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Compression complexity 
with ordinal patterns for robust 
causal inference in irregularly 
sampled time series
Aditi Kathpalia, Pouya Manshour & Milan Paluš*

Distinguishing cause from effect is a scientific challenge resisting solutions from mathematics, 
statistics, information theory and computer science. Compression-Complexity Causality (CCC) is a 
recently proposed interventional measure of causality, inspired by Wiener–Granger’s idea. It estimates 
causality based on change in dynamical compression-complexity (or compressibility) of the effect 
variable, given the cause variable. CCC works with minimal assumptions on given data and is robust to 
irregular-sampling, missing-data and finite-length effects. However, it only works for one-dimensional 
time series. We propose an ordinal pattern symbolization scheme to encode multidimensional 
patterns into one-dimensional symbolic sequences, and thus introduce the Permutation CCC (PCCC). 
We demonstrate that PCCC retains all advantages of the original CCC and can be applied to data from 
multidimensional systems with potentially unobserved variables which can be reconstructed using 
the embedding theorem. PCCC is tested on numerical simulations and applied to paleoclimate data 
characterized by irregular and uncertain sampling and limited numbers of samples.

Unraveling systems’ dynamics from the analysis of observed data is one of the fundamental goals of many areas of 
natural and social sciences. In this respect, detecting the direction of interactions or inferring causal relationships 
among observables is of particular importance that can improve our ability to better understand the underlying 
dynamics and to predict or even control such complex systems1,2.

Around sixty years after the pioneering work of Wiener and Granger3,4 on quantifying linear ‘causality’ from 
observations, it has been widely applied not only in economics5–7, for which it was first introduced, but also in 
various fields of natural sciences, from neurosciences8 to Earth sciences9–11. A number of attempts have been 
made to generalize Granger Causality (GC) to nonlinear cases, using, e.g., an estimator based on correlation 
integral6, a non-parametric regression approach12, local linear predictors13, mutual nearest neighbors14,15, kernel 
estimators16, to state a few. Several other causality methods based on the GC principle such as Partial Directed 
Coherence17, Direct Transfer Function18 and Modified Direct Transfer Function19 have also been proposed.

Information theory has proved itself as a powerful approach into causal inference. In this respect, Schreiber 
proposed a method for measuring information transfer among observables20, known as Transfer Entropy (TE), 
which is based on Kullback-Leibler distance between transition probabilities. Paluš et al.21 introduced a causality 
measure based on mutual information, called Conditional Mutual Information (CMI). CMI has been shown to 
be equivalent to TE22. These tools have been applied in various research studies and have shown their power in 
extracting causal relationships between different systems23–27.

We usually work with time series x(t) and y(t) as realizations of m and n dimensional dynamical systems, 
X(t) and Y(t) respectively, evolving in measurable spaces. It means that x(t) and y(t) can be considered as the 
components of these m and n dimensional vectors. In many cases, only one possible dimension of the phase 
space is observable, recordings or knowledge of variables which may have indirect effects or play as mediators 
in the causal interactions between observables may not be available. In this respect, phase-space reconstruction 
is a common useful approach introduced by Takens28, which reconstructs the dynamics of the entire system 
(including other unknown/unmeasurable variables) using time-delay embedding vectors, as follows: the manifold 
of an m dimensional state vector X can be reconstructed as X(t) = {x(t), x(t − η), ..., x(t − (m− 1)η)} . Here, 
η is the embedding delay, and can be obtained using the embedding construction procedure based on the first 
minimum of the mutual information29. Some causality estimators have applied this phase-space reconstruction 
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procedure to improve their causal inference power, such as high dimension CMI26 and TE30. Other causality 
measures, such as, Convergent Cross Mapping (CCM)31, Topological Causality32, Predictability Improvement33, 
are based directly on the reconstruction of dynamical systems.

Vast amounts of data available in the recent years have pushed some of the above discussed GC extensions, 
information and phase-space reconstruction based approaches forward as they rely on joint probability density 
estimations, stationarity, markovianity, topological or linear modeling. However, still, many temporal observa-
tions made in various domains such as climatology34,35, finance36,37 and sociology38 are often short in length, have 
missing samples or are irregularly sampled. A significant challenge arises when we attempt to apply causality 
measures in such situations11. For instance, CMI or TE fail when applied to time series which are undersampled 
or have missing samples39–41 and also in case of time series with short lengths41. CCM and kernel based non-
linear GC also show poor performance even in the case of few missing samples in bivariate simulated data42.

Kathpalia and Nagaraj recently introduced a causality measure, called Compression-Complexity Causality 
(CCC), which employs ‘complexity’ estimated using lossless data-compression algorithms for the purpose of 
causality estimation. It has been shown to have the strength to work well in case of missing samples in data for 
bivariate systems of coupled autoregressive and tent map processes. This has been shown to be the case for sam-
ples which are missing in the two coupled time series either in a synchronous or asynchronous manner41. Also, it 
gives good performance for time series with short lengths41,42. These strengths of CCC arise from its formulation 
as an interventional causality measure based on the evolution of dynamical patterns in time series, independence 
from joint probability density functions, making minimal assumptions on the data and use of lossless compres-
sion based complexity approaches which in turn show robust performance on short and noisy time series41,43. 
However, as discussed in Ref.42, a direct multidimensional extension of CCC is not as straightforward and so a 
measure of effective CCC​ has been formulated and used on multidimensional systems of coupled autoregressive 
processes with limited number of variables.

