (Supplementary Figure S1).
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Figure 2. Effects of NAS on reactive oxygen species (ROS) and intracellular glutathione (GSH). Cells
were left untreated or treated with 4-HNE in the absence or presence of NAS administration as
indicated. (A) ROS were determined and visualized by a fluorescence microscope, magnification ×100.
(B) intracellular GSH concentrations were measured. Representative results from three independent
experiments were provided, and values are means ± SEMs, n = 3. Means without a common letter
differ, P < 0.05.

3.3. NAS Enhanced the Abundance of Tight Junction Proteins in 4-HNE Challenged Cells

Intestinal epithelial cells were tightly bound together by tight junction proteins. A proper
function of tight junction proteins was critical for the maintenance of the intracellular homeostasis
and mucosal barrier function [27]. In consistency with the observed phenotypes, incubation of IPEC-1
cells with 4-HNE caused a significant decline in the protein abundances of ZO-1, occludin, and
claudin-1, as compared with the control group (P < 0.05). This effect of 4-HNE was prevented by NAS
supplementation (Figure 3).Antioxidants 2020, 9, x FOR PEER REVIEW 6 of 13 
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described in Figure 2. Protein abundance for ZO-1 (A), occludin (B), and claudin-1 (C) were determined
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and values are means ± SEMs, n = 3. Means without a common letter differ, P < 0.05.

3.4. NAS Regulated the Nrf2 Signaling in IPEC-1

As shown in Figure 4, 4-HNE treatment decreased the protein level of Nrf2 in the nucleus
(Figure 4A), without affecting the total protein level of Nrf2 (Figure 4B), indicating inactivation of Nrf2
signaling in response to oxidative stress. This effect of 4-HNE was reversed by 100 µM of NAS, as
evidenced by the enhanced protein level of Nrf2 in the nuclear compartment (Figure 4A). These results
indicated the regulatory effect of NAS on Nrf2 signaling and its potential contribution to the viability
of enterocytes. Considering that 100 µM of NAS had a greater protective effect than other doses used in
the present study, this concentration was used in the following experiment for the mechanistic study.
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Protein abundances for nucleus Nrf2 (A) and total Nrf2 (B) were determined by Western blot
analysis. Representative results from three independent experiments were provided, and values
are means ± SEMs, n = 3. Means without a common letter differ, P < 0.05.

3.5. NAS Protected Cells Against 4-HNE-Induced Apoptosis in a Nrf2-Dependent Manner

To validate the functional role of Nrf2 on 4-HNE-induced apoptosis, cells pretreated with or
without Atra, a specific inhibitor of the Nrf2, were incubated with 4-HNE in the presence or absence of
NAS. Compared with the control, 4-HNE treatment led to reduced cell viability, which was abolished
by NAS administration (Figure 5A). Western blot analysis showed that 4-HNE treatment led to
the decreased protein level of Nrf2 in the nucleus, and its downstream targets, HO-1 and NQO-1, as
well as reduced protein levels of Bcl-2, GCLC, and GSS, and these effects of 4-HNE were abrogated
by NAS (Figure 5B, and Supplementary Figure S2). Importantly, the regulatory effect of NAS on
the Nrf2 signaling proteins were reversed by Atra. The protein level of Bax was upregulated by 4-HNE,
however, was not affected by either NAS plus 4-HNE co-treatment or NAS+4-HNE+Atra combination
treatment. Of note, the protein levels of Bax were lowered by NAS or Atra single treatment. Moreover,
we also found that the alleviated effect of NAS on 4-HNE-induced ROS accumulation was abolished
by Atra (Figure 5C). These data indicated that Nrf2 was responsible for the protective effect of NAS on
4-HNE-induced apoptosis in intestinal epithelial cells.
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Figure 5. NAS protected cells against 4-HNE-induced apoptosis in a Nrf2-dependent manner. Cells
pretreated with or without NAS (100 µM, 12 h) were exposed to 4-HNE (20 µM) for 2 h in the presence
or absence of Atra (2 µM). Cell viability (A), the protein abundances for N-Nrf2, T-Nrf2, Bax, Bcl-2, GSS,
HO-1, NQO1, and GCLC (B), and intracellular ROS levels (C) were assessed. Representative results
from three independent experiments were provided, and values are means ± SEMs, n = 3. Means
without a common letter differ, P < 0.05.

