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Cooperativity between transcription factors is important to regulate target gene expression. In particular,
the binding grammar of TFs in relation to each other, as well as in the context of other genomic elements,
is crucial for TF functionality. However, tools to easily uncover co-occurrence between DNA-binding pro-
teins, and investigate the regulatory modules of TFs, are limited. Here we present TF-COMB
(Transcription Factor Co-Occurrence using Market Basket analysis) - a tool to investigate co-occurring
TFs and binding grammar within regulatory regions. We found that TF-COMB can accurately identify
known co-occurring TFs from ChIP-seq data, as well as uncover preferential localization to other genomic
elements. With the use of ATAC-seq footprinting and TF motif locations, we found that TFs exhibit both
preferred orientation and distance in relation to each other, and that these are biologically significant.
Finally, we extended the analysis to not only investigate individual TF pairs, but also TF pairs in the con-
text of networks, which enabled the investigation of TF complexes and TF hubs. In conclusion, TF-COMB is
a flexible tool to investigate various aspects of TF binding grammar.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Epigenetic regulation of gene expression is crucial for all
processes occurring in cell biology, including cell differentiation
and cell development among others. In this context, transcription
factors (TFs) are a well-known class of DNA-binding proteins regu-
lating gene expression, operating in direct proximity to target
genes, as well as through regulatory enhancer elements further
up- or downstream. While some TFs are known to be specific for
a certain cell type or a dedicated cellular process, in many cases,
combinations of multiple TFs are needed to elicit a specific
response - a concept known as TF co-occurrence (Fig. 1a). In fact,
the amount and types of involved TFs varies, and in higher eukary-
otes, it has been shown that 10–15 TF binding sites (TFBS) are
required to target a specific gene [1], which can differ in terms of
the interaction mode. In the context of enhancers, different models
of TF-enhancer interactions have been described [2], which include
the enhanceosome, the billboard and the TF collective models
(Fig. 1b). Of these, the enhanceosome is defined by a certain
arrangement, order, distance, affinity and/or relative orientation
of the given TFBS. Such rules for binding are known as TF binding
grammar (please see [3] for a review). In contrast, the billboard
and the TF collective models allow for a more flexible grammar
where TFBS arrangement and TF binding states are not restricted.
In these models, protein–protein interactions (PPI) can enable co-
occurrence of TFs through dimerization and binding of additional
TF co-factors, but also allow for TFs to co-occur without direct
physical interactions. Additionally, the binding of TFs is influenced
by other factors including the presence of histone modifications,
chromatin accessibility and 3D chromatin organization. A smaller
subset of TFs, known as pioneers, are even able to influence chro-
matin accessibility by opening previously closed chromatin
regions, thereby initiating and enabling subsequent binding of
other factors [4]. Thus, a higher level of enhancer organization is
a prominent factor in gene regulation.

The detection and analysis of TF binding grammar is complex,
as the number of known human TFs is reported to be �1600 [5],
genes are reported in the range of �22000 protein-coding genes
[6], and enhancers are reported in the range of millions [7]. More-
over, the collection of active TFs, as well as the chromatin organi-
zation, differs for each single cell type. To detect TF co-occurrence,
one can broadly distinguish between experimental and computa-
tional methods. In the case of experimental methods, the de-
facto gold standard in the field are chromatin immunoprecipitation
based assays followed by deep sequencing (e.g. ChIP-seq and
CUT&RUN-seq). These assays utilize TF specific antibodies and
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Fig. 1. Grammar of regulatory elements and the TF-COMB framework. a) Concept of two co-occurring transcription factors (green + blue) bound in immediate proximity
directly to the DNA. b) Models of TF-enhancer interactions and TF binding characteristics. The enhanceosome is defined by strict positioning of TFs, whereas the billboard
allows for interchanged positions (green + blue) and absent TF factors (purple). The collective model allows TFs to bind on top of other factors (dark orange, light blue, dark
green). TF pairs also exhibit additional characteristics, such as preferred binding distance (d1 and d2), as well as binding in different orientations on the DNA. Drawn with
inspiration from [2]. c-h) The TF-COMB framework: c) Initialization of a TF-COMB object (red square) by providing TFBS and regions of interest from any data origin (e.g. ChIP-
Seq, footprinting, ATAC-peaks). d) Co-occurrences are identified, counted and analyzed with an adapted market basket analysis, and are stored in the object for further
analyses. e) Differential analysis module allows for the comparison of two independent TF-COMB objects. The module visualizes data to indicate TF pairs more frequent in
Object1 (red dots) and Object2 (blue dots) respectively. f) The orientational binding module calculates strand specificity of TF pairs and visualizes preferences via heatmaps. g)
TF pairs are analyzed in context of their binding distance, and pairs with prefered binding distance are classified and visualized as histograms. h) Network analysis and
visualization module allows to identify higher order relationships between TFs and/or other features. All subfigures were created with BioRender.com. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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are performed in one cell type at a time. While it is technically
possible to run these assays multiple times on different factors of
interest, the cost and the dependency on highly specific antibodies
generally render these assays unsuitable to investigate global TF
co-occurrence. Due to these limitations, the topic of co-occurring
TFs have preferably been investigated by in silico methods, which
utilize a variety of statistical methods [8], linguistic models [9]
and enrichment-based algorithms [10]. Most of these methods
are based on association analysis of two TFs, and thus simplify
the complexity of co-occurring TFs to one specific pair at a time.
Additionally, while most of the available tools perform TF motif
searches to screen the genome for potential co-occurring events,
they are mostly restricted to a single TF anchor point, derived from
e.g. ChIP-seq. These limitations motivated us to design a tool that
would enable global TF co-occurring analysis independent of data
origin. In this context, chromatin accessibility data such as ATAC-
seq is of high interest, as we and other groups have recently shown
that ATAC-seq can be utilized to find TF binding sites via genome-
wide TF footprinting [11,12]. In addition, co-occurrence of TFs with
histone modifications, locations of genes, and other genomic ele-
ments are likewise important to accommodate when analyzing
TF binding as an epigenetic mechanism. Here we introduce the
TF-COMB (Transcription Factor Co-Occurrence using Market Basket
analysis) framework, which uses an enhanced market basket anal-
ysis to identify and investigate the grammar of co-occurring TFs
from a variety of data sources.
2. Approach of TF-COMB

In order to detect co-occurring TF binding sites, TF-COMB uti-
lizes an association analysis known as market basket analysis
(MBA) [13]. This method has classically been applied to identify
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shopping habits, also known as association rules, such as ‘‘if the
customer buys cereal, they are likely to buy milk”. The same
approach can also be applied to TF co-occurrence analysis as ‘‘if
TF1 binds, it is also likely that TF2 binds”, for which the association
rule is called a TF co-occurring pair. However, the classical MBA
carries a number of shortcomings in the context of TF binding data.
For example, the classical MBA reduces items occurring multiple
times per transaction to one, and would thus mask the effects of
robustness by TFBS replicates in biological networks. In addition,
previous applications of MBAs to TF data have likewise excluded
all overlapping TFs [14], which influences the discovery of TFs
binding in dimers and complexes, where the binding sites might
overlap. Moreover, in the context of binding grammar, the order
and orientation of TF binding is also of high importance, which
has not been taken into account in previous implementations of
MBAs. Thus, the current state of publicly available software lacks
support for certain aspects needed to characterize the effects of
TF co-occurrence. The TF-COMB framework is intended to over-
come these limitations.