On the other hand, a method for symbolization of phase-space reconstructed (embedded) processes has 
been used to improve the ability of info-theoretic causality measures for noisy data, such as symbolic trans‑
fer entropy44,45, partial symbolic transfer entropy46,47, permutation conditional mutual information (PCMI)48 and 
multidimensional PCMI49. The symbolization technique used in these works is based on the Bandt and Pompe 
scheme for estimation of Permutation Entropy50, and often referred to as permutation or ordinal patterns coding. 
The scheme labels the embedded values of time-series at each time point in ascending order of their magnitude. 
Symbols are then assigned at each time point depending on the ordering of values (or the labelling sequence) 
at that point. Ordinal patterns have been used extensively in the analysis and prediction of chaotic dynamical 
systems and also shown to be robust in applications to real world time series. By construction, this technique 
ignores the amplitude information and thus decreases the effect of high fluctuations in data on the obtained causal 
inference51. Other benefits of permutation patterns are: they naturally emerge from the time series and so the 
method is almost parameter-free; are invariant to monotonic transformations of the values; keep account of the 
causal order of temporal values and the procedure is computationally inexpensive52–55. Ordinal partition has been 
shown to have the generating property under specific conditions, implying topological conjugacy between phase 
space of dynamical systems and their ordinal symbolic dynamics56. Further, permutation entropy for certain sets 
of systems has been shown to have a theoretical relationship to the system’s Lyapunov exponents and Kolmogorov 
Sinai Entropy57,58. Because of all these beneficial properties of permutation patterns, it is no wonder that the 
development of symbolic TE or PCMI helped to make them more robust, giving better performance in the case 
of noisy measurements, simplifying the process of parameter selection and making less demands on the data.

In this work, we propose the use of CCC approach with reconstructed dynamical systems which are symbol-
ized using ordinal patterns. The combination of strengths of CCC and ordinal patterns, not only makes CCC 
applicable to dynamical systems with multidimensional variables, but we also observe that the proposed Per‑
mutation CCC​ (PCCC) measure gives great performance on datasets with very short lengths and high levels of 
missing samples. The performance of PCCC is compared with that of PCMI (which is identical to symbolic TE), 
bivariate CCC and CMI on simulated dynamical systems data. PCCC outperforms the existing approaches and 
its estimates are found to be robust for short length time series, and high levels of missing data points.

This development for the first time opens up avenues for the use of causality estimation tool on real world 
datasets from climate and paleoclimate science, finance and other fields where there is prevalence of data with 
irregular and/or uncertain sampling times. To determine the major drivers of climate is the need of the hour as 
climate change poses a big challenge to humankind and our planet Earth59. Different studies have employed either 
correlation/coherence, causality methods or modelling approaches to study the interaction between climatic 
processes. The results produced by different studies are different and sometimes contradictory, presenting an 
ambiguous situation. We apply PCCC to analyse the causal relationship between the following sets of climatic 
processes: greenhouse gas concentrations—atmospheric temperature, El-Niño Southern Oscillation—South 
Asian monsoon and North Atlantic Oscillation—European temperatures at different time-scales and compare 
its performance with bivariate CCC, bivariate and multidimensional CMI, and PCMI. The time series avail-
able for most of these processes are short in length and sometimes have missing samples and (or) are sampled 
in irregular intervals of time. We expect our estimates to be reliable and to be helpful to resolve the ambiguity 
presented by existing studies.

Results
Simulation experiments.  Time series data from a pair of unidirectionally coupled Rössler systems were 
generated as per the following equations:
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for the autonomous or master system, and

for the response or slave system. Parameters were set as: a1 = a2 = 0.15 , b1 = b2 = 0.2 , c1 = c2 = 10.0 , and fre-
quencies set as: ω1 = 1.015 and ω2 = 0.985 . The coupling parameter, ǫ , was fixed to 0.09. The data were generated 
by numerical integration based on the adaptive Bulirsch–Stoer method60 using a sampling interval of 0.314 for 
both the master and slave systems. This procedure gives 17–21 samples per one period. 100 realizations of these 
systems were simulated and initial 5000 transients were removed before using the data for testing experiments.

As can be seen from the equations, there is a coupling between x1 and x2 , with x1 influencing x2 . The analysis 
of the causal influence between the two systems was done using the causality estimation measures: bivariate or 
scalar CCC, CMI, PCCC and PCMI for the cases outlined in the following paragraphs. The estimation procedure 
for each of the methods is described in the “Methods” section. The values of parameters used for each of the 
methods are also given in the “Methods” section (Table 2).

Finite length data.  The length of time series, N, of x1 and x2 taken from coupled Rössler systems was varied as 
shown in Fig. 1. The estimation for CMI and PCMI is done up to a higher value of length as CMI did not give 
optimal performance until the length became 32,768 samples. Figure 1c shows scalar (simple bivariate) CMI or 
one-dimensional CMI (CMI1) between x1 and x2 (see Paluš and Vejmelka22). This method has high sensitivity 
but suffers from low specificity. This problem is solved by using conditional CMI or three-dimensional CMI 
(CMI3), where the information from other variables ( y1, z1, y2, z2 ) is incorporated in the estimation. Its perfor-
mance is depicted in Fig. 1e. However, it requires larger length of time series for optimal performance. Figure 1a 
shows the performance of scalar (or simple bivariate) CCC, which is equivalent to the CMI1 case, considering 
dimensionality. Figure 1b, d show the performance of PCCC and PCMI respectively. For each length level, all 
100 realizations of coupled systems were considered and 100 surrogates generated for each realization in order 
to perform significance analysis of causality estimated (in both directions) from each realization of coupled 
processes. These surrogates were generated for both the processes using the Amplitude Adjusted Fourier Trans-
form method61 and significance testing done using a standard one-sided z-test with p-value set to 0.05 (this was 
justified as the distributions of surrogates for CCC and CMI methods implemented were found to be Gaussian). 
Based on this significance analysis, true positive rate (TPR) and false positive rate (FPR) were computed at each 
length level. A true positive is counted for a particular realization of coupled systems when causality estimated 
from x1 to x2 is found to be significant and a false positive is counted when causality estimated from x2 to x1 is 
found to be significant.