3.6. NAS Restored Tight Junction Proteins in 4-HNE-Treated Cells by Regulating Nrf2 Signaling

To assess an implication of Nrf2 signaling and its contribution to tight junction protein regulation,
the proteins abundances of ZO-1, claudin-1, and occludin were determined in 4-HNE challenged cells in
the presence or absence of Atra. As shown in Figure 6, 4-HNE single treatment resulted in the reduced
protein level of ZO-1, claudin-1, and occludin, and these effects of 4-HNE were reversed by NAS
(Figure 6A and 6B). Intriguingly, such effects of NAS on tight junction proteins in the enterocytes were
abolished by Atra, an inhibitor of Nrf2 in the enterocytes. Immunofluorescence staining was performed
to analyze the location of tight junction proteins. As shown in Figure 6C, NAS administration increased
the abundances of ZO-1 localized between neighboring cells, and this effect of NAS was attenuated
by Atra.
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Figure 6. NAS regulated tight junction proteins in Nrf2-dependent manner. Cells were treated as
described in Figure 5. Protein abundances of claudin-1, occludin, and ZO-1 (A), protein band density
(B), and immunofluorescence staining for ZO-1 (C) were determined. Representative results from
three independent experiments were provided, and values are means ± SEMs, n = 3. Means without
a common letter differ, P < 0.05, magnification ×100.

4. Discussion

The balance between ROS generation and the antioxidant defense systems is crucial to intestinal
homeostasis [7]. Accumulation of ROS is associated with reduced intestinal mucosal barrier, increased
intestinal permeability, as well as the development of various intestinal diseases, such as enterocolitis,
gastrointestinal cancers, celiac disease, and inflammatory bowel disease [7,8,28]. As a metabolite of
Trp, NAS has a strong antioxidant capacity [15]. It has been reported that plasma concentrations of
NAS are at nanomolar levels, which are greater than those of melatonin [16]. Moreover, NAS has
been approved by the FDA for treatment of neurological disorders and stroke [29]. Recent studies
have shown that NAS protects against oxidative damage in neurons, erythrocytes, retinal cells, lung
epithelial cells, lymphocytes, and enterocytes [17,29–32]. However, the underlying mechanisms
responsible for the beneficial effect of NAS are largely unknown. In the present study, we found that
NAS administration attenuated the 4-HNE-induced ROS accumulation and cell death, while enhancing
the abundance of tight junction proteins. Further experiments showed that activation of Nrf2 signaling
was critical for the protective effect of NAS against oxidative stress.

4-HNE has been reported to be associated with intestinal epithelial cell injury by triggering
apoptosis in enterocytes [33]. We noted that 4-HNE treatment led to 25% cell death, which was less than
that reported in a previous study [33]. Toxicity of 4-HNE is highly related to the dosage used, exposure
time, and cell density. The concentration of 4-HNE (20 µM) used in the present study was lower
than that of the previous study (40 µM) [33], therefore leading to reduced apoptosis. To determine
the antioxidant property of NAS against 4-HNE-induced oxidative damage, IPEC-1 cells were treated
with 4-HNE in the presence of different concentrations of NAS. In agreement with our previous
study [33], 4-HNE treatment led to caspase-3 dependent apoptosis, as shown by the Facs analysis
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and Western blot results. A novel and important finding of this work is that the 4-HNE-induced
upregulation of Bax and cleavage of caspase-3 was significantly abrogated by NAS administration.
This effect of NAS, along with the upregulation of a key anti-apoptotic factor Bcl-2, contributed to
the survival of 4-HNE-challenged cells. Among the doses of NAS used in the present study, 100 µM of
NAS showed greatest protection as compared with other doses.

