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Drought affects the performance of native oak seedlings
more strongly than competition with invasive crested
wattle seedlings
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ABSTRACT

• Two of the most important processes threatening vulnerable plant species are compet-
itive displacement by invasive alien species and water stress due to global warming.
Quercus lusitanica, an oak shrub species with remarkable conservation interest, could
be threatened by the expansion of the invasive alien tree Paraserianthes lophantha.
However, it is unclear how competition would interact with predicted reductions in
water availability due to global climate change. We set up a full factorial experiment to
examine the direct interspecific competition between P. lophantha and Q. lusitanica
seedlings under control and water-limited conditions.

• We measured seed biomass, germination, seedling emergence, leaf relative growth rate,
biomass, root/shoot ratio, predawn shoot water potential and mortality to assess the
individual and combined effects of water stress and interspecific competition on both
species.

• Our results indicate that, at seedling stage, both species experience competitive effects
and responses. However, water stress exhibited a stronger overall effect than competi-
tion. Although both species responded strongly to water stress, the invasive P. lophan-
tha exhibited significantly less drought stress than the native Q. lusitanica based on
predawn shoot water potential measurements.

• The findings of this study suggest that the competition with invasive P. lophantha in
the short term must not be dismissed, but that the long-term conservation of the
native shrub Q. lusitanica could be compromised by increased drought as a result of
global change. Our work sheds light on the combined effects of biological invasions
and climate change that can negatively affect vulnerable plant species.

INTRODUCTION

Competitive displacement by invasive alien species (IAS) is a
major concern for the conservation of threatened native plants
(Czech et al. 1997; Wilcove et al. 1998; Baider & Florens 2011;
Catford et al. 2018). Changes in climatic patterns associated
with global change could both accelerate the speed and increase
the magnitude of displacement processes (Hughes 2000; Val-
ladares et al. 2015; Liu et al. 2017; Catford et al. 2018). This is
particularly important for slow-growing, vulnerable native spe-
cies with contrasting resource use strategies to those of most
invasive plants. Invasive plant species tend to have fast resource
use strategies, often becoming even faster in their non-native
ranges (Montesinos 2021).

Some recent meta-analyses reveal the role of competition in
the interaction between native and invasive plants. These
reported mounting evidence that invasive species are often bet-
ter competitors than native species (Vilà & Weiner 2004;

Kuebbing & Nuñez 2016). Investigating competitive interactions
during critical early plant life stages is worth attention to guide
management strategies. Invasive seedlings are frequently easily
competitively supressed by native species (Hyatt 2008), and con-
servation efforts have focused on eradicating invasive mature
trees. However, some invasive species can reduce native species
recruitment at the seedling stage, e.g. by displacing native seed-
lings through germinating a large number of seedlings from per-
sistent soil seed banks (Le Maitre et al. 2011). Furthermore,
some invasive species show early competitive ability, which can
be modified under disturbance events (Hyatt 2008; Bottollier-
Curtet et al. 2013). The impact on the native seedlings is critical,
since this can disrupt numerous cascading community and
ecosystem dynamics (Grime 2012). If competitive dominance of
invasive seedlings is confirmed, the need to focus management
efforts on eradicating invasive seedlings will be reinforced.
There is increasing interest in predicting species responses to

global change (Vilà et al. 2007; Jeschke & Strayer 2008;
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Jarnevich & Stohlgren 2009; Gallardo et al. 2017; Bellard et al.
2018) and to compare the performance of native and non-
native species under stress conditions, such as low water
availability (Daehler 2003). Evidence suggests that, generally,
precipitation will decrease in Southern Europe under changed
climate conditions (IPCC 2014). Species native to Mediter-
ranean areas, including some oaks (Quercus spp.), may be neg-
atively affected by changed climate conditions if droughts
become more frequent, longer and more extreme in these areas
(Lloret et al. 2004; Galiano et al. 2012; Bussotti et al. 2014;
Barbeta & Peñuelas 2016; Gentilesca et al. 2017). However,
oaks have functional traits that confer some drought tolerance,
such as hard and small leaves (Baldocchi et al. 2010; Peguero-
Pina et al. 2020), higher allocation to deep belowground struc-
tures (Zavala et al. 2000; David et al. 2007; Sardans & Peñuelas
2013) and efficient hydraulic systems (Forner et al. 2018;
Ramı́rez-Valiente et al. 2020).
An increase in water deficit could prove advantageous for