As it can be seen from the plots, direct application of scalar CCC completely fails on multidimensional 
dynamical systems data, yielding low true positives and high false positives. Hence the method displays poor 
sensitivity as well as specificity. CMI1 also shows poor performance, yielding high false positives. CMI3, which 
is appropriate to be applied for multi-dimensional data, only begins to give good performance when the length 
of time series is taken to be greater than 32,768 samples. On the other hand, PCCC begins to give high true 
positives and low false positives, as the length of time series is increased to 1024 time points, with TPR and FPR 
reaching almost 1 and 0 respectively as length is increased to 2048 time points. The use of permutation patterns 
also improves the performance of CMI3 for short length data as it can be seen that PCMI begins to show a TPR 
of 1 and FPR of 0 for length of time series equal to 2048 time points.

We did further experiments with simulated Rössler data by varying the amount of noise and missing samples 
in the data. For these cases, performance of PCCC and PCMI alone were evaluated because it can be seen from 
the ‘varying length’ experiments that scalar CCC and CMI1 do not work for multidimensional dynamical systems 
data and CMI3 does not perform well for short length data.

Noisy data.  White Gaussian noise was added to the simulated Rössler data. The amount of noise added to 
the data was relative to the standard deviation of the data. The noise standard deviation ( σn ), is expressed as a 
percentage of the standard deviation of the original data ( σs ). For example, 20% of noise means σn = 0.2σs , and 
100% of noise means σn = σs . The length of time series taken for this experiment was fixed to 2048. For each 
realization of noisy data as well, 100 surrogate time series were generated and significance testing performed as 
before using the Amplitude Adjusted Fourier Transform method and z-test respectively. Figure 2a,b show the 
results for varying noise in the data for the measures PCCC and PCMI respectively.

It can be seen that PCCC performs well for low levels of noise, up to 10% , but at higher levels of noise, its 
performance begins to deteriorate. PCMI, on the other hand, shows high TPR and low FPR even as the noise 
level is increased to 50%.

Sparse data.  We refer to time-series with missing samples as sparse data. Sparsity or non-uniformly missing 
samples were introduced in the data in two ways: (1) Synchronous sparsity and (2) Asynchronous sparsity. In 
case of (1), samples were missing from both x1 and x2 at randomly chosen time indices and this set of time indi-
ces was the same for both x1 and x2 . In case of (2), samples were missing from both x1 and x2 based on two dif-

(1)
ẋ1 = −ω1y1 − z1,

ẏ1 = ω1x1 + a1 y1,

ż1 = b1 + z1(x1 − c1),

(2)
ẋ2 = −ω2y2 − z2 + ǫ(x1 − x2),

ẏ2 = ω2x2 + a2 y2,

ż2 = b2 + z2(x2 − c2),
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ferent sets of randomly chosen time indices, that is, the time indices of missing samples were different for x1 and 
x2 . The amount of synchronous/ asynchronous sparsity is expressed in terms of percentage of missing samples 
relative to the original length of time series taken. αsync and αasync refer to the level of missing samples for the 
cases of synchronous and asynchronous sparsity respectively, and are given by m/N, where m is the number of 
missing samples and N is the original length of time series. N was fixed to 2048. The length of time series became 
shorter as the percentage of missing samples were increased. Causality estimation measures were applied to the 
data without any knowledge of whether any samples were missing or the time stamps at which the samples were 
missing. Surrogate data generation for each realization in this case was not done post the introduction of miss-
ing samples but prior to that, using the original length time series. Sparsity was then introduced in the surrogate 
time series in a manner similar to that for original time series.

Figure 2c,d show the results obtained using PCCC and PCMI respectively for synchronous sparsity. Figure 2e,f 
show the same for asynchronous sparsity. It can be seen that PCCC is robust to the introduction of missing 
samples, showing high TPR and low FPR. FPR begins to be greater than 0.2 only when the level of synchronous 
sparsity is increased to 25% and asynchronous sparsity is increased to 20%. PCMI is robust to low levels of 
synchronous sparsity but deteriorates beyond 5% of missing samples, giving low true positives. It performs very 
poorly even with low levels of asynchronous sparsity.

Real data analysis.  As discussed in the Introduction, a number of climate datasets are either sampled 
at irregular intervals, have missing samples, are sampled after long intervals of time or have a combination of 
two or more of these issues. In addition, their temporal recordings available are short in length. We apply the 

Figure 1.   Specificity and sensitivity of methods with varying length. True positive rate (or rate of significant 
causality estimated from x1 → x2 ) and false positive rate (or rate of significant causality estimated from 
x2 → x1 ), using measures (a) scalar CCC (CCC), (b) permutation CCC (PCCC), (c) scalar CMI (CMI1), (d) 
permutation CMI (PCMI) and (e) three-dimensional CMI (CMI3), as the length of time series, N, is varied.
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proposed method, PCCC, to some such datasets described below. We also compare the results obtained with 
existing measures: scalar CCC, scalar CMI and PCMI.