Firstly, TF-COMB counts all co-occurring TFs in a predefined
genomic window. As the source of binding data is flexible, the
analysis can be performed for both ChIP-seq peaks, motif positions,
and footprints, as well as other input regions. Rather than setting
up non-overlapping genomic regions, TF-COMB utilizes sliding
windows beginning at each given TFBS, allowing to count all co-
occurring TFs relative to that position. A default window size of
100 bp was used throughout this paper, however, the parameters
of the framework can be changed in order to control the size of
the window (minimum and maximum distance), whether to count
TFs more than once, as well as basic grammar parameters of TFs
such as the inclusion of directionality and strandedness of TF pairs.
Thus, the framework is very flexible in terms of investigating a
variety of aspects of co-occurring TFs.
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Depending on the input data, the total number of TF binding
sites and the resulting number of TF combinations can be
immense, which gives rise to the need for a measure to rank bio-
logically or statistically important TF combinations. Using the
information of pairwise counted TF1/TF2 pairs, different associa-
tion metrics are supported. The classical MBA utilizes the support,
confidence and lift measures to filter and rank interesting associa-
tions, however, additional scoring schemes exist, such as the cosine
association score [15]. Of note, there is no established method of
choosing the correct threshold for association scores of MBA [16].
To overcome this limitation, TF-COMB calculates a Z-score of sig-
nificance, which helps to reduce false-positives from TFs which
are ubiquitously present across the whole genome. This is done
through a null-model of random co-occurrences, which is calcu-
lated by shuffling the TF labels, rather than randomly shuffling
the positions across the genome, as TFBS positions naturally appear
in clusters [17]. In summary, the TF-COMB supported metrics
allow to rate and select a subset of TF co-occurrences of interest.
3. Materials and methods

3.1. Availability and implementation

TF-COMB is a Python package intended to be used as a toolbox
within Jupyter notebooks or within custom analysis scripts. Due to
the high computational needs, it is supported by C-code through
Cython [18] integration in Python. Additionally, given functions
support multiprocessing when applicable.

TF-COMB is open source and freely available on github at:
https://github.com/loosolab/TF-COMB. Details on the individual
TF-COMB modules are given at: https://tf-comb.readthedocs.io.

3.2. Sequencing data

We obtained TF ChIP-seq peaks, histone ChIP-seq peaks, RNA-
seq and ATAC-seq for cell lines HepG2, K562, HEK293, GM12878,
MCF-7, H1, A549 and HeLa-S3 from ENCODE [19]. The cell lines
were chosen based on a requirement of at least 50 unique TF
ChIP-seq experiments available. In case of more than one available
experiment per cell line and/or ChIP target, the most recent exper-
iment was used. For ChIP-seq, all peaks were centered at the peak
summit and reduced to 1 bp regions, while peaks overlapping
blacklisted regions were excluded. For ATAC-seq, individual repli-
cates were merged per experimental condition. Accession numbers
for all ENCODE datasets used are given in Supplementary Table 1.

Additionally, we obtained genomic coordinates for HiC anchor
regions for cell line GM12878 (GEO accession GSE63525; file
‘‘GSE63525_GM12878_primary + replicate_HiCCUPS_looplist.txt”)
[20].

3.3. Transcription factor motifs

Motifs were obtained from the JASPAR database (JASPAR 2022
CORE vertebrates) [21]. Annotated dimers (e.g. ‘‘Ahr::Arnt”) and
any additional motif variations for the same TF (e.g. ‘‘var.2”) were
excluded.

3.4. Metadata for TF interactions

For validation of TF pairs, we obtained a variety of metadata.
Known PPIs were obtained from Biogrid [22]. Protein sequences
for individual TFs were obtained from UniProt [23] and pairwise
protein similarity was calculated using EMBOSS Stretcher [24]. Lit-
erature association of TFs was calculated by querying PubMed
abstracts and titles for the common presence of each TF pair. The
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global counts of publications containing either TF1, TF2, and/or
TF1 + TF2 were used to calculate the cosine similarity measure rep-
resenting the PubMed association score. Transcription factor fam-
ilies were obtained from AnimalTFDB (v3.0) [25] and using this
classification, TF pairs were estimated to be either same-family
or different-family pairs. GO-term analysis of TF clusters were per-
formed using the goatools python package [26].
3.5. TOBIAS footprinting analysis

Footprinting analysis was performed with the TOBIAS pipeline
[11] with default parameters. The input peaks, ATAC-seq reads
and motifs were obtained from ENCODE and JASPAR respectively,
as explained above. In order to reduce the effect of repetitive ele-
ments on the co-occurrence analysis, we used the masked hg38
genome [27].
3.6. Comparison to existing tools

In order to compare TF-COMB to existing computational tools,
we performed a literature search and obtained 12 in silico tools
for investigation of co-occurring TFs, taking webservices and com-
mand line usage into account (Supplementary Table 2). Namely,
these 12 tools were CENTDIST [28], iTFs [29], INSECT 2.0 [30], TICA
[31], NAUTICA [32], PC-Traff [9], SpaMo [10], COPS [33], TACO [8],
MCOT [34], CisMiner [35] and coTRaCTE [36]. Of these, most tools
were discarded from comparison due to different reasons including
unreachable weblinks. Briefly for all accessible methods, PC-Traff is
limited to predefined motifs, CisMiner does not provide a func-
tional example of the expected input, COPS is limited to Drosophila
melanogaster and Mus musculus genomes, TACO needs at least two
replicate experiments to run and coTRaCTE needs differentially
regulated chromatin regions from multiple cell types. The remain-
ing two tools, SpaMo and MCOT, were used for an exemplary anal-
ysis based on ChIP data from ENCODE (cell line GM12878;
Supplementary Table 1) on 74 TFs and hg38 genome version. We
recorded the total runtime on a VM with 64 GB RAM and 8 cores
at 2.6 GHz CPU for each tested tool individually. Identified TF pairs
were ranked for each tool independently. Resulting lists of co-
occurring TFs were aligned where applicable, and top ten exclu-
sively found pairs per tool were manually evaluated via literature
search in the PubMed database [37].
4. Results