To further explore the involvement of ROS in apoptosis of the enterocytes, intracellular ROS
was determined by the DCFH-DA probe. The 4-HNE-induced ROS accumulation was markedly
reduced by NAS. Intracellular GSH plays an important role in antioxidant defense, which is essential
for cell survival and elimination of intracellular ROS in the intestinal epithelium [34]. Depletion
of intracellular GSH is associated with increased oxidative stress and increased risks for numerous
chronic diseases [35]. As expected, 4-HNE-induced GSH depletion was substantially reversed by NAS
administration. The de novo synthesis of GSH is critical for the scavenging of ROS and maintenance of
redox status. NAS supplementation enhanced GSH synthesis, thereby contributing to the restoration
of intracellular homeostasis in response to 4-HNE. These results support an anti-oxidative capacity of
NAS and its contribution to improving cell survival in enterocytes [26,36]. Considering that NAS is
a precursor for melatonin synthesis, further studies are needed to elucidate whether the beneficial
effect of NAS is predominantly due to the presence of the antioxidant or its metabolites melatonin.

Nrf2 signaling is a transcriptional factor associated with cellular survival by regulating
the expression of genes involved in GSH biosynthesis and antioxidative defense, such as GCLC, GSS,
NQO1, and HO-1 [26,37]. Disruption of Nrf2 signaling is associated with an increased susceptibility
to oxidative insults in various conditions [38,39]. Therefore, activation of Nrf2 signaling has been
regarded as a promising strategy to combat oxidative stress-related injury [40]. In our study, we found
that NAS treatment led to an enhanced abundance of GSS, a key enzyme involved in GSH synthesis,
boosted the protein level of Nrf2 in the nucleus fragment and its downstream targets, HO-1 and NQO1,
two detoxifying enzymes participated in the scavenging of ROS [41,42], thus restoring the intracellular
redox and protecting intestinal epithelial cells from 4-HNE-induced cell damage. Importantly, these
effects of NAS were abolished by Atra, a specific inhibitor of Nrf2, indicating a dependence on Nrf2
signaling. In consistency with the phenotypes, a regulatory effect of NAS on tight junction proteins
(claudin-1, occludin, and ZO-1), as shown by both the Western blot result and immunofluorescence
staining, was abolished by a Nrf2 inhibitor. These data validated a critical role of Nrf2 signaling in
the survival of enterocytes and intestinal mucosal barrier function in response to oxidative damage.
NAS may be a useful additive to the diets of stress-challenged animals (including weanling pigs),
which generally exhibit reductions in growth, feed efficiency, and immunity [43], for enhancing their
health and productivity.

5. Conclusions

Results from the present study indicated that NAS administration protected enterocytes against
oxidant-induced cell death and intestinal barrier dysfunction. Specifically, NAS regulates intracellular
redox states by upregulation of enzymes involved in GSH biosynthesis, enhancing abundance of proteins
involved in anti-oxidative defense, while decreasing apoptotic proteins in a Nrf2-dependent manner.
Considering that NAS had no effect on cell viability of enterocytes, however, ameliorated cellular
damage and improved intestinal barrier function in response to oxidative stress, the supplementation
of NAS might be a potential strategy to prevent intestinal disorders caused by oxidative insults in
humans and animals.
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Nrf2 nuclear factor erythroid 2–related factor 2
NQO1 NAD(P)H quinine oxidoreductase-1
ROS reactive oxygen species
Trp L-tryptophan
ZO Zonula occluden

References

1. Tang, X.; Liu, H.; Yang, S.; Li, Z.; Zhong, J.; Fang, R. Epidermal Growth Factor and Intestinal Barrier Function.
Mediators Inflamm. 2016, 2016, 1927348. [CrossRef] [PubMed]

2. Suzuki, T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol. Life Sci. 2013, 70,
631–659. [CrossRef] [PubMed]

3. Niture, S.K.; Khatri, R.; Jaiswal, A.K. Regulation of Nrf2-an update. Free Radic. Biol. Med. 2014, 66, 36–44.
[CrossRef] [PubMed]

4. Nakayama, N.; Yamaguchi, S.; Sasaki, Y.; Chikuma, T. Hydrogen Peroxide-Induced Oxidative Stress Activates
Proteasomal Trypsin-Like Activity in Human U373 Glioma Cells. J. Mol. Neurosci. 2016, 58, 297–305.
[CrossRef]