co-occurring IAS. Invasive alien species from drier regions
could be favoured if the new conditions become closer to their
native range (Hellmann et al. 2008). Furthermore, an increase
in water deficit could prove advantageous for IAS over native
species because the former could have broader environmental
tolerance (Dukes & Mooney 1999) and greater phenotypic
plasticity (Davidson et al. 2011). However, a general relation-
ship between climate change and the increased dominance of
IAS over native species has yet to be established (Dukes &
Mooney 1999). Recent evidence suggests that drought has lar-
ger detrimental effects on some IAS than on recipient native
communities (Liu et al. 2017; Valliere et al. 2019). Species-
specific research is still needed to confirm the accuracy of the
predictions about which species may be favoured in each sce-
nario (Verlinden et al. 2013).
Considering the effects of drought stress due to changing cli-

mate conditions, the competitive pressure of IAS and their inter-
actions can play an important role when addressing native
species conservation (Mainka & Howard 2010). Greenhouse
experiments involving simple pairwise species mixtures in full
factorial designs might be a suitable starting point to deal with
such investigations (Scheiner & Gurevitch 2001). This type of
experimental design allows us to study the response of functional
traits that may be affected by the scarcity of water and by plant
interactions. Parameters such as the root/shoot ratio (Leiva &
Fernández-Alés 1998; Otieno et al. 2005; Kawaletz et al. 2014;
Abbas et al. 2019; Qi et al. 2019) or water potential (Fotelli et al.
2000; Violle et al. 2009) provide important information on plant
responses to drought and/or competition stress. Besides, there
are several competition intensity indices to quantify the magni-
tude of plant interactions (Grace 1995; Goldberg et al. 1999;
Weigelt & Jolliffe 2003). The relative interaction index proposed
by Armas et al. (2004) is a useful way to assess competitive inter-
actions in a comparable manner. A number of studies have used
this index to reveal the competitive outcomes between native
and invasive species (Rodrı́guez-Echeverrı́a et al. 2013; Ulrich &
Perkins 2014; Abd El-Gawad et al. 2017) or under stress
(Domènech & Vilà 2008; Filazzola et al. 2018).
In the Galician massif of Monte Pindo (NW Spain) the

expansion of the Australian invasive species Paraserianthes
lophantha (Willd.) I.C. Nielsen could threaten a small disjunct,
isolated population of the native oak shrub Quercus lusitanica
Lam. (Amigo & Romero Buján 2018; Santamarina et al. 2019),

although the potential mechanisms involved are unclear. The
first record of P. lophantha in the locality is in 1989 (Castro et
al. 1989). Since then, fires and human activity have played an
important role in the expansion of this invasive species
(Garcı́a-Duro et al. 2019). Other non-native species, such
Eucalyptus globulus Labill, Acacia melanoxylon R. Br or Acacia
dealbata Link, are also present in the area (GBIF.org 2021). To
date, there has been no detailed investigation, for this pair of
species, of the competitive interaction between the native and
the invasive species and increased drought caused by climate
change. As a first approximation, we focused on the critical
seedling stage. Specifically, we investigated if the competitive
interaction of invasive P. lophantha seedlings and drought
could synergistically risk preservation of the vulnerable native
shrub species Q. lusitanica.

MATERIAL AND METHODS

Study species and sampling

Quercus lusitanica Lam. is a low-growing stoloniferous Euro-
pean oak with a shrubby habit, growing up to 1-m tall. It is
native to several disjoint areas of the Iberian Peninsula and the
north of Morocco (Amaral Franco 1990; Llamas et al. 2003).
The species is considered vulnerable in the Spanish region of
Galicia (Galician Decree 167/2011; DOG 2011) and occurs in
the habitat 4030 ‘European dry heaths’, in the list of Habitats of
European Interest of the European Directive 92/43/EEC.
Paraserianthes lophantha (Willd.) I.C. Nielsen is an evergreen
spreading tree or shrub, with a height of up to 10 m, native to
coastal and near-coastal areas in southwestern West Australia
(Cowan 1988). The species has become invasive across numer-
ous regions globally (Randall 2017).