4.1. TF-COMB: A universal tool to investigate grammar of enhancers

The typical workflow of a TF-COMB-based analysis is presented
in Fig. 1c-h. Briefly, the analysis starts with the initialization of an
TF-COMB object with regions of interest. As genomic positions in
standardized BED file format are supported, TF-COMB can handle
(but is not limited to) binding sites from ChIP-seq, pre-calculated
motif positions, histone modifications, locations of genes, enhan-
cers, and open chromatin peaks (Fig. 1c). In the next step, the geno-
mic positions of the TF-COMB object are internally processed by a
sliding window approach and an adjusted MBA is calculated in
order to identify TF combinations (Fig. 1d). At this stage, the frame-
work provides a variety of analysis and visualization methods, as
well as the functionality to compare different conditions with each
other (Fig. 1e). In order to further examine the TF combination
data, the TF-COMB tools provide functionality to investigate TF
binding grammar, which includes binding orientation (Fig. 1f)
and binding distance (Fig. 1g), as well as the opportunity to inves-
tigate TF pair networks (Fig. 1h).
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In order to rate the features and performance of TF-COMB, we
reviewed 12 existing implementations for TF co-occurrence pre-
diction (Supplementary Table 2; methods segment 3.6). Only tools
classified as comparable in functionality and able to run the test
data were accepted for assessment. We identified two command-
line tools, MCOT and SpaMo, as suitable for comparison with TF-
COMB. Where applicable, we aligned individual tool functionality,
and we identified a substantial set of features to be exclusively
covered by TF-COMB (Supplementary Table 3). Briefly, TF network
functionality, binding entity classification (orientation, distance)
and quantitative support between conditions of TF-COMB render
our software to be a significant extension of existing tools. In order
to compare the quality of the results, we ran an exemplary analysis
on public ChIP-data and validated the result to known interacting
TFs from the BioGrid database [22]. Using a receiver operating
characteristic (ROC) curve, we found that TF-COMB has the best
predictive ability, with MCOT ranking second best (Supplementary
Fig. 1a). As expected, we found that SpaMo has a low ability to pre-
dict co-occurring TFs, as this tool is particularly focused on identi-
fying motif spacing and not necessarily general motif co-
occurrence. In addition to the ROC analysis, we manually rated
the top ten candidates per tool via literature search, and found con-
siderably more TF-COMB specific TF pairs verified by literature
than for the other tools (Supplementary Table 4). In terms of run-
time, we found TF-COMB to outperform the other tools, even
though it generates an all-against-all analysis instead of using a
single anchor TF (Supplementary Fig. 1b). In conclusion, we present
TF-COMB as a novel tool for the investigation of TF co-occurrence
and TF binding grammar.

4.2. TF-COMB detects co-occurring TFs from ChIP-seq data

In order to illustrate the basic functionality of TF-COMB to
detect co-occurring TFs, we have utilized the collection of high
quality ChIP-seq datasets deposited by the ENCODE project
[19,38]. We collected a total of 1663 ChIP-seq experiments across
8 human cell lines (HepG2, K562, HEK293, GM12878, MCF-7, H1,
A549, HeLa-S3) (Supplementary Table 1), and used TF-COMB to
find TF associations.

By subsetting pairs based on cosine score and significance (Z-
score) across all 8 cell lines, we were able to specify a total of
1938 (1877 unique) TF-TF co-occurring pairs, which correspond
to 1–3% of all pairs per cell line (Fig. 2a). Within the individual cell
lines, TF-COMB predicted the top co-occurring TF pairs to be the
well-known pairs MAX-MYC [39] in MCF-7, AP-1 (FOSL2-JUNB)
[40] in A549, and CTCF-ZNF143 [41] in H1 cells (Fig. 2b-c; Supple-
mentary Table 5). Interestingly, besides highlighting significantly
co-occurring pairs, the analysis is also informative in terms of
establishing seemingly anti-co-occurring sites, as a negative
Z-score represents TFs with less co-occurrences than expected. In
MCF-7, such pairs included CTCF-FOS, CTCF-GATA3 and CTCF-
CEBPB, indicating that CTCF possibly avoids binding to certain part-
ners (Fig. 2b). The reason for this might be related to CTCF’s
involvement in chromatin looping, as other TFs carry out separate
functionalities, which should not interfere with chromatin organi-
zation. Thus, the TF-COMB co-occurrence analysis highlights both
preferred and unpreferred TF pairs.

Because the list of available ChIP-seq experiments differs for
each cell line (Supplementary Fig. S2a), with the only TFs available
in all cell lines being CTCF and REST, it is not possible to directly
compare the top co-occurring pairs across cell lines. For co-
occurring TF pairs present in at least 4 cell lines, we found NFYA-
NFYB, USF1-USF2, JUN-JUND, E2F6-MAX and CTCF-ZNF143 pairs
among others to have the highest median association scores across
multiple cell lines (Fig. 2d), indicating TF pairs of general impor-
tance. In confirmation of this result, we found all these pairs to
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either form a complex or to interact with each other [41–44]. In
addition, by comparing association scores between cell lines, we
found that the median spearman correlation is 0.49, suggesting
the presence of both common, as well as cell-line specific co-
occurring TF-pairs (Supplementary Fig. S2b-c). Thus, we conclude
TF-COMB to reliably identify known co-occurring TFs across differ-
ent biological conditions.

In order to further validate the identified ChIP-based co-
occurring TF-pairs within individual cell lines, we asked whether
the found pairs recapitulate known PPIs from the BioGrid database
[22]. Even though physical interactions are not a necessity for co-
occurrence, we found that the majority of cell lines exhibit signif-
icantly higher association scores for the TF pairs with a known PPI
in comparison to other pairs (Fig. 2e; Supplementary Fig. S2d).
However, all cell lines also contain cases of high-association scores
without known PPI. To ensure that the default window size of
100 bp is sufficient to catch potential PPIs, we ran TF-COMB itera-
tively with increasing window sizes and correlated the results of
each distance to the known PPIs. We found that while most phys-
ically interacting TF-TF pairs are collected at distances between 10
and 50 bp (Supplementary Fig. S2e), associations are still found for
larger windows (Supplementary Fig. S2f), meaning that there are
other types of TF-TF co-occurrences than those explained by PPI.
In this context, we observed that many of the top TF-COMB predic-
tions without a known PPI are TFs from the same families such as
FOXA1-FOXA2, MAFF-MAFK and SOX5-SOX13. With the purpose of
ruling out cross-reactive ChIP-seq antibodies as the source of this
effect, we correlated the association scores with the protein simi-
larity within each TF pair. While we did find some examples of
simultaneous high-similarity and high association score, there is
no global effect of protein similarity on the co-occurrence analysis
(Supplementary Fig. S2g). Finally, to explain the association of low
similarity TF pairs without known PPI, we also investigated the
association of PubMed terms from literature. This analysis could
confirm that some pairs, such as BATF-IRF4 were previously
described, despite not being annotated with a known PPI in BioGrid
(Fig. 2f). However, this analysis still leaves a number of pairs
including ARID5B-FOXA3, which has high co-occurrence associa-
tion, but low PubMed association (Fig. 2f; lower right). For these,
more in-depth analysis will be needed in order to confirm the bio-
logical mechanisms of their observed association. In conclusion, we
regard TF-COMB as a powerful tool to identify co-occurring TFs,
both those physically interacting and those applying other modes
of co-occurrence.

4.3. Integration of epigenetic marks reveals positional identity of TFs

Besides the expression of certain TFs in individual cell types,
multiple epigenetic processes play a role in TF binding, such as
the accessibility of chromatin, the presence of histone marks and
the 3D chromatin organization. Thus, we sought to use TF-COMB
to investigate the co-occurrence of TFs with other epigenetic sig-
nals by extending our ChIP-seq co-occurrence analysis with tran-
scriptional co-factors and other DNA-binding proteins (e.g. DNA
polymerase II), positions of known histone marks, positional infor-
mation of genes, chromatin loop anchors from HiC data and open
chromatin regions from ATAC-seq. While not all DNA-binding fac-
tors in this analysis are strictly identified as TFs, we will still use
this term for simplicity.