5. Iizuka, M.; Sasaki, K.; Hirai, Y.; Shindo, K.; Konno, S.; Itou, H.; Ohshima, S.; Horie, Y.; Watanabe, S.
Morphogenic protein epimorphin protects intestinal epithelial cells from oxidative stress by the activation of
EGF receptor and MEK/ERK, PI3 kinase/Akt signals. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292,
G39–G52. [CrossRef]

6. Williams, J.M.; Duckworth, C.A.; Watson, A.J.; Frey, M.R.; Miguel, J.C.; Burkitt, M.D.; Sutton, R.; Hughes, K.R.;
Hall, L.J.; Caamano, J.H.; et al. A mouse model of pathological small intestinal epithelial cell apoptosis and
shedding induced by systemic administration of lipopolysaccharide. Dis. Model. Mech. 2013, 6, 1388–1399.
[CrossRef]

7. Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: An essential factor in
the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014, 94, 329–354. [CrossRef]

8. John, L.J.; Fromm, M.; Schulzke, J.D. Epithelial barriers in intestinal inflammation. Antioxid. Redox Signal.
2011, 15, 1255–1270. [CrossRef]

9. Long, E.K.; Picklo, M.J., Sr. Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: Make some
room HNE. Free Radic. Biol. Med. 2010, 49, 1–8. [CrossRef]

10. Chaudhary, P.; Sharma, R.; Sharma, A.; Vatsyayan, R.; Yadav, S.; Singhal, S.S.; Rauniyar, N.; Prokai, L.;
Awasthi, S.; Awasthi, Y.C. Mechanisms of 4-hydroxy-2-nonenal induced pro- and anti-apoptotic signaling.
Biochemistry 2010, 49, 6263–6275. [CrossRef]

11. Nunes, T.; Bernardazzi, C.; de Souza, H.S. Cell death and inflammatory bowel diseases: Apoptosis, necrosis,
and autophagy in the intestinal epithelium. Biomed. Res. Int. 2014, 2014, 218493. [CrossRef] [PubMed]

http://dx.doi.org/10.1155/2016/1927348
http://www.ncbi.nlm.nih.gov/pubmed/27524860
http://dx.doi.org/10.1007/s00018-012-1070-x
http://www.ncbi.nlm.nih.gov/pubmed/22782113
http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.008
http://www.ncbi.nlm.nih.gov/pubmed/23434765
http://dx.doi.org/10.1007/s12031-015-0680-9
http://dx.doi.org/10.1152/ajpgi.00181.2006
http://dx.doi.org/10.1242/dmm.013284
http://dx.doi.org/10.1152/physrev.00040.2012
http://dx.doi.org/10.1089/ars.2011.3892
http://dx.doi.org/10.1016/j.freeradbiomed.2010.03.015
http://dx.doi.org/10.1021/bi100517x
http://dx.doi.org/10.1155/2014/218493
http://www.ncbi.nlm.nih.gov/pubmed/25126549


Antioxidants 2020, 9, 303 12 of 13

12. Su, M.; Yu, T.; Zhang, H.; Wu, Y.; Wang, X.; Li, G. The Antiapoptosis Effect of Glycyrrhizate on HepG2 Cells
Induced by Hydrogen Peroxide. Oxid. Med. Cell. Longev. 2016, 2016, 6849758. [CrossRef] [PubMed]

13. Ramachandran, A.; Madesh, M.; Balasubramanian, K.A. Apoptosis in the intestinal epithelium: Its relevance
in normal and pathophysiological conditions. J. Gastroenterol. Hepatol. 2000, 15, 109–120. [CrossRef]
[PubMed]

14. Yoo, J.M.; Lee, B.D.; Sok, D.E.; Ma, J.Y.; Kim, M.R. Neuroprotective action of N-acetyl serotonin in oxidative
stress-induced apoptosis through the activation of both TrkB/CREB/BDNF pathway and Akt/Nrf2/Antioxidant
enzyme in neuronal cells. Redox Biol. 2017, 11, 592–599. [CrossRef]

15. Wolfler, A.; Abuja, P.M.; Schauenstein, K.; Liebmann, P.M. N-acetylserotonin is a better extra- and intracellular
antioxidant than melatonin. FEBS Lett. 1999, 449, 206–210. [CrossRef]

16. Manz, B.; Kosfeld, H.; Harbauer, G.; Grill, H.J.; Pollow, K. Radioimmunoassay of human serum serotonin.
J. Clin. Chem. Clin. Biochem. 1985, 23, 657–662.