Seeds from both species were obtained from the contact area
of the two species in the Galician massif of Monte Pindo (NW
Spain, 42.873372 N, −9.107041 W) in 2018. Quercuslusitanica
acorns were collected in autumn (last week of October) from
26 different individuals; P. lophantha seeds were collected in
late summer (August) from 26 different individuals. Although
the timing of seed production is different for these two species,
seedling emergence is observed during spring for both species
(personal observation). Seeds were extracted from parent indi-
viduals at least 5 m apart, to avoid potential clone sampling.
We deemed this sampling distance as adequate for Q. lusitanica
in this specific location because the abrupt orography of the
field site at Monte Pindo hinders the extensive growth of its
short stolons.

Germination

To preserve seed viability, Q. lusitanica acorns, which are very
sensitive to variations in humidity, were stored in porous paper
bags at low temperature (0–5 °C) in open polyethylene bags
for 1 week after collection, after which they were sown. Seeds
of P. lophantha were dry-stored with silica gel in dark condi-
tions in porous paper bags for 2 months. Although acorns are
fruits, hereafter we refer to them as ‘seeds’ to facilitate compar-
isons with P. lophantha seeds.

Each seed used during the subsequent experiments was
weighed to the nearest mg on an analytical balance (KERN,
model ABS-N_ABJ-NM_ACS_ACJ, Kern & Sohn, Puchheim,
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Germany). For Q. lusitanica, cupules were detached from
acorns and discarded before weighing. To select viable seeds,
acorns of Q. lusitanica were separated by flotation and soaked
overnight (sunken acorns were discarded). To stimulate germi-
nation, acorns were scarified by cutting the pericarp near the
end containing the embryo. They were subsequently buried in
commercial potting soil at 4-cm depth and watered twice a
week. Radicle emergence of acorns was examined twice a week
to match germination times across species. The treatment to
stimulate germination of P. lophantha seeds was conducted
only when 50% of the acorns had germinated, on day 19 after
burying the acorns. P. lophantha germination can be poor due
to the hard seed coat that is resistant to water (Clemens et al.
1977), therefore seed dormancy was broken using thermal scar-
ification by exposure to hot water (80 °C) for 10 min, followed
by mechanical scarification by chipping the micropylar end of
each seed with a scalpel. Scarified seeds were placed on damp
cotton in Petri dishes at a constant temperature (28 °C) in
complete darkness. Germinated seeds were removed when ger-
mination exceeded 50% and were transplanted into the experi-
mental pots 24 h after scarification.

Competition and drought experiment

The interspecific competition and drought experiment was
conducted in the greenhouses of the Botanical Garden of
Coimbra (Portugal) over 22 weeks (from the last week of
November 2018 to May 2019). The greenhouse air temperature
was between 10 and 30 °C and natural light was provided
through the covers of the greenhouse enclosure. Seeds were
sown in 200 ml Ray Leach Cone-Trainers pots filled with an
equal mixture of grit sand and commercial potting mix (1:1).
Soil consisted of a mix of commercial peat moss and fine and
coarse perlite.

Seeds of each of the two species were allocated to one of four
experimental treatments (control, drought, competition, com-
petition–drought). Each treatment combined one level of
drought and one level of competition in a full factorial design.
To reduce the influence of maternal and genetic effects, half
sibling seeds from each mother tree were allocated to each
treatment and thus seeds from any single parental individual
were replicated only once within each treatment. The drought
treatment consisted of a control group watered to saturation
twice a week (control and competition treatments) and a
drought group that was watered to saturation only once a week
(drought and competition–drought). The greenhouse provided
full shelter from any external precipitation. The reduction in
water supply in the drought treatment simulates mild drought
versus a non-water stress environment. Soil moisture content
was controlled every 2 weeks with a hand-held conductimeter
on a random subset of five pots in each treatment, showing a
clear difference between pots in each group of more than three
points (personal observation). The interspecific competition
treatment consisted of a control group in which one seed of
each species was grown in individual pots (control and drought
treatments) and a competition group in which one seed of each
species grew in competition with each other within the same
pot (competition and drought–competition). Each experimen-
tal group was composed of 26 replicates (one per parental
tree), giving 156 pots containing 208 individuals at the start of
the experiment (104 of each species). Mortality reduced the