First, we characterized TFBS in the context of chromatin acces-
sibility and gene promoters. Although gene promoters make up
only �3% of the entire genome, we found that the majority of fac-
tors have promoter association in the range of 10–20%, supporting
the enrichment of TF binding to directly regulate gene expression
(Fig. 3a). In line with TF binding in enhancer regions, we find that
the majority of TF binding sites are located in open chromatin



Fig. 2. Co-occurrence of TF ChIP-seq peaks in ENCODE cell lines. a) Cell lines and their highly co-occurring TF pairs in percentage and numbers. b) Relationship between
cosine and Z-score for each TF pair within cell line MCF-7. The upper right section (red) indicates pairs selected as highly co-occurring. The lower left section contains pairs
with less-than-expected co-occurrence. c) Selected co-occurring TF pairs sorted by cosine score. Color indicates the number of TF1-TF2 occurrences, size illustrates the Z-
score of the pair. d) The TF pairs identified to have the highest cosine across different cell lines. Only TF pairs present in at least 4 cell lines were included. Each point indicates
the cousine score of the given TF pair (column), distribution of scores across cell lines is indicated by a boxplot. e) Violin plot of median cosine score for all TF interactions with
(right) or without (left) known protein–protein interactions across the 8 cell lines. The significance of the difference in distributions is calculated using the Mann-Whitney U
test. f) Correlation of maximum cosine (across cell lines) and known PubMed association score for TF pairs without known protein–protein interactions. Pairs with high cosine
or high PubMed association are highlighted. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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outside of promoter regions. However, we also observed that the
percentage of sites found in open chromatin is ranging
from �95% for POU5F1 to below 10% for CBX8, which highlights
the differences in functionality of individual TFs and co-factors.
Interestingly, we found a number of known pioneer factors includ-
ing PBX1, GATA3 and FOXA3 to be less associated with open chro-
matin than other factors, which reflects their ability to also bind to
closed chromatin.

By performing a distance analysis between the TFBS and anno-
tated genes, we found a strong enrichment of binding sites close to
the TSS, with 80% of these binding sites occurring within 2000 bp
(Fig. 3b). In contrast, when we investigated the more global TF
binding patterns in the context of open chromatin, we found that
the TF binding sites show locational preferences. As TFs are known
to bind to open chromatin, it was not surprising that the vast
majority of TFs are addressing the center region (+/- 25%) of
ATAC-seq peaks, such as shown for ATF2, FOS, ELK1 and the histone
deacetylase HDAC2 (Fig. 3c). However, we also found TFs with their
binding sites located without preference across the whole open
region (EHF; Fig. 3d), as well as some TF candidates with a prefer-
ence to the outer bounds of open chromatin regions (CHD4;
Fig. 3e). This localization of CHD4 is well explained by the fact that
CHD4 has been shown to slide nucleosomes, which are found at the
borders of open chromatin [45]. Overall, the relative locations of
TFBS in open chromatin peaks showed a significant correlation
between cell lines, which confirms that there are groups of TFs
and co-factors with locational preferences regardless of cell type
(Supplementary Fig. S3a).

Within the group of TFs located at the center of ATAC-seq
regions, we also observed CTCF, which has a highly centered
peak around the +/- 15% core of the peak (Fig. 3f). As CTCF is
known to mediate chromatin looping [46], we used TF-COMB
to investigate the co-occurrence of ChIP-seq defined TF sites
with chromatin loop anchor regions as defined by HiC. As
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expected, we found that CTCF had high co-occurrence with loop
regions, and we additionally found SMC3, TRIM22, RAD21,
ZNF143, YY1 and RUNX3 (Fig. 3g). These results are perfectly
in line with previous investigations showing that CTCF, RAD21,
ZNF143, TRIM22 and RUNX3 can accurately predict the position
of chromatin loops [47]. Additionally, SMC3 is an essential com-
ponent of cohesin [48], and YY1 has been shown to mediate 3D
chromatin interactions in collaboration with CTCF [49]. As seen
for CTCF, these proteins likewise show strong positional speci-
ficities within open chromatin (Supplementary Fig. S3b). As such,
the relative positioning of these factors might be an important
mechanism for higher chromatin organization.

Finally, we investigated the higher order binding patterns of
TFs in the context of activating and repressing histone modifica-
tions (Fig. 3h). Since the association of histone modifications
with TFs is not necessarily symmetrical, we used the association
‘confidence’ score, which represents the fractional overlap
between sites. Firstly, we confirmed the association of respective
histone marks to chromatin, and not surprisingly, we found the
active histone marks H3K4me1/2 and H3K27ac to have the high-
est association with open chromatin, and in contrast, the repres-
sive histone marks H3K36me3 and H3K9me1/2/3 with the
lowest association (Supplementary Fig. S3c). Correspondingly,
we found that H3K4me2 and H3K27ac have the highest overall
association with ChIP-seq defined TF targets (Fig. 3i), which
has also been described previously [50]. In contrast, the repress-
ing marks H3K27me3, H3K9me1/2/3, H3K36me3, H4K20me1
and histone variant H3F3A had a low overall association with
TF binding. However, despite the minimal association with open
chromatin and TF binding, we identified factors such as EZH2,
CBX2/3/8, ZNF184, MCM3/5, XRCC3, ZNF280A, SRSF9 and PLRG1
to be prominently overlapping with H3K9me3 and H3K27me3,
while simultaneously being depleted for association with active
histone marks (Fig. 3i). Thus, these proteins have an ability to



Fig. 3. Integration of epigenetic marks reveals positional identity of TFs and co-factors. a) Percentage of ChIP-seq peaks (y-axis) in open/closed (defined by overlap with ATAC-
seq peaks) promoter regions (defined as 5000 bp upstream of the TSS) and chromatin regions (all regions not defined as promoter) for individual factors (x-axis). b) Distance
of ChIP-seq peak summits to transcription start sites (TSS) of genes. Distributions for individual factors are shown in black, and the mean distance is shown in bold red. Upper
right corner shows the cumulative distribution of sites with 80% of sites marked with a dashed line. c) Relative location of ChIP-seq peak summits in open chromatin regions.
Counts for the same TF in different cell lines were merged by taking the mean at each distance. The colorbar represents the scaled number of positions found to co-localize at
different percentages of the peak length. Counts to the left/right of the peak center are aggregated to a range from center to border. d-f) Relative TF binding positions in ATAC-
seq peaks from peak-center (left) to outer peak-borders (right). g) Co-occurrence of TFs and HiC loop regions in the cell line GM12878. TF1_count represents the total count of
ChIP-seq peaks per factor. h) Scheme of histone modifications and histone variants investigated. Created with BioRender.com. i) Co-occurrence of TFs and histone marks as
calculated by fractional overlap of regions. A selection of TFs from interesting clusters are annotated on the x-axis. Known pioneer factors are marked in red. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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bind in otherwise inactive chromatin, which the majority of
other proteins do not. Indeed, a number of these TFs are mem-
bers of the Polycomb Group of proteins (namely EZH2 and CBX
family proteins), which assemble in multi-protein complexes to
repress genes.