Millenial scale CO2‑temperature recordings.  Mills et al. have compiled independent estimates of global average 
surface temperature and atmospheric CO2 concentration for the Phanerozoic eon. These paleoclimate proxy 
records span the last 424 million years62 and have been used and made available in the study by Wong et al.63. 
One data point for both CO2 and temperature recordings were available for each million year period and was 
used in our analysis to check for causal interaction between between the two.

CO2 , CH4 and temperature recordings over the last 800,000 years.  Past Interglacials Working Group of PAGES64 
has made available proxy records of atmospheric CO2 , CH4 and deepwater temperatures over the last 800 ka (1 
ka= 1000 years). Each of these time series were reconstructed by separate studies and so the recordings available 
are non-synchronous and also irregularly sampled for each variable. Further, some data points are missing in the 

Figure 2.   Specificity and sensitivity of methods with varying noise and sparsity. True positive rate (or rate of 
significant causality estimated from x1 → x2 ) and false positive rate (or rate of significant causality estimated 
from x2 → x1 ), using measures permutation CCC (PCCC) (left column) and permutation CMI (PCMI) (right 
column) as the level of noise: (a, b); level of synchronous sparsity: (c, d); and asynchronous sparsity: (e, f), are 
varied.
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temperature time-series. Roughly, single data point is available for each ka for each of the three variables. CO2 
proxy data are based on antarctic ice core composites. This was first reported by Lüthi et al.65 and the revised val-
ues made available in a study by Bereiter et al.66. Reconstructed atmospheric CH4 concentrations, also based on 
ice cores, were as reported by Loulergue et al.67 (on the AICC2012 age scale68). Deepwater temperature record-
ings obtained using shallow-infaunal benthic foraminifera (Mg/Ca ratios) that became available from Ocean 
Drilling Program (ODP) site 1123 on the Chatham Rise, east of New Zealand were reported by Elderfield et al.69.

Causal influence was checked between CO2-temperature and separately between CH4-temperature. CO2 
and CH4 data are taken beginning from the 6.5th ka on the AICC2012 scale and temperature data are taken 
beginning from the 7th ka. Since the number of data points available for temperature are 792, CO2-temperature 
analysis was done based on these 792 samples and as the number of samples of CH4 is limited to 756 beginning 
from the 6.5th ka, CH4-temperature analysis was done using these 756 data points.

Monthly CO2‑temperature dataset.  Monthly mean CO2 data constructed from mean daily CO2 values as well as 
Northern Hemisphere’s combined land and ocean temperature anomalies for the monthly timescale are available 
open source on the National Oceanic and Atmospheric Administration (NOAA) website. The CO2 measure-
ments were made at the Mauna Loa Observatory, Hawaii. A part of the CO2 dataset (March 1958–April 1974) 
were originally obtained by C. David Keeling of the Scripps Institution of Oceanography and are available on the 
Scripps website. NOAA started its own CO2 measurements starting May 1974. The temperature anomaly dataset 
is constructed from the Global Historical Climatology Network-Monthly data set70 and International Compre-
hensive Ocean-Atmosphere Data Set, also available on the NOAA website. These data from March, 1958 to June 
2021 (with 760 data points) were used to check for the causal influence between CO2 and temperature on the 
recent timescale. Both time series were differenced using consecutive values as they were highly non-stationary.

Yearly ENSO‑SASM dataset.  1100 Year El Niño/Southern Oscillation (ENSO) Index Reconstruction dataset, 
made available open source on NOAA website and originally published in Ref.71 was used in this study. South 
Asian Summer Monsoon (SASM) Index 1100 Year Reconstruction dataset, also available open source on the 
NOAA website and originally published in Ref.72, was the second variable used here. The aim of our study was to 
check the causal dependence between these two sets of recordings taken from the year 900 AD to 2000 AD (with 
one data point being available for each year).

Monthly NINO‑Indian monsoon dataset.  Monthly NINO 3.4 SST Index recordings from the year 1870 to 2021 
are available open source on the NOAA website. Its details are published in Ref.73. All India monthly rainfall 
dataset from 1871 to 2016, available on the official website of World Meteorological Organization and originally 
acquired from ‘Indian Institute of Tropical Meteorology’, was used for analysis. These recordings are in the units 
of mm/month. Causal influence was checked between these two recordings using 1752 data points, ranging from 
the month January, 1871 to December, 2016.

Monthly NAO‑temperature recordings.  Reconstructed monthly North Atlantic Oscillation (NAO) index 
recordings from December 1658 to July 2001 are available open source on the NOAA website. The reconstruc-
tions from December 1658 to November 1900 are taken from Refs.74,75 and from December 1900 to July 2001 
are derived from Ref.76. Central European 500 year temperature reconstruction dataset, beginning from 1500 
AD, is made available open source by NOAA National Centers for Environmental Information, under the World 
Data Service for Paleoclimatology. These were derived in the study77. We took winter only data points (months 
December, January and February) starting from the December of 1658 to the February of 2001 as it is known that 
the NAO influence is strongest in winter. This yielded a total of 1029 data points. However, reconstruction based 
on embedding was done for each year’s winter separately (with a time delay of 1) and not in a continuous manner 
as for the other datasets, reducing the length of ordinal patterns encoded sequence to 343. Causal influence was 
checked between NAO and temperature for the encoded sequences using PCMI and PCCC and directly using 
one-dimensional CMI and CCC for the 1029 length sequences.

Daily NAO‑temperature recordings.  Daily NAO records are available on the NOAA website and have been pub-
lished in Refs.78–80. Daily mean surface air temperature data from the Frankfurt station in Germany were taken 
from the records made available online by the ECA &D project81. This data was taken from 1st January 1950 
to 31st April 2021. Once again, daily values from the winter months alone (December, January and February), 
comprising of 6390 data points, were extracted for the analysis. While embedding the two time series, care was 
taken not to embed the recordings of winter from one year along with that of winter from the next year. Causal 
influence was checked between daily winter NAO and temperature time-series.