number to 99 and 78 Q. lusitanica and P. lophantha individu-
als, respectively, and only individuals surviving to the end of
the experiment were included in the analysis.
We recorded seedling emergence (shoot apex visible above

soil surface) once a month and plant leaf number in week 12
after the start of the experiment (seedlings ranging in age
between 12 to 15 weeks) and in week 22 (22- to 25-week-old
seedlings), immediately before harvesting. We harvested roots
and shoots at predawn, for each individual plant, and used
shoots to assess individual shoot water potential with a
Scholander pressure chamber (Manofrı́gido, Amadora, Portu-
gal). Shoot water potential is a sensitive indicator of plant
water stress, in which the pressure needed to extract water from
the plant indicates the plant water status; with higher pressures
needed to extract water from stressed plants and lower pres-
sures needed to extract water from well hydrated plants. After
water potential measurements, we subsequently placed roots
and shoots in paper bags, dried them at 70 °C for 48 h and
weighed them to the nearest mg with an analytical balance
(KERN, model ABS-N_ABJ-NM_ACS_ACJ).
Relative growth rate (RGR) for number of leaves was calcu-

lated following Hunt (1990), based on the formula:

RGR ¼ lnNLtf � lnNLt0
� �

=t (1)

where NLt0 is number of leaves per plant in week 12, NLtf is
final total number of leaves per plant in week 22 and t is num-
ber of months between the two measurements.
Plant biomass was used to determine root/shoot ratio (R/S),

total biomass and relative interaction indices (RII hereafter;
Armas et al. 2004). The RII formula was defined as:

RII ¼ ðBw � B0Þ=ðBw þ B0Þ (2)

where Bw is total biomass of a seedling grown in competition
with the other species in the same pot, and B0 is biomass of
control seedling grown alone in another pot. RII ranges
between −1 and +1, where more negative values indicate stron-
ger competition and positive values indicate facilitation.

Statistical analyses

All the statistical analyses were developed using packages plyr
(Wickham 2011) and stats in R version 1.4 (R Core Team, 2019).
Figures were generated with SigmaPlot (SigmaPlot version 12.5;
Systat Software, San Jose, CA, USA, www.systatsoftware.com)
and with R package ggplot2 (Wickham 2016).
We used general linear models (GLMs) with glm procedure

in package stats and a Gaussian link function to test for differ-
ences between the two species, and for effects of drought and
competition (categorical explanatory variables) on Q. lusitanica
and P. lophantha in terms of RGR, total biomass, R/S, RII and
water potential as response variables. For each variable, we ini-
tially tested for differences between species using GLMs, and
later developed GLMs for each species, with drought and com-
petition as categorical explanatory variables, except for RII in
which drought was the only explanatory variable. After running
this analysis, we selected the models with the lowest Akaike
information criterion (AIC) as those with the most explanatory
power (Akaike 1973). Differences in mortality among
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treatments for each species were detected using the Fisher exact
test, which is often preferred when sample sizes are small
(Fisher 1956). Linear regressions were used to assess the role of
propagule weight in the final biomass allocation. The regres-
sions were fitted separately for each treatment.