Interestingly, this analysis also highlighted another prominent
cluster of TFs, which is defined by an overall strong association
with active histone marks, but with an exclusive depletion of asso-
ciation with H3K9ac and H3K79me2, which are markers for active
promoters and intragenic regions respectively. This cluster con-
tains several HOX and FOX factors, nuclear receptors NR2E3 and
NR5A2, as well as PBX1, ATOH8 and TP53 among others. Many of
these factors are known to be pioneer factors (TP53 and PBX1) or
part of families with many known pioneers (nuclear receptors
and the FOX family) [51]. However, while some other known pio-
neers also show a decrease in association with H3K9ac (e.g.
FOXA1/2), it is not an universal rule (e.g. NRF1), and the pioneer
hypothesis is therefore not the only explanation for the depletion
of H3K9ac for this cluster. Alternatively, the effect could be
explained by the role of these factors in controlling lineage speci-
fication, as is well described for the HOX factors [52]. Thus, the dis-
covery of TFs specifically co-occurring or restricting binding to
certain histone modifications, can uncover hallmarks of TF binding
to enhancers.
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In conclusion, we find that TF-COMB analysis integrating
epigenetic signatures uncovers DNA-binding proteins with loca-
tional specificity corresponding to individual biological functions.

4.4. Co-occurrence analysis utilizing TF footprinting

While we were able to use gold standard ChIP-seq data to iden-
tify positional locations of TFs within larger regulatory regions, this
data comes with some fundamental challenges in the context of
investigating local binding grammar. Mainly, TF ChIP-seq peaks
are several hundred base pairs wide, and thus do not clearly indi-
cate the exact location of TF binding sites. As a result, ChIP-seq will
generally fail to find multiple TF sites from one factor in close prox-
imity, and will lose the information of TF binding orientation,
which impedes the investigation of a higher order of TF binding
grammar from ChIP-seq data. In contrast, the identification of TFBS
through methods such as motif prediction or digital genomic foot-
printing requires only one chromatin accessibility assay per cell
type to estimate binding events for hundreds of TFs in parallel,
while preserving location and orientation of the TFBS (Fig. 4a).
Thus, we obtained ATAC-seq experiments for cell lines A549,
GM12878, HepG2, K562, MCF-7 from ENCODE, and ran our previ-
ously published ATAC-seq footprinting pipeline TOBIAS on the data
[11]. The pipeline identifies bound TFBS on the basis of Tn5 inser-



Fig. 4. Footprinting data uncovers cell line specific TF co-occurrence. a) Scheme of TF co-occurrence and Tn5 mediated digital genomic footprinting. Prepared using
BioRender.com. b) Direct comparison of scores derived for TF-pairs via ChIP-seq and ATAC-seq (footprinting) analysis. Two pairs with high footprinting scores are highlighted
and corresponding motifs are illustrated. c) Footprinting heatmap of all co-occurring JUNB-FOS sites. Colored for Tn5 cutsites appearing more than expected (red) or less than
expected (blue) if DNA is inaccessible. Black lines represent the edges of JUNB (left) and FOS (right) motifs. Edges show the binding strand of the respective TF. d) Aggregated
views of the scores shown in e). Increasing distance (top to bottom) causes the combined TFs footprint to split into two distinct ones. e) Heatmap showing cosine scores for
differentially co-occurring TF pairs across five cell lines. A subset of prominent cell line specific pairs are labeled on the right side. f) Activity of TF-pairs in direct comparison
between HepG2 and MCF-7 cell lines. Significantly changed TF pairs are marked in red. g) Differential RNA expressions of the top 10 TFs selected in f) for each group. TFs are
clustered by motif similarity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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tion patterns, which were used to subsequently find co-occurring
TFs with TF-COMB.

Overall, we find both coincident and differing TF pairs when
comparing the co-occurrence of ChIP-seq based and footprinting-
derived TFBS (Fig. 4b). For example, we observed that well-
known factor pairs BATF-JUNB, USF1-USF2 and CREB1-CREM were
found to have high cosine scores in both footprinting and ChIP-seq
analysis. However, we also observed some pairs specifically found
in ChIP-seq data including CTCF-ZNF143 and NFYA-FOS. As the
footprinting analysis is dependent on the presence of sequence
motifs, we performed a global analysis of the presence of motifs
within ChIP-seq peaks, and found the match between ChIP and
motifs to be very different across factors (Supplementary
Fig. S4a). For example, while a high percentage of CTCF sites con-
tain at least one motif, less than 10% of ZNF143 ChIP-seq sites con-
tain known motifs, thus making the CTCF-ZNF143 difficult to
discover from motif-based data. As such, the lack of co-
occurrence between ChIP-seq and footprinting-derived sites can
be partially explained by a lack of identifiable motifs within these
ChIP-seq peaks.

In contrast, there are also a number of co-occurring pairs which
are more commonly found in footprinting data, including FOS-
JUND, ATF3-ATF7 and KLF5-SP1, all of which have very similar
motifs. We also observed self-pairs such as SP1-SP1, which we
could not observe in ChIP-seq due to the lack of resolution of
ChIP-seq peaks. When analyzing the underlying genomic sequence,
we indeed found multiple SP1 motifs in the vicinity of one SP1
ChIP-seq peak, which naturally increases the cosine scores of this
pair for footprinting data (Supplementary Fig. S4b). In general,
we found that the co-occurrence scores for footprinting data are
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correlated with motif similarity to a much higher degree than
the ChIP-seq derived data (Supplementary Fig. S4c). While this is
expected due to motif overlap, the correlation to motif similarity
persists, even when overlapping between sites is disallowed,
which suggests that the effect is not only due to direct motif over-
lap. As is the case for SP1, this effect can arise due to multiple
motifs within peaks, as exemplified by NFYA-NFYC (Supplemen-
tary Fig. S4d). Whereas the association of two ChIP-seq peaks is
only counted once, the co-occurrence of similar motifs will lead
to high scoring pairs for NFYA-NFYA, NFYC-NFYC and NFYA-
NFYC, as these are counted multiple times within the same win-
dow. Thus, TFs do in fact co-occur with similar motifs on two
levels; firstly by direct motif overlap, and secondly by multiple
copies of a motif in close proximity. The latter case suggests a cer-
tain importance of a genomic loci for an individual factor, as mul-
tiple binding sites provide an increased probability of binding -
even in the event of mutations. In conclusion, co-occurrence of
footprinting data reflects ChIP-seq derived data analysis, and addi-
tionally unravels genomic sequence compositions that utilize motif
redundancy at target regions.