17. Ben Shahar, Y.; Sukhotnik, I.; Bitterman, N.; Pollak, Y.; Bejar, J.; Chepurov, D.; Coran, A.; Bitterman, A. Effect
of N-Acetylserotonin on Intestinal Recovery Following Intestinal Ischemia-Reperfusion Injury in a Rat. Eur. J.
Pediatr. Surg. 2016, 26, 47–53. [CrossRef]

18. Wu, G. Amino Acids: Biochemistry and Nutrition; CRC Press: Boca Raton, Florida, USA, 2013.
19. Liang, H.; Dai, Z.; Liu, N.; Ji, Y.; Chen, J.; Zhang, Y.; Yang, Y.; Li, J.; Wu, Z.; Wu, G. Dietary L-Tryptophan

Modulates the Structural and Functional Composition of the Intestinal Microbiome in Weaned Piglets.
Front. Microbiol. 2018, 9, 1736. [CrossRef]

20. Ji, Y.; Luo, X.; Yang, Y.; Dai, Z.; Wu, G.; Wu, Z. Endoplasmic reticulum stress-induced apoptosis in intestinal
epithelial cells: A feed-back regulation by mechanistic target of rapamycin complex 1 (mTORC1). J. Anim.
Sci. Biotechnol. 2018, 9, 38. [CrossRef]

21. Liu, N.; Ma, X.; Luo, X.; Zhang, Y.; He, Y.; Dai, Z.; Yang, Y.; Wu, G.; Wu, Z. l-Glutamine Attenuates Apoptosis
in Porcine Enterocytes by Regulating Glutathione-Related Redox Homeostasis. J. Nutr. 2018, 148, 526–534.
[CrossRef]

22. Nossol, C.; Barta-Boszormenyi, A.; Kahlert, S.; Zuschratter, W.; Faber-Zuschratter, H.; Reinhardt, N.;
Ponsuksili, S.; Wimmers, K.; Diesing, A.K.; Rothkotter, H.J. Comparing Two Intestinal Porcine Epithelial
Cell Lines (IPECs): Morphological Differentiation, Function and Metabolism. PLoS ONE 2015, 10, e0132323.
[CrossRef] [PubMed]

23. Wang, W.; Wu, Z.; Lin, G.; Hu, S.; Wang, B.; Dai, Z.; Wu, G. Glycine stimulates protein synthesis and inhibits
oxidative stress in pig small intestinal epithelial cells. J. Nutr. 2014, 144, 1540–1548. [CrossRef] [PubMed]

24. Haynes, T.E.; Li, P.; Li, X.; Shimotori, K.; Sato, H.; Flynn, N.E.; Wang, J.; Knabe, D.A.; Wu, G. L-Glutamine or
L-alanyl-L-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids
2009, 37, 131–142. [CrossRef] [PubMed]

25. Song, S.; Xiao, X.; Guo, D.; Mo, L.; Bu, C.; Ye, W.; Den, Q.; Liu, S.; Yang, X. Protective effects of Paeoniflorin
against AOPP-induced oxidative injury in HUVECs by blocking the ROS-HIF-1alpha/VEGF pathway.
Phytomedicine 2017, 34, 115–126. [CrossRef] [PubMed]

26. Jin, M.C.; Yoo, J.M.; Sok, D.E.; Kim, M.R. Neuroprotective effect of N-acyl 5-hydroxytryptamines on
glutamate-induced cytotoxicity in HT-22 cells. Neurochem. Res. 2014, 39, 2440–2451. [CrossRef] [PubMed]