RESULTS

Seeds of Q. lusitanica were more than thirty times larger
(3.609 � 0.168 g; mean � SE) than those of P. lophantha
(0.101 � 0.002 g). Germination peaked after 4 weeks for the
native Q. lusitanica (80% germination) and after only 5 days
for the invasive P. lophantha (85%). Seed size correlated with
final seedling biomass for the native, but P. lophantha final bio-
mass was independent of initial seed size under all treatments
(Figure S1). The invasive P. lophantha reached maximum seed-
ling emergence after 1 month, whereas the native Q. lusitanica
only reached maximum seedling emergence by month 5 (Fig-
ure S2).
Significant differences between the native and invasive spe-

cies were found for several traits (Table S1). Mortality was sim-
ilar for both species, but higher under drought conditions
(drought and competition–drought) than for controls (control
and competition) only for the native species. The invasive spe-
cies only trended toward increased mortality when both com-
petition and drought were combined (competition–drought),
although it was not statistically significant (Table 1, Fig. 1A).
Leaf relative growth rate (RGR) was similar for the two species
overall, but P. lophantha leaf production was significantly
reduced by drought (drought and competition–drought),
which halved leaf production (Table 2, Fig. 1B).
Final seedling biomass of Q. lusitanica was significantly

higher than that of P. lophantha, but the biomass of both spe-
cies was significantly lower under drought treatments (drought
and competition–drought; Table 2, Fig. 1C). Overall, root/
shoot ratio (R/S) was significantly higher for Q. lusitanica than
for P. lophantha, indicating larger proportional allocation of
biomass to roots for the native species. There was no difference
in R/S among Q. lusitanica experimental groups, but P. lophan-
tha R/S significantly increased either in the presence of drought
(drought and competition–drought) or in absence of competi-
tion with Q. lusitanica (control and drought; Table 2, Fig. 1D).
Physiologically, Q. lusitanica individuals had more negative
water potential than P. lophantha, indicating higher water
stress for the native species (Fig. 2A). Water potential values
for Q. lusitanica were significantly more negative under
drought treatments (drought and competition–drought) than

controls, as expected. However, there were no significant differ-
ences among drought or competition treatments for P. lophan-
tha individuals, indicating more resilient physiology of the
invasive species (Table 2, Fig. 2A).

Relative Interaction Indices highlighted the important nega-
tive competitive interactions developing between the two spe-
cies in the absence of drought (control), but the reductions in
total biomass associated with drought overshadowed the com-
petitive effects and responses for both species (drought). How-
ever, differences in the intensity of the competitive effects and
responses between watering treatments were only significant
for native Q. lusitanica but not for the invasive species
(Table 2, Fig. 2B).

DISCUSSION

Seedlings of both the native Q. lusitanica and the invasive P.
lophantha experienced competitive effects and responses, but
neither species was clearly at a competitive disadvantage.
Rather than competition, drought had an even greater impact
on the two species. However, our results show a smaller
decrease in water potential for P. lophantha than for Q. lusitan-
ica, which suggests a more resilient response of the invasive
seedlings than the native species under drier conditions.

Quercus lusitanica acorn weight was significantly correlated
with subsequent seedling biomass, which may have initially
given the native species a competitive advantage over P.
lophantha. In contrast, the seed size of P. lophantha did not
correlate with its seedling biomass, suggesting that this invasive
species relies less on initial stored resources and more on cur-
rent photoassimilates. High acorn mass can confer initial com-
petitive advantage (Goldberg & Landa 1991; Seiwa 2000),
which in turn have a positive effect in early development and
successful establishment of this oak species (Bonfil 1998; Kor-
manik et al. 1998), even under drought stress (Ramı́rez-
Valiente et al. 2009; Bonito et al. 2011; Zolfaghari et al. 2013).
However, that competitive and ecological advantage may later
diminish when competing with a fast growing species (Rose &
Poorter 2000; Navarro et al. 2006).

Seedlings of the invasive P. lophantha allocated a signifi-
cantly higher proportion of biomass to shoots than the native
Q. lusitanica, and even more when growing in competition, or
if water was not a limiting factor. Q. lusitanica had a larger
root/shoot ratio than P. lophantha, thanks to its thickened tap-
root, a common trait in native Mediterranean resprouter spe-
cies (Zavala et al. 2000). Under drought conditions, the
invasive P. lophantha significantly reduced its leaf growth rate
and increased allocation to roots. Reduced leaf production may
be drought-induced stunting but also a consequence of leaf
shedding, a trait frequently observed in invasive Australian
wattles (Osonubi et al. 1992; Aref et al. 1995; Aref 1996; Forster
et al. 2016), and which may play a major role in survival of
drought-stressed plants (Munné-Bosch & Alegre 2004).
Increased allocation to belowground growth than in non-
stressed conspecifics has previously been reported in several
other invasive species in low-resource environments (Funk
2013) and demonstrates positive associations with the ability of
woody invasive plants to survive droughts (Grotkopp &
Rejmánek 2007).