The gain of resolution by utilizing footprinting data additionally
allows for a TF distance analysis as exemplarily shown for the TF
TBP, which has a preferred distance of 16 bp to the TSS (Supple-
mentary Fig. S4e), while the ChIP-based analysis did not show
any preferred binding distances to TSS (Supplementary Fig. S4f).
We asked whether this increased resolution also enables the visu-
alization of paired TF footprints and therefore utilized the TF-
COMB plotting module for paired TF sites (Fig. 4c). As exemplarily
shown for the well characterized TF pair JUN-FOS, sites with close
motif distances create one common footprint, and by increasing
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the motif distance of bound sites, the individual footprints appear
distinguishable starting from distances above 20 bp (Fig. 4d). As
footprints are generated by Tn5 transposase cutting patterns, we
conclude that the Tn5 transposase is unable to insert adapters
between closely bound TFs. Thus, in the context of footprinting
analysis, individual footprints might not be directly mappable to
single TFs, but might be the result of several closely bound TFs. This
is an important factor to take into account for future footprinting
algorithms.

As ChIP-seq data is limited to certain factors in each cell type, it
can be tricky to compare co-occurrences between datasets. How-
ever, footprinting analysis contains the same TF motifs across all
cell types, and just differs at the respective footprinting score
levels. Thus, we used our previously calculated co-occurring TFs
based on TOBIAS footprints and added a differential analysis to
the TF-COMB object in order to quantify co-occurring TF pairs
between cell lines in a global manner. As expected, we found the
majority of TF pairs commonly active across cell lines (spearman
correlations 0.8–0.9) (Supplementary Fig. S4g), however, by select-
ing the enriched TF pairs from each contrast, we identified 3.2%
(n = 6910) of the potential TF pairs as differentially active between
cell types (Fig. 4e). Not surprisingly, the overall clustering of the
cell lines reflected the respective cell origin, by grouping epithelial
cells (A549 and MCF7), as well as the lymphocyte cell lines
(GM12878 and K562). The cell line specific TF pairs nicely mapped
to the biological background, which included FOXA3-HNF4A for
HepG2 cells, which are well known liver TFs able to program
fibroblasts into hepatocyte-like cells [53], and multiple pairs con-
taining IRF for GM12878-cells, which supports the importance of
these factors in lymphocyte differentiation [54].

Focusing on the prominent changes between HepG2 and MCF-7,
we used TF-COMB to highlight �1% differential TF pairs specific for
this contrast (Fig. 4f). The changes in expression (log2FC RNA-seq)
of the top 10 TFs between these cell types likewise showed the
majority of the TFs to be upregulated in the cell type, for which
they participate in co-occurring pairs (Fig. 4g). In contrast, we
observed TCF7L1 in many co-occurring pairs in HepG2, while it is
actually downregulated on RNA level in comparison to MCF-7. This
effect might be driven by motif similarity between TFs, as we see
that both TCF7 and TCF7L2, which have highly similar motifs to
TCF7L1, are upregulated in HepG2. Thus, the use of motifs makes
it difficult to directly link motif activity with a certain TF, but inte-
gration of TF expression data might help to uncover which TF is
most likely to be the participating partner in a co-occurring pair.

In summary, we conclude the application of co-occurrence anal-
ysis to digital genomic footprinting data to be a valuable approach
for uncovering global changes of TF co-occurrence and TF binding
grammar between biological conditions. In addition, the associa-
tion of motifs allows to untangle TF relationships driven by motif
similarity and motif redundancy.

4.5. TF binding grammar encodes biological relevance

Considering the higher resolution and completeness of TF bind-
ing activity for motif derived data, we asked if we are able to infer
detailed information on TF binding grammar in the context of local
binding site arrangement. Literature has several examples of highly
regulated enhancers with specific distances and strandedness of
TFs, such as the NFYB-USF1 pair, found at a preferred binding dis-
tance of 17–18 bp in a converged orientation [55] or a preferred
distance of 37 bp for the CTCF-ZNF143 pair [41]. Therefore, we
sought to use TF-COMB to investigate whether these exemplary
binding characteristics are rare, or constitute a more global prop-
erty of TF pairs that allow for a classification of TF pairs and enhan-
cer organization. To be able to uncover the global presence of
grammar in the genome, and not only for the sites which are
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predicted to be bound in the footprinting analysis, we used the full
set of motif positions within the HepG2 ATAC-peak regions as
input for TF-COMB.

Firstly we analyzed the global directionality of TF pairs, and
found that a subset of �2% of TF pairs exhibit preferential direc-
tionality with more than 60% of sites in either the same or opposite
orientations (Fig. 5a). Of these, the orientations can be further
divided into groups of TF1-TF2/TF2-TF1 and convergent/divergent
for same and opposite groups respectively. While some TF pairs
show equal distribution of the subdivided groups, the split high-
lights an additional preference for the exact order of binding
(Fig. 5b).

Next, we analyzed the preferred distance between TFs using TF-
COMB, and found that 36.6% of all TF pairs exhibit at least one pre-
ferred binding distance (Supplementary Fig. S5a). For the majority
of pairs with a preferred binding distance, exactly-one distance
was predicted (35.5%), while the remaining pairs (1.1%) exhibited
multiple distances (Supplementary Fig. S5b). Among the candi-
dates with predicted preferred binding distances, we found well
established pairs, like THAP11-ZNF143 [56], NFY-USF members
[57] (Fig. 5c) and BATF-JUN [58,79] (Supplementary Fig. S5c). In
addition, among others, we found not yet described pairs like
ETV3-ERG. In contrast, E2F2-FOXC2 is an example for a TF pair with
no predicted preferred distance (Fig. 5c). This highlights that pre-
ferred distances between TFs is a global property applicable when
investigating binding grammar. Furthermore, this might also hint
to additional characteristics of grammar, such as changes between
biological conditions. Exemplary, the FOXA2-GATA4 pair, which
was recently described as liver specific [4], differs between HepG2
and GM12878 cell lines (Fig. 5d). In contrast, the ubiquitous pair
NFYB-NFYC, which is known to form the trimeric NFY complex in
collaboration with NFYA [42], remains similar between different
cell lines (Supplementary Fig. S5d). Thus, parallel to the general
co-occurrence analysis, the individual TF binding distances are also
indicative of cell line specific co-occurrence. In addition, by analyz-
ing all distances per TF pair, we detected that many pairs have dis-
tributions of distances which seem to occur with certain
periodicity. One such example is the FOXJ2-SP8 pair, which dis-
plays an apparent structure in the distribution of binding sites, as
it translates to a period of �20 bp between two peaks (Fig. 5e).
In contrast, we find other pairs with differing periods (Supplemen-
tary Fig. S5e), indicating that individual pairs exhibit different
binding preferences.