27. Wang, H.; Ji, Y.; Wu, G.; Sun, K.; Sun, Y.; Li, W.; Wang, B.; He, B.; Zhang, Q.; Dai, Z.; et al. l-Tryptophan
Activates Mammalian Target of Rapamycin and Enhances Expression of Tight Junction Proteins in Intestinal
Porcine Epithelial Cells. J. Nutr. 2015, 145, 1156–1162. [CrossRef]

28. Odenwald, M.A.; Turner, J.R. The intestinal epithelial barrier: A therapeutic target? Nat. Rev.
Gastroenterol. Hepatol. 2017, 14, 9–21. [CrossRef]

29. Zhou, H.; Wang, J.; Jiang, J.; Stavrovskaya, I.G.; Li, M.; Li, W.; Wu, Q.; Zhang, X.; Luo, C.; Zhou, S.; et al.
N-acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic
activation in experimental models of ischemic injury. J. Neurosci. 2014, 34, 2967–2978. [CrossRef]

30. Gavazza, M.B.; Catala, A. Protective effect of N-acetyl-serotonin on the nonenzymatic lipid peroxidation in
rat testicular microsomes and mitochondria. J. Pineal Res. 2004, 37, 153–160. [CrossRef]

31. Shen, J.; Ghai, K.; Sompol, P.; Liu, X.; Cao, X.; Iuvone, P.M.; Ye, K. N-acetyl serotonin derivatives as potent
neuroprotectants for retinas. Proc. Natl. Acad. Sci. USA 2012, 109, 3540–3545. [CrossRef]

32. Yang, S.; Jan, Y.H.; Gray, J.P.; Mishin, V.; Heck, D.E.; Laskin, D.L.; Laskin, J.D. Sepiapterin reductase mediates
chemical redox cycling in lung epithelial cells. J. Biol. Chem. 2013, 288, 19221–19237. [CrossRef]

http://dx.doi.org/10.1155/2016/6849758
http://www.ncbi.nlm.nih.gov/pubmed/27891207
http://dx.doi.org/10.1046/j.1440-1746.2000.02059.x
http://www.ncbi.nlm.nih.gov/pubmed/10735533
http://dx.doi.org/10.1016/j.redox.2016.12.034
http://dx.doi.org/10.1016/S0014-5793(99)00435-4
http://dx.doi.org/10.1055/s-0035-1559886
http://dx.doi.org/10.3389/fmicb.2018.01736
http://dx.doi.org/10.1186/s40104-018-0253-1
http://dx.doi.org/10.1093/jn/nxx062
http://dx.doi.org/10.1371/journal.pone.0132323
http://www.ncbi.nlm.nih.gov/pubmed/26147118
http://dx.doi.org/10.3945/jn.114.194001
http://www.ncbi.nlm.nih.gov/pubmed/25122646
http://dx.doi.org/10.1007/s00726-009-0243-x
http://www.ncbi.nlm.nih.gov/pubmed/19189199
http://dx.doi.org/10.1016/j.phymed.2017.08.010
http://www.ncbi.nlm.nih.gov/pubmed/28899493
http://dx.doi.org/10.1007/s11064-014-1448-2
http://www.ncbi.nlm.nih.gov/pubmed/25307111
http://dx.doi.org/10.3945/jn.114.209817
http://dx.doi.org/10.1038/nrgastro.2016.169
http://dx.doi.org/10.1523/JNEUROSCI.1948-13.2014
http://dx.doi.org/10.1111/j.1600-079X.2004.00150.x
http://dx.doi.org/10.1073/pnas.1119201109
http://dx.doi.org/10.1074/jbc.M112.402164


Antioxidants 2020, 9, 303 13 of 13

33. Ji, Y.; Dai, Z.; Wu, G.; Wu, Z. 4-Hydroxy-2-nonenal induces apoptosis by activating ERK1/2 signaling and
depleting intracellular glutathione in intestinal epithelial cells. Sci. Rep. 2016, 6, 32929. [CrossRef] [PubMed]

34. Aw, T.Y. Intestinal glutathione: Determinant of mucosal peroxide transport, metabolism, and oxidative
susceptibility. Toxicol. Appl. Pharmacol. 2005, 204, 320–328. [CrossRef] [PubMed]

35. Wu, G.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for
health. J. Nutr. 2004, 134, 489–492. [CrossRef] [PubMed]