In our experiment, the invasive species was able to modulate
early its biomass allocation to increment the acquisition of the

Table 1. Fisher’s exact test for mortality of Quercus lusitanica and Paraseri-

anthes lophantha.

variable

drought effect competition effect

odds ratio

(95% CI) P

odds ratio

(95% CI) P

Q.

lusitanica

∞ (3.163–∞) <0.001 1.311 (0.308–
5.861)

0.7554

P.

lophantha

3.764 (0.840–
23.561)

0.063 2.105 (0.504–
10.510)

0.349

Significant P-values (P < 0.05) are presented in bold.
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resources that most strongly limit its growth, such as light or
water (Bloom et al. 1985). This is a response often related to
competitive ability in other invasive Australian wattles (Morris

et al. 2011), which can be of overall importance for invasive
success (Witkowski 1991; Grotkopp & Rejmánek 2007; Pyšek &
Richardson 2008). In contrast, the native Q. lusitanica

Fig. 1. Mortality (A); leaf RGR (B); total seedling biomass (C); and root/shoot ratio (D) for Quercus lusitanica and Paraserianthes lophantha in each treatment.

Different uppercase or lowercase letters indicate statistically significant differences (P < 0.05) among species or between treatments, respectively. Bars repre-

sent mean � SE.

Table 2. Results for the best models selected by akaike information criterion (AIC) from all general linear models fitted on the effects of drought and competi-

tion on Quercus lusitanica and Paraserianthes lophantha.

variable species selected model

drought competition

t P t P df AIC

Leaf relative growth rate (RGR) Q. lusitanica Drought + Competition −1.493 0.141 −0.092 0.927 2.57 40.324

P. lophantha Drought + Competition −8.654 <0.001 1.090 0.28 2.63 −19.579
Total biomass Q. lusitanica Drought + Competition −3.263 0.002 −1.155 0.251 2.78 118.46

P. lophantha Drought + Competition −5.653 <0.001 −0.479 0.633 2.61 −13.884
Root/shoot ratio Q. lusitanica Drought + Competition 1.011 0.315 0.520 0.604 2.78 254.74

P. lophantha Drought + Competition 3.696 <0.001 −2.896 0.005 2.61 −18.541
Relative Interaction Index Q. lusitanica Drought 2.265 0.028 47 0.573

P. lophantha Drought 0.995 0.325 43 20.775

Water potential Q. lusitanica Drought + Competition 2.538 0.013 −1.355 0.179 2.84 215.05

P. lophantha Drought + Competition 0.982 0.330 1.114 0.269 2.63 38.53

Additive models are indicated by +. Significant P-values (P < 0.05) are shown in bold.
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consistently allocated a higher proportion of biomass to roots
than the invasive P. lophantha, but this proportional allocation
did not respond to changes in water availability or competition
for the native species. This is consistent with results from previ-
ous studies, in which oak species did not significantly change
their proportional investment to root growth under water
deprivation (Kubiske & Abrams 1992; Fotelli et al. 2000) or
competitive environments (Bueno et al. 2019).
This one-to-one experiment did not determine a clear com-