In order to evaluate the biological relevance of the preferred
distance sites from a TF pair compared to the non preferred dis-
tance sites from the same pair, we split the data into three groups.
The first group contains all sites corresponding to TF pairs classi-
fied to have no preferred binding distance, which we call ‘‘no pref-
erence sites”. The second group covers the sites for TF pairs
classified to have a preferred binding distance, filtered for the ‘‘dis-
tance peak” sites, called ‘‘preferred distance sites”. Finally, the third
group contains the remaining sites of the TF pairs from the prior
group outside of the preferred binding distance, named ‘‘no pre-
ferred distance sites”. Firstly, we hypothesized that the preferred
distance sites represent important functional units, and are there-
fore more likely to occur within regulatory features, such as gene
promoters. Indeed, after annotating all paired sites with UROPA
[59], we found a significant increase of the gene annotation rate
for sites with a preferred distance compared to both groups with-
out preferred distances (Supplementary Fig. S5f). Next, we asked
whether these motif-derived preferred distance sites can be used
as a classifier to discriminate between real binding sites and poten-
tial binding sites. To this end, we overlapped the motif-derived
sites with corresponding ChIP-seq peaks in HepG2 cells (Fig. 5f).
As suggested by our prior findings on the gene annotation level,
we detected a significant increase of overlapping ‘‘true” ChIP-seq



Fig. 5. TF pairs exhibit local binding grammar. a) Percentage of TF-pair locations (y-axis) with both TFs on the same or opposite strand. X-axis gives the ranking of TF pairs
with regards to orientation. Only pairs with more than 60% for either group are shown (axis is not continuous). b) Percentage of TF-pair locations derived from a), splitted by
TFs orientation. Red heatmap highlights top pairs with orientation on the same strand, blue heatmap highlights top pairs with orientation on opposite strands. c) Z-score
normalized TF-pair binding counts sorted by distance. Peaks above threshold are called by TF-COMB and considered preferred binding distance. d) Difference in binding
distance distribution for FOXA2-GATA4 in HepG2 (left) and GM12878 (right) cells. e) Binding distance periodicity of the FOXJ2-SP8 pair. Left plot shows the distribution of
binding site distances. Right plot shows the calculated autocorrelation for the signal, indicating a lag of 20 bp. f) Scheme of motif-derived binding sites overlapping with ChIP
peaks. Prepared using BioRender.com. g) Difference in ChIP-overlap fraction (x-axis) between preferred distance sites and no preferred distance sites per pair and power (y-
axis). The most prominent pairs are annotated. h) Number of sites by distance between THAP11 and ZNF143 binding sites. Subplots indicate split of loci into groups as
indicated in f). i) Number of sites by distance between THAP11 and ZNF143 binding sites. Upper and lower plots indicate strand orientation. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

M. Bentsen, V. Heger, H. Schultheis et al. Computational and Structural Biotechnology Journal 20 (2022) 4040–4051
sites for the preferred distance sites group (Supplementary
Fig. S5g). Of note, the TF pairs THAP11-ZNF143 and NFY-USF, both
well described in literature and already found in earlier sections
(Fig. 5c), were among the pairs showing the strongest differences
(Fig. 5g). This finding holds true when visualizing the distance
plots for the ChIP-seq overlap of both TF sites, only one TF site,
or no overlapping sites, respectively (Fig. 5h). Finally, we combined
distance and orientation analysis, and exemplarily found that the
majority of preferred distance sites for THAP11-ZNF143 are located
in opposite directions, exhibiting a preferred distance around 61 bp
(Fig. 5i). This confirms that the preferred distance and orientation
encodes for true co-occurrence of both factors.

In conclusion, we find that TF-COMB is able to globally uncover
TF pairs that exhibit local binding grammar characteristics such as
TF pair distance, and relative TF orientation. The overlap with ChIP-
seq derived binding sites suggest biological relevance for the pre-
ferred binding distances, a finding that might contribute to future
methods utilizing motifs as an approximation for DNA binding.

4.6. TF network analysis uncovers regulatory complexes

While we have investigated TF binding in pairs using TF-COMB,
TFs often participate in multi-TF modules, which regulate complex
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biological networks through additive or synergistic binding [60].
Therefore, the discovery of these relationships is crucial for under-
standing gene regulation. As a result, TF-COMB can utilize the full
set of TF rules to deduce a network in terms of nodes and edges. In
order to identify potential protein complexes with the network
module, we utilized the ChIP-seq data of TFs, co-factors and other
DNA-binding proteins for the GM12878 cell line from ENCODE.

After initial filtering, TF-COMB generated a core network con-
sisting of 329 edges (TF co-occurrences) and 93 nodes (TFs). The
network view (Fig. 6a) uncovers noticeable substructures, includ-
ing isolated TF clusters not connected to the main network, some
barely interconnected substructures with tight internal links, as
well as dense subgroups, driven by highly interconnected nodes.
In order to quantify this structure, TF-COMB uses the louvain
method for community detection [61], which partitioned the
exemplary network into 8 clusters (Fig. 6a; Supplementary
Fig. S6a left). Not surprisingly when analyzing transcriptional reg-
ulators, GO-term analysis of the individual clusters revealed
enrichment of terms such as ‘‘chromatin”, ‘‘transcription regulator
complex” and ‘‘nucleus” among others (Fig. 6b). However, besides
GO-terms indicative of positive regulation, we also identified clus-
ters, such as cluster 4, enriched for terms related to transcriptional
repression. Further, we annotated cluster 1 to the cohesin complex,
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Fig. 6. Network approach uncovers TF complexes and hubs. a) The GM12878 co-occurrence network. Nodes represent TFs, edges represent associated TF pairs. Edges are
colored by cosine score and sized by the number of associated TF1-TF2 co-occurring sites. Coloring of nodes illustrates Louvain community clustering. Two sub-clusters are
indicated for zooming in c). b) GO-term analysis on TF groups extracted from network clusters (columns). Coloring indicates enrichment for GO terms (rows). c) Directional
sub-networks from a). Each arrow represents a dependency defined by the confidence score, e.g. ATF3 is dependent on USF2. Node coloring indicates the number of sites
assigned to the respective TF. Only edges with confidence scores above 0.4 are shown. d) Distribution of node degrees. High node degree is shaded with yellow in the plot. e)
Number of connections per TF (blue), approximates power-law distribution (grey dashed line). f) Table of TFs per cell line with the highest number of interactions (hub
creators) from d). Marked TFs (red) are discussed in the main text. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and cluster 3, containing BATF and JUN, to be enriched for
‘‘transcription factor AP-1 complex”. Of note, we observed many
same-family TFs for cluster 3 (Supplementary Fig. S6a right). Thus,
we wanted to test whether same-family TF pairs are significantly
enriched within individual clusters. Indeed, by randomly selecting
pairs within and between clusters, we observed a significant
increase in percentage of same-family pairs within network clus-
ters (Supplementary Fig. S6b). To summarize, the network analysis
enabled us to identify protein clusters and complexes with partic-
ular biological functionality.

Within the individual clusters, the TF-COMB network analysis
can additionally uncover dependency relationships. For this, a
directional network using the ‘confidence’ score, which represents
the probability that TF2 is found, if TF1 is present, is used. For clus-
ter 1, which includes ZNF143/CTCF/RAD21, all TFs are dependent
on each other, which suggests that these factors bind in a protein
complex (Fig. 6c; upper). However, in the cluster of USF1/USF2/
RAD51/ATF3, we found USF1 and USF2 to have directional relation-
ships with ATF3 and RAD51 (Fig. 6c; lower). The association of USF
and RAD51 is supported by a recent study on the location of USF
motifs at RAD51-bound elements [62], however, our analysis addi-
tionally indicates a significant number of RAD51 sites to have a
completely independent role of USF. Interestingly, the network
analysis also reveals ATF3 to be highly connected to USF factors,
but not vice versa, with more than 50% of its binding sites in the
vicinity of USF binding sites. Moreover, the lack of a link between
ATF3 and RAD51 suggests that the interactions with USF are con-
tained in independent regulatory circuits.

