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Abstract

Mycobacterium cosmeticum is a nontuberculous Mycobacterium recovered from different

water sources including household potable water and water collected at nail salon. Individ-

ual cases of this bacterium have been reported to be associated with gastrointestinal tract

infections. Here we present the first whole-genome study and comparative analysis of two

new clinically-derived Mycobacterium sp. UM_RHS (referred as UM_RHS after this) and

Mycobacterium sp. UM_NYF (referred as UM_NYF after this) isolated from patients in Indo-

nesia and Malaysia