For the analysis of causal interaction in each of these datasets, scalar CCC and CMI as well as PCCC and 
PCMI were computed as discussed in the “Methods” section. Parameters used for each of the methods are also 
given in the “Methods” section (Table 2). In order to assess the significance of causality value estimated using 
each measure, 100 surrogate realizations were generated using the stationary bootstrap method82 for both the time 
series under consideration. Resampling of blocks of observations of random length from the original time series 
is done for obtaining surrogate time series using this method. The length of each block has a geometric distribu-
tion. The probability parameter that determines the geometric probability distribution for length of each block 
was set to 0.1 (as suggested in Ref.82). Significance testing of the causal interaction between original time-series 
was then done using a standard one-sided z-test, with p-value set to 0.05. Table 1 shows whether causal influ-
ence between the considered variables was found to be significant using each of the causality measures. Figure 3 
depicts the value of the PCCC between original pair of time series with respect to the distribution of PCCC 
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obtained using surrogate time series for two datasets: kilo-year scale CO2-temperature (Fig. 3a,b) and yearly scale 
ENSO-SASM (Fig. 3c,d) recordings. In the tables, Fig. 3 and in the following text, we use the notation ‘T’ to refer 
to temperature generically. Which of the temperature recordings is being referred to, will be clear from context.

Discussion and conclusions
CCC has been proposed as an ‘interventional’ causality measure for time series. It does not require cause-effect 
separability in time series samples and is based on dynamical evolution of processes, making it suitable for sub-
sampled time series, time series in which cause and effect are acquired at slightly different spatio-temporal scales 
than the scales at which they naturally occur and even when there are slight discrepancies in spatio-temporal 
scales of the cause and effect time series. This results in its robust performance in the case of missing samples, 
non-uniformly sampled, decimated and short length data41. In this work, we have proposed the use of CCC in 
combination with ordinal pattern encoding. The latter preserves the dynamics of the systems of observed vari-
ables, allowing for CCC to decipher causal relationships between variables of multi-dimensional systems while 
conditioning for the presence of other variables in these systems which might be unknown or unobserved.

Simulations of coupled Rössler systems illustrate how scalar CCC is a complete failure for observables of 
coupled multi-dimensional dynamical systems, while PCCC performs well to determine the correct direction 
of coupling. Comparison of PCCC with PCMI for these simulations shows that the former beats the latter by 
showing better performance on shorter lengths of time series. Further, while PCMI consistently gave superior 
performance for increasing noise in coupled Rössler systems, experiments with sparse data showed that PCCC 
outperforms PCMI. This was the case when samples were missing from the driver and response time series either 
in a synchronous or asynchronous manner.

As PCCC showed promising results for simulations with high levels of missing samples and short length, 
we have applied it to make causal inferences in datasets from climatology and paleoclimatology which suffer 
from the issues of irregular sampling, missing samples and (or) have limited number of data points available. 
Many of these datasets have been analyzed in previous studies. However, different studies report different results 
probably due to the challenging nature of their recordings available or the limitation of the inference methods 
applied to work on the data.

For example, the relationship between CO2 concentrations and temperature of the atmosphere has been 
studied from the mid 1800s83,84, beginning when a strong link between the two was recognized. Relatively 
recently, with causal inference tools available, a number of studies have begun to look at the directionality of 
relationship between the two on different temporal scales. To mention a few findings, Kodra et al.85 found that 
CO2 Granger causes temperature. Their analysis was based on data taken from 1860 to 2008. Atanassio86 found 
a clear evidence of GC from CO2 to temperature using lag-augmented Wald test, for a similar time range. On 
the other hand, Stern and Kaufmann87 found bidirectional GC between the two, again for a similar time range. 
Kang and Larsson88 also find bidirectional causation between the two using GC, however, by using data from 
ice cores for the last 800,000 years. Many of these latter studies criticize the former. Also, the drawbacks of one 
or more of these studies are explicitly mentioned in Refs.87,89,90 and highlight the issues with the data and/ or the 
methodology employed. Other than GC and its extensions, a couple of other measures have also been used to 
study CO2 -T relationship. Stips et al.91 have applied a measure called Liang’s Information flow on CO2 -T record-
ings, both on recent (1850–2005) and paleoclimate (800 ka ice core reconstructions) time-scales. The study finds 
unidirectional causation from CO2 → T on the recent time-scale and from T → CO2 on the paleoclimatic scale. 

Table 1.   Causal inference obtained for real datasets using different causality measures. � indicates significant 
causality and × indicates non-significant causality.