36. Oxenkrug, G.; Requintina, P.; Bachurin, S. Antioxidant and antiaging activity of N-acetylserotonin and
melatonin in the in vivo models. Ann. N. Y. Acad. Sci. 2001, 939, 190–199. [CrossRef]

37. Shih, A.Y.; Johnson, D.A.; Wong, G.; Kraft, A.D.; Jiang, L.; Erb, H.; Johnson, J.A.; Murphy, T.H. Coordinate
regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from
oxidative stress. J. Neurosci. 2003, 23, 3394–3406. [CrossRef]

38. Chanas, S.A.; Jiang, Q.; McMahon, M.; McWalter, G.K.; McLellan, L.I.; Elcombe, C.R.; Henderson, C.J.;
Wolf, C.R.; Moffat, G.J.; Itoh, K.; et al. Loss of the Nrf2 transcription factor causes a marked reduction in
constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3
and Gstm4 genes in the livers of male and female mice. Biochem. J. 2002, 365, 405–416. [CrossRef]

39. Aoki, Y.; Sato, H.; Nishimura, N.; Takahashi, S.; Itoh, K.; Yamamoto, M. Accelerated DNA adduct formation
in the lung of the Nrf2 knockout mouse exposed to diesel exhaust. Toxicol. Appl. Pharmacol. 2001, 173,
154–160. [CrossRef]

40. Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426.
[CrossRef]

41. Dinkova-Kostova, A.T.; Talalay, P. Persuasive evidence that quinone reductase type 1 (DT diaphorase)
protects cells against the toxicity of electrophiles and reactive forms of oxygen. Free Radic. Biol. Med. 2000,
29, 231–240. [CrossRef]

42. Radjendirane, V.; Joseph, P.; Lee, Y.H.; Kimura, S.; Klein-Szanto, A.J.; Gonzalez, F.J.; Jaiswal, A.K. Disruption
of the DT diaphorase (NQO1) gene in mice leads to increased menadione toxicity. J. Biol. Chem. 1998, 273,
7382–7389. [CrossRef] [PubMed]

43. Wu, G. Principles of Animal Nutrition; CRC Press: Boca Raton, FL, USA, 2018.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/srep32929
http://www.ncbi.nlm.nih.gov/pubmed/27620528
http://dx.doi.org/10.1016/j.taap.2004.11.016
http://www.ncbi.nlm.nih.gov/pubmed/15845421
http://dx.doi.org/10.1093/jn/134.3.489
http://www.ncbi.nlm.nih.gov/pubmed/14988435
http://dx.doi.org/10.1111/j.1749-6632.2001.tb03626.x
http://dx.doi.org/10.1523/JNEUROSCI.23-08-03394.2003
http://dx.doi.org/10.1042/bj20020320
http://dx.doi.org/10.1006/taap.2001.9176
http://dx.doi.org/10.1146/annurev-pharmtox-011112-140320
http://dx.doi.org/10.1016/S0891-5849(00)00300-2
http://dx.doi.org/10.1074/jbc.273.13.7382
http://www.ncbi.nlm.nih.gov/pubmed/9516435
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Reagents 
	Cell Culture and Treatment 
	Cell Viability 
	Measurement of Intracellular Reactive Oxygen Species Level 
	Measurement of Intracellular Glutathione 
	Apoptotic Cell Death Assay 
	Extraction of Proteins and Western Blot Analysis 
	Immunofluorescence Microscopy 
	Statistical Analysis 

	Results 
	NAS Attenuated the 4-HNE-Induced Apoptosis of IPEC-1 Cells 
	The Effect of NAS on ROS and Intracellular GSH Concentrations 
	NAS Enhanced the Abundance of Tight Junction Proteins in 4-HNE Challenged Cells 
	NAS Regulated the Nrf2 Signaling in IPEC-1 
	NAS Protected Cells Against 4-HNE-Induced Apoptosis in a Nrf2-Dependent Manner 
	NAS Restored Tight Junction Proteins in 4-HNE-Treated Cells by Regulating Nrf2 Signaling 

	Discussion 
	Conclusions 
	References