Finally, the network representation of TF co-occurrence also
allows to draw conclusions on potential TF hubs, defined as TFs
with many partners in the network. The distribution of node
degrees has an apparent tail, indicating most TFs to have few
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partners, yet some TFs exhibit many co-occurrences with other
factors (Fig. 6d). Noteworthy, we found the networks of most cell
types to follow a power-law distribution, which is a characteristic
of biological networks [63] (Fig. 6e, Supplementary Fig. S6c). Tak-
ing all cell lines into account, the TFs with the highest node-
degree include MAX, JUN, GATA3 and FOXM1 (Fig. 6f). MAX is
known to orchestrate a large network [64]. Likewise, TFs JUN,
JUNB, JUND, FOS and ATF2 are all part of the AP-1 family of TFs,
which can dimerize, thus explaining the hub characteristics of
these TFs. Interestingly, we also find GATA3, which is a known pio-
neer factor, as well as FOXM1. While FOXM1 is not known to have
pioneer activity, previous publication showing an overlap of 71%
between FOXM1 and FOXA1 binding events [65], thus allows us
to speculate that FOXM1 might indeed be able to function as a pio-
neer in line with FOXA1.

In conclusion, we found network analysis on TF co-occurrence
as a highly flexible tool to explore relationships between transcrip-
tional regulators in a wider perspective and to extract subgroups of
factors as a valuable source for the hypothesis of potential TF
complexes.
5. Discussion & conclusion

This study was performed to demonstrate the functionality and
usability of a new software framework, named TF-COMB, intended
to gather, analyze, visualize and explore data in the field of co-
occurrence and grammar of TF binding. Due to its generalized
setup, TF-COMB is able to help to unravel epigenetic related
aspects of TF binding grammar, such as the interplay of chromatin
accessibility, histone modifications, and gene locations, as well as
local grammar in terms of distance and orientation of TFs. In addi-
tion, TF-COMB allows a broader look at the interdependencies of TF
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co-occurrences in a global network context, which allows to draw
conclusions on the binding of TFs not only in pairs, but also in lar-
ger compositions, including e.g. protein complexes.

The exemplary investigations on widely accepted gold-standard
datasets from ENCODE are intended to illustrate potential analysis
workflows provided via TF-COMB. To this end, we used TF binding
data of both ChIP-seq peaks and motif sites derived from ATAC-seq
based TF footprinting to identify commonalities, as well as unique
aspects that can be derived for each data source. A major strength
of ChIP-seq data was found to be the independence of TF sequence
motifs [66] enabling to calculate co-occurrence of TFs with co-
factors and other DNA-associating factors without known
sequence motifs (e.g. RAD21, SMC3, TRIM22). In contrast, we
demonstrated the advantage of TF footprinting and motif positions
in general, which allow for global and more detailed analysis on TF
binding grammar, as shown in the analysis of distances and orien-
tations between individual TFs. Using the footprinting data, we
found that TFs often co-occur with similar motifs at the same loci,
a characteristic which has already been described to be important
in both promoters and developmental enhancers [67]. These
results hint towards a certain level of redundancy in TF binding,
with similar transcription factors such as FOXA1 and FOXA2 sub-
stituting each other, as described previously [68]. In summary, all
our findings illustrated that the selection of the input data plays
a crucial role in the identification of resulting associations. Soft-
ware design should ideally permit integration of data from various
sources including newly emerging assays. For example, a recent
method has improved on existing footprinting methods by apply-
ing methylation and bisulfite sequencing to interrogate single
molecule footprints in single cells [69], which might therefore help
to reduce the noise of footprinting in bulk samples. TF-COMB is
ready to use such data, and with the advent of more technologies
and available collections of TF binding positions, TF-COMB will
help to further improve the investigation of co-occurrences and
TF binding grammar.

By utilizing a pure motif analysis, we gained high resolution
TFBS data, and could thereby isolate TF pairs which exhibit both
preferred orientation and distance to each other. This, together
with the observation of binding site periodicity, suggests the exis-
tence of a ‘‘Goldilocks distance” for many TF pairs, which we define
by a set of locational parameters that probably optimizes complex
building, binding duration or binding itself. The fact that these
locations have significantly higher overlap with both regulatory
features and ‘‘real” ChIP-seq derived binding sites, strongly sup-
ports this hypothesis. Of note, as only a minority of TFs are proven
by wet lab based methods to physically interact, the preferred dis-
tance of TF pairs might also represent the right distance for com-
fortably fitting two proteins on the DNA without being sterically
hindered by each other. In other cases, such as seen for the collec-
tive model, binding on the correct side of the DNA might also be
essential in binding of co-factors. However, the majority of TFs
do not show any particular binding grammar. This observation is
not necessarily a rejection of their co-occurring status, but rather
a sign of flexible TF binding. In fact, it has been shown that tran-
sient binding of multiple TFs is a mechanism to compete with
nucleosome binding and keep DNA accessible - a mechanism
known as ‘assisted loading’ [70]. In such cases, the exact location
of TFs might be disregarded, as also observed in the billboard
enhancer model.

Many areas of TF co-occurrence are still open for investigation,
including the correlation of the size of open chromatin in relation
to the number of TFs binding, and how TFs became hub proteins
throughout evolution. For this study, we have focused on the co-
occurrence of TFs within the same regulatory region, but our
results have also identified a number of TFs, including CTCF and
ZNF143, which are highly co-occurring at chromatin loop anchors,
4050
and are involved in connecting distant regulatory elements. There
is thus an additional layer of 3D co-occurrences built between reg-
ulatory regions, as well as within looped enhancers, which we cur-
rently cannot track with our software. However, we were able to
provide evidence for these structures in our co-occurrence analysis
of histone modifications and TFs, where we found a number of TFs
restricted to enhancer binding, avoiding cis regulatory regions. This
suggests a model of e.g. differentiation, in which cell type specific
TFs primarily control gene expression from regulatory enhancer
elements in trans. This increases regulatory complexity, while
simultaneously preventing spurious activation of target genes by
TFs such as pioneers. Indeed, such regulation of enhancer activity
by formation of topologically associated domains (TADs) is well-
known for the HoxD cluster of genes, which are important for limb
development [71]. Thus, the influence of chromatin organization
should not be disregarded when discussing co-occurrence of tran-
scription factors.

In conclusion, we have used TF-COMB to investigate a variety of
aspects of TF binding grammar. Understanding the effect of TF co-
occurrence is important for uncovering the direct targets of TFs, as
multiple TFs create complicated AND/OR/XOR logic, as known from
studies on systems biology. In particular, TFs such as pioneer fac-
tors can act as primers to subsequent binding of other TFs. It is
therefore of great interest to discover potential sets of co-
occurring TFs for individual cell lineages, and we believe that TF-
COMB represents a valuable resource to identify, study and under-
stand such TF co-occurrences in the context of gene regulation.
6. Figure attribution statement

Plots were produced using TF-COMB framework functionalities,
and using matplotlib and seaborn packages in Python. The graphi-
cal abstract as well as explanatory (sub-)figures were created using
BioRender.com as stated in the individual figure descriptions. Mod-
ule icons as included in Figures 2-6 were taken from Figure 1.
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