System

Measure

Direction CCC​ PCCC​ CMI PCMI

Millenial scale CO2 -T
CO2 → T � × × ×

T → CO2 � � × ×

Kilo-year scale CO2 -T
CO2 → T × × × ×

T → CO2 × � × ×

Kilo-year scale CH4-T
CH4 → T × � × ×

T → CH4 × × × ×

Monthly scale CO2 -T
CO2 → T × � × ×

T → CO2 × × × ×

Yearly ENSO-SASM
ENSO → SASM × � × ×

SASM → ENSO � � × ×

Monthly NINO-Indian monsoon
NINO → Monsoon × � � �

Monsoon → NINO � × � �

Monthly NAO-European T
NAO → T � � × ×

T → NAO × × × ×

Daily NAO-Frankfurt T
NAO → T � × � ×

T → NAO × × × ×
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They have also analysed the CH4-T relationship and found T to drive CH4 on the paleoclimate scale. This study 
has been criticized by Goulet et al.92. They show that an assumption of ‘linearity’ made by Liang’s information 
flow is nearly always rejected by the data. Convergent cross mapping, which is applied to the 800 ka recordings 
in another study, finds a bidirectional causal influence between both CO2 - T and CH4-T93. Another recent 
study, that infers causation using lagged cross-correlations between monthly CO2 and temperature, taken from 
the period 1980–2019, has found a bidirectional relationship on the recent monthly scale, with the dominant 
influence being from T → CO2

94. In the light of the limitations of CCM95,96, especially for irregularly sampled or 
missing data42, and of the widely known pitfalls of correlation coefficient97, it is difficult to rely on the inferences 
of the latter two studies.

PCCC indicates unidirectional causality from T → CO2 on the paleoclimatic scale, using both millenial 
and kilo-year scale recordings. On the recent monthly scale, the situation is reversed with CO2 driving T. These 
results are in line with some of the existing CO2 -T causal analysis studies and clearly PCCC does not suffer the 
limitations of existing approaches. On the kilo-year scale, PCCC suggests that CH4 drives T. While none of the 
above discussed causality studies have found this result, other works have suggested that methane concentra-
tions modulate millenial-scale climate variability because of the sensitivity of methane to insolation98,99. Other 

Figure 3.   PCCC surrogate analysis results. PCCC surrogate analysis results for: (a) Kilo-year scale CO2 → T, 
(b) Kilo-year scale T → CO2 , (c) Yearly ENSO → SASM, (d) SASM → ENSO. Dashed line indicates PCCC value 
obtained for original series. Its position is indicated with respect to Gaussian curve fitted normalized histogram 
of surrogate PCCC values. PCCC for cases (b)–(d) is found to be significant.

Table 2.   Parameters corresponding to each method, used for different datasets.

Dataset Embedding CCC​ PCCC​ CMI/ PCMI

Rössler ηx1 = 5 , ηx2 = 5 , m = 3
L = 300 , w = 30 , δ = 30 , 
B = 8

L = 25 , w = 15 , δ = 20 τ = 20

Millenial CO2-T ηCO2
= 11 , ηT = 16 , m = 3 L = 60 , w = 15 , δ = 20 , B = 4 L = 60 , w = 30 , δ = 20 τ = 1− 30

Kilo-year CO2-T ηCO2
= 24 , ηT = 8 , m = 3 L = 60 , w = 15 , δ = 20 , B = 4 L = 30 , w = 15 , δ = 20 τ = 1− 30

Kilo-year CH4-T ηCH4
= 10 , ηT = 8 , m = 3 L = 60 , w = 15 , δ = 20 , B = 4 L = 30 , w = 15 , δ = 20 τ = 1− 30

Monthly CO2-T ηCO2
= 3 , ηT = 2 , m = 3 L = 60 , w = 15 , δ = 20 , B = 4 L = 30 , w = 15 , δ = 20 τ = 1− 30

Yearly ENSO-SASM ηENSO = 1 , ηSASM = 4 , m = 3 L = 60 , w = 15 , δ = 20 , B = 4 L = 60 , w = 30 , δ = 30 τ = 1− 30

Monthly NINO-India Monsoon ηNINO = 10 , ηmon = 3 , m = 3 L = 60 , w = 15 , δ = 20 , B = 4 L = 30 , w = 15 , δ = 20 τ = 1− 30

Monthly NAO-T ηNAO = 1 , ηT = 1 , m = 3 L = 60 , w = 15 , δ = 20 , B = 4 L = 30 , w = 15 , δ = 10 τ = 1− 30

Daily NAO-T ηNAO = 15 , ηT = 15 , m = 3 L = 40 , w = 15 , δ = 20 , B = 4 L = 30 , w = 15 , δ = 20 τ = 1− 30
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approaches implemented in this study – CCC, CMI, PCMI also do not duplicate the results obtained by PCCC 
because of their specific limitations such as the inability to work on multi-dimensional, short length or irregu-
larly sampled data.

ENSO events and the Indian monsoon are other major climatic processes of global importance59. The relation-
ship between the two has been studied extensively, especially using correlation and coherence approaches100–105. 
While ENSO is normally expected to play a driving role, there is no clear consensus on the directionality of the 
relationship between the two processes. More recently, causal inference approaches have been used to study the 
nature of their coupling. In Refs.106,107, both linear and non-linear GC versions were implemented on monthly 
mean ENSO-Indian monsoon time series, ranging from the period 1871–2006 and bidirectional coupling was 
inferred between the two processes. Other studies have studied the causal relationship indirectly by analyzing the 
ENSO-Indian Ocean Dipole link. For example, in Ref.108, this connection was studied by applying GC on yearly 
reanalysis as well as model data ranging from 1950–2014. The study found robust causal influence of Indian 
Ocean Dipole on ENSO while the influence in opposite direction had lower confidence. Using PCCC, we find 
a bidirectional causal influence between yearly recordings of ENSO-SASM. However, on the shorter monthly 
scales, NINO is found to drive Indian Monsoon and there is insignificant effect in the opposite direction.