petitive winner. Our findings differ from those of other studies
with similar leguminous invasive trees which frequently prove
better competitors than native tree or shrub species (Wit-
kowski 1991; Peperkorn et al. 2005; Morris et al. 2011; Kawa-
letz et al. 2013, 2014; Rodrı́guez-Echeverrı́a et al. 2013).
However, P. lophantha could exert competitive pressure on the
native Q. lusitanica under field conditions more severe than
observed in our study. P. lophantha reaches reproductive matu-
rity after only 2 years, when it starts intense reproduction, pro-
ducing seed every year (Martı́n Osório et al. 2008), whereas the
native species is a masting oak that produces fewer propagules,
and only in alternate years (Sork 1993; Fernández-Martı́nez
et al. 2012). Therefore, P. lophantha creates large and persistent
seed banks (Herschel 1912; McKenzie et al. 1976; McDowell &
Moll 1981; Milton & Hall 1981; Bell et al. 1995; Rico 2011;
Harris et al. 2017), a common trait among many closely related
genera, such as Acacia (e.g. Correia et al. 2016). The produc-
tion of abundant small seeds could boost its invasive coloniza-
tion success (Leishman et al. 2000; Pyšek & Richardson 2008).
Furthermore, as demonstrated in our experiment, the invasive
seedlings emerged faster than the native seedlings, which would
allow it to quickly occupy the space and out-compete the
native species for light (González-Muñoz et al. 2011). This is
supported by the fact that P. lophantha significantly allocated
more biomass to shoots in the presence of competition with Q.
lusitanica, which suggests that competition may be most signif-
icant for aboveground biomass. The leguminous invasive tree
can then create a dense canopy that limits the amount of light
available to native individuals, changes soil conditions through
highly nutritious leaf litter and the association of bacteria with

the roots, so altering the invaded area (Morris et al. 2011;
Fagúndez 2019; Pugnaire et al. 2019). Therefore, under natural
conditions, the propagule pressure of P. lophantha is highly
likely to tip towards the invasive.

Our study provides further support to the ‘stress-gradient
hypothesis’ which states that under high physical stress, com-
petition may be less important (Bertness & Callaway 1994).
The stress-related reduction in competitive interactions
between Q. lusitanica and P. lophantha could be explained by
the fact that seedlings of both species were smaller than the
controls, and water availability was a greater driver of perfor-
mance of each species than competition per se. This high-
lights the overarching importance of water stress over
competition. Furthermore, when experiencing water stress,
the native Q. lusitanica was the only species to have a signifi-
cantly lower water potential and higher mortality. These
findings have important implications for laying the founda-
tions on where conservation actions on populations of Q.
lusitanica should be directed in the future. Competitive dis-
placement by invasive P. lophantha will not be increased if
overall precipitation decreases as is predicted by Global Cir-
culation Models (IPCC 2014). In this sense, conservation
actions in the future should be prioritized to counteract the
potential risks associated with drier environmental conditions
on native oaks.

Our greenhouse pot study focused on one life stage on the
interaction between an invasive tree and a vulnerable native
species. The establishment and seedling stages are critically
important for population dynamics, but we cannot yet infer
how this interaction will develop at later life stages (Werner
et al. 2008; Kawaletz et al. 2014). Physiological variables can vary
between seedlings and mature trees in some Mediterranean oak
species (Mediavilla & Escudero 2004), and our study conditions
could not be fully representative of those in nature. Our results,
however, show previously unknown mechanisms occurring dur-
ing the crucially important early establishment of these two spe-
cies.

Competitive interactions between invasive P. lophantha
and native Q. lusitanica seedlings must not be dismissed but

Fig. 2. Predawn shoot water potential (A) and Relative Interaction Index (B) for Quercus lusitanica and Paraserianthes lophantha in each treatment. Different

uppercase or lowercase letters indicate statistically significant differences (P < 0.05) among species or between treatments, respectively. Bars represent mean

� SE.
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might be less critical than the effects of drought stress asso-
ciated with global change. However, it might be necessary
to act in the short term to protect the vulnerable, slow-
growing native species Q. lusitanica against the invasive P.
lophantha to ensure that the native species has the best pos-
sible conditions to face future climate scenarios. Our results
provide useful data to make conservation decisions on sen-
sitive native populations when they are in contact with
invasive tree species under potential water stress due to glo-
bal warming.
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Figure S1. Linear regressions between seed weight (g) and
seedling biomass (g) of Quercus lusitanica (left column) and
Paraserianthes lophantha (right column). The regressions were
fitted individually for each treatment.
Figure S2. Cumulative seedling shoot emergence for Quer-