Although the NAO is known to be a leading mode of winter climate variability over Europe109–111, the direc-
tionality or feedback in NAO related climate effects has been studied by a few causality analysis studies9,112,113. 
We investigate the NAO-European temperatures relationship on both monthly and daily time scales using winter 
only data. While PCCC indicates that NAO drives central European temperatures with no significant feedback 
on the longer monthly scale, on the daily scale it shows no significant causation in either direction. On the other 
hand, CCC and CMI, based on one dimensional time series, indicate a strong influence from NAO to Frankfurt 
daily mean temperatures. This result indicates that the NAO influence on European winter temperature on the 
daily scale can be explained as a simple time-delayed transfer of information between scalar time series in which 
no role is played by higher-dimensional patterns, potentially reflected in ordinal coding. Such an information 
transfer in the atmosphere is tied to the transfer of mass and energy as indicated in the study of climate networks 
by Hlinka et al.114. CMI and PCMI estimates can be considered to be reliable for this analysis as the time-series 
analyzed are long, close to 6000 time points.

CCC is free of the assumptions of linearity, requirement of long-term stationarity, extremely robust to miss-
ing samples, irregular sampling and short length data; and its combination with permutation patterns allows it 
to make reliable inferences for coupled systems with multiple variables. Thus, we can expect our analysis and 
inferences presented here on some highly-researched and long-debated climatic interactions to be highly robust 
and reliable. We also expect that the use of PCCC on other challenging datasets from climatology and other fields 
will be helpful to shed light on the causal linkages in considered systems.

Methods
Compression-complexity causality (CCC) is defined as the change in the dynamical compression-complexity of 
time series y when �y is seen to be generated jointly by the dynamical evolution of both ypast and xpast as opposed 
to by the reality of the dynamical evolution of ypast alone. ypast , xpast are windows of a particular length L taken 
from contemporary time points of time series y and x respectively and �y is a window of length w following 
ypast

41. Dynamical compression-complexity (CC) is estimated using the measure effort-to-compress (ETC)115 
and given by:

Equation (3) computes the dynamical compression-complexity of �y as a dynamical evolution of ypast alone. 
Equation (4) computes the dynamical compression-complexity of �y as a dynamical evolution of both ypast and 
xpast . CCCxpast→y is then estimated as:

Averaged CCC from x to y over the entire length of time series with the window �y being slided by a step-size 
of δ is estimated as:

If CC(�y|ypast) ≈ CC(�y|xpast , ypast) , there is no causality from x to y. Surrogate time series are generated for 
both x and y and the CCCx→y values of the original and surrogate time series compared. If the CCC computed 
for original time series is statistically different from that of surrogate time series, we can infer the presence of 
causal relation from x → y42. CCCx→y can be both < or > 0 depending upon the nature or quality of the causal 
relationship41. The magnitude indicates the strength of causation.

Selection of parameters: L,w, δ and the number of bins, B, for symbolizing the time series using equidistant 
binning (ETC is applied to symbolic sequences) is done using parameter selection criteria given in the supple-
mentary text of Ref.41.

Permutation compression-complexity causality is the causal inference technique proposed and imple-
mented in this work. Given a pair of time series x1 and x2 from dynamical systems in which causation is to be 
checked from x1 to x2 , we first embed the time series of the potential driver ( x1 here) in the following manner: 

(3)CC(�y|ypast) = ETC(ypast +�y)− ETC(ypast),

(4)CC(�y|ypast , xpast) = ETC(ypast +�y, xpast +�y)− ETC(xpast , ypast),

(5)CCCxpast→�y = CC(�y|ypast)− CC(�y|ypast , xpast).

(6)
CCCx→y = CCCxpast→�y

= CC(�y|ypast)− CC(�y|xpast , ypast),
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x1(t), x1(t + η), x1(t + 2η), . . . x1(t + (m− 1)η) , where η is the time delay and m is the embedding dimension 
of x1 . η is computed as the first minimum of auto mutual information function. The embedded time-series at 
each time-point is then symbolized using permutation or ordinal patterns binning. For example, if m = 3 , the 
embedding at time point t is given as x̂1(t) = (x1(t), x1(t + η), x1(t + 2η)) . Symbols 0, 1, 2 are then used for 
labelling the pattern for x̂1(t) at each time point by sorting the embedded values in ascending order, with 2 being 
used for the highest value and 0 for the lowest. If two or more values are exactly same in x̂1(t) , they are labelled 
differently depending on the order of their occurrence, where the same value takes a smaller symbol at its first (or 
earlier) occurrence. However, this may lead to two or more different embedded vectors having the same ordinal 
representation. For example, the embeddings, (3, 5, 5), (3, 3, 5) and (3, 3, 3), all have an ordinal representation 
of (0, 1, 2). This limits the total number of possible patterns at time t to m! = 3! . Thus, x̂1(t) is symbolized to a 
one dimensional sequence consisting of m! possible symbols or bins. CCC​ is then estimated from x̂1(t) to x2(t) , 
using Eq. (6) after symbolizing x2(t) using standard equidistant binning with m! bins. Thus,

Permutation binning is not done for the potential driver series as it was found from simulation experiments 
(Rössler data) that embedding the ‘cause’ alone works better for the CCC measure. Full dimensionality of the 
cause is necessary to predict the effect. Hence, embedding only the cause helps to recover the causal relation-
ship. PCCC helps to take into account the multidimensional nature of the coupled systems. Parameter selection 
for PCCC is done in the same manner as for the case of CCC, using the symbolic sequences, x̂1(t) and x2(t) , for 
selection of the parameters. When PCCC is to be estimated from x2 → x1 , x2 is embedded and x1 remains as it 
is. Just like CCC, the PCCC measure can also take negative values.

Conditional mutual information (CMI) of the variables X and Y given the variable Z is a common information-
theoretic functional used for the causality detection, and can be obtained as

where H(X1,X2, ...|Z) = H(X1,X2, ...)−H(Z) is the conditional entropy, and the joint Shannon entropy 
H(X1,X2, ...) is defined as:

where p(x1, x2, ...) = Pr[X1 = x1,X2 = x2, ...] is the joint probability distribution function of the amplitude of var-
iables {X1,X2, ...} . In order to detect the coupling direction among two dynamical variables of X and Y, Paluš et al.21 
used the conditional mutual information I(X(t);Y(t + τ)|Y(t)) , that captures the net information about the τ
-future of the process Y contained in the process X. As mentioned in the Introduction, to estimate other unknown 
variables, an m-dimensional state vector X can be reconstructed as X(t) = {x(t), x(t − η), ..., x(t − (m− 1)η)} . 
Accordingly, CMI defined above can be represented by its reconstructed version for all variables of X(t), Y(t + τ) 
and Y(t). However, extensive numerical studies22 demonstrated that CMI in the form

is sufficient to infer direction of coupling among dynamical variables of X(t) and Y(t). In this respect, we use this 
measure to detect causality relationships in this article.

Permutation conditional mutual information (PCMI) can be obtained based on the permutation analysis 
described earlier in the PCCC definition. In this approach, all marginal, joint or conditional probability distri-
bution functions of the amplitude of the variables are replaced by their symbolized versions, thus Eq. (9) should 
be replaced by

where p(x̂1, x̂2, ...) = Pr[X̂1 = x̂1, X̂2 = x̂2, ...] is the joint probability distribution function of the symbolized 
variables X̂i(t) = {Xi(t),Xi(t + η), ...,Xi(t + (m− 1)η)} . By using Eqs. (8) and (11), permutation CMI can be 
obtained as I(X̂(t); Ŷ(t + τ)|Ŷ(t)) . Finally, one should replace τ with τ + (m− 1)η in order to avoid any over-
lapping between the past and future of the symbolized variable Ŷ .

Parameters of the methods used were set as shown in Table 2 for different datasets.

Data availability
The millenial scale CO2 and temperature datasets are freely available at https://​zenodo.​org/​record/​45629​96#.​YiD-
bTN_​ML3A. Kilo-year scale CO2 , CH4 and temperature datasets are available as supplementary files for Ref.64 
at https://​agupu​bs.​onlin​elibr​ary.​wiley.​com/​doi/​full/​10.​1002/​2015R​G0004​82. Monthly CO2 recordings are taken 
from the NOAA repository and are available at https://​gml.​noaa.​gov/​ccgg/​trends/. Monthly Northern hemisphere 
temperature anomaly recordings are taken from the NOAA repository and are available at https://​www.​ncdc.​
noaa.​gov/​cag/​global/​time-​series. The yearly El Niño/Southern Oscillation Index Reconstruction dataset is taken 
from the NOAA repository, https://​www.​ncei.​noaa.​gov/​access/​paleo-​search/​study/​11194. The yearly South Asian 
Summer Monsoon Index Reconstruction dataset is taken from the NOAA repository, https://​www.​ncei.​noaa.​
gov/​access/​paleo-​search/​study/​17369. Monthly Niño 3.4 SST Index dataset is taken from the NOAA reposi-
tory, available at https://​psl.​noaa.​gov/​gcos_​wgsp/​Times​eries/​Nino34/. Monthly all India rainfall dataset is made 
available by the World Metereological Organization at http://​clime​xp.​knmi.​nl/​data/​pALLIN.​dat. Reconstructed 

(7)PCCCx1→x2 = CCCx̂1→x2 .

(8)I(X;Y |Z) = H(X|Z)+H(Y |Z)−H(X,Y |Z)

(9)H(X1,X2, ...) = −
∑

x1,x2,...

p(x1, x2, ...) log p(x1, x2, ...)

(10)I(X(t);Y(t + τ)|Y(t),Y(t − η), ...,Y(t − (m− 1)η))

(11)H(X̂1, X̂2, ...) = −
∑

x̂1,x̂2,...

p(x̂1, x̂2, ...) log p(x̂1, x̂2, ...)

https://zenodo.org/record/4562996#.YiDbTN_ML3A
https://zenodo.org/record/4562996#.YiDbTN_ML3A
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015RG000482
https://gml.noaa.gov/ccgg/trends/
https://www.ncdc.noaa.gov/cag/global/time-series
https://www.ncdc.noaa.gov/cag/global/time-series
https://www.ncei.noaa.gov/access/paleo-search/study/11194
https://www.ncei.noaa.gov/access/paleo-search/study/17369
https://www.ncei.noaa.gov/access/paleo-search/study/17369
https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/
http://climexp.knmi.nl/data/pALLIN.dat
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monthly North Atlantic Oscillation Index is available at the NOAA repository, https://​psl.​noaa.​gov/​gcos_​wgsp/​
Times​eries/​RNAO/. Monthly Central European 500 Year Temperature Reconstructions are available at the NOAA 
repository, https://​www.​ncei.​noaa.​gov/​access/​metad​ata/​landi​ng-​page/​bin/​iso?​id=​noaa-​recon-​9970. Daily North 
Atlantic Oscillation Index is available at the NOAA repository, https://​www.​cpc.​ncep.​noaa.​gov/​produ​cts/​precip/​
CWlink/​pna/​nao.​shtml. Daily Frankfurt air temperatures are made available by the ECA &D project at https://​
www.​ecad.​eu/​daily​data/​prede​fined​series.​php.

Code availability
The computer codes used in this study are freely available at https://​github.​com/​Aditi​Kathp​alia/​Permu​tatio​nCCC 
under the Apache 2.0 Open-source license.
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