cus lusitanica and Paraserianthes lophantha expressed as a per-
centage of the maximum emergence observed at the end of the
experiment.
Table S1. Statistical results of General Linear Models with

mortality, leaf relative growth rate (RGR), total biomass, root-
shoot ratio, Relative Interaction Index, and water potential as
dependent variables, and species as categorical explanatory vari-
able. Significant differences (P < 0.05) are presented in bold.
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Barbeta A., Peñuelas J. (2016) Sequence of plant

responses to droughts of different timescales: lessons

from holm oak (Quercus ilex) forests. Plant Ecology

& Diversity, 9, 321–338.
Bell D.T., Rokich D.P., McChesney C.J., Plummer J.A.

(1995) Effects of temperature, light and gibberellic

acid on the germination of seeds of 43 species native

to Western Australia. Journal of Vegetation Science,

6, 797–806.
Bellard C., Jeschke J.M., Leroy B., Mace G.M. (2018)

Insights from modeling studies on how climate

change affects invasive alien species geography. Ecol-

ogy and Evolution, 8, 5688–5700.
Bertness M.D., Callaway R. (1994) Positive interactions

in communities. Trends in Ecology and Evolution, 5,

191–193.
Bloom A.J., Chapin F.S., Mooney H.A. (1985)

Resource limitation in plants: an economic analogy.

Annual Review of Ecology and Systematics, 16, 363–
392.

Bonfil C. (1998) The effects of seed size, cotyledon

reserves, and herbivory on seedling survival and

growth in Quercus rugosa and Q. laurina (Fagaceae).

American Journal of Botany, 85, 79–87.
Bonito A., Varone L., Gratani L. (2011) Relationship

between acorn size and seedling morphological and

physiological traits of Quercus ilex L. from different

climates. Photosynthetica, 49, 75–86.
Bottollier-Curtet M., Planty-Tabacchi A.M., Tabacchi

E. (2013) Competition between young exotic inva-

sive and native dominant plant species: implications

for invasions within riparian areas. Journal of Vegeta-

tion Science, 24, 1033–1042.

Bueno A., Pritsch K., Simon J. (2019) Species-specific

outcome in the competition for nitrogen between

invasive and native tree seedlings. Frontiers in Plant

Science, 10, 337.

Bussotti F., Ferrini F., Pollastrini M., Fini A. (2014)

The challenge of Mediterranean sclerophyllous vege-

tation under climate change: from acclimation to

adaptation. Environmental and Experimental Botany,

103, 80–98.
Castro M., Freire L., Prunell A. (1989) Guı́a das árbores
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Invasoras: situación e propostas de mitigación,

BADER: Mon. Monografı́as do Ibader, Serie Biodi-

versidade, Lugo, pp 62–63.
Fernández-Martı́nez M., Belmonte J., Maria E.J. (2012)

Masting in oaks: disentangling the effect of flowering

phenology, airborne pollen load and drought. Acta

Oecologica, 43, 51–59.
Filazzola A., Liczner A.R., Westphal M., Lortie C.J.

(2018) The effect of consumer pressure and abiotic

stress on positive plant interactions are mediated by

extreme climatic events. New Phytologist, 217, 140–
150.

Fisher R.A. (1956) Statistical methods and scientific

inference. Hafner Publishing, New York, USA.

Forner A., Valladares R.F., Aranda I. (2018) Mediter-

ranean trees coping with severe drought: avoidance

might not be safe. Environmental and Experimental

Botany, 155, 529–540.
Forster M.A., Dalrymple R.L., Bonser S.P. (2016) A

low watering treatment alters biomass allocation and

growth rate but not heteroblastic development in an

Acacia species. Trees, 30, 2051–2059.
Fotelli M.N., Radoglou K.M., Constantinidou H.

(2000) Water stress responses of seedlings of four

Mediterranean oak species. Tree Physiology, 20,

1065–1075.
Funk J.L. (2013) The physiology of invasive plants in

low-resource environments. Conservation Physiology,

1(1), cot026. https://doi.org/10.1093/conphys/

cot026

Galiano L., Martı́nez-Vilalta J., Sabaté S., Lloret F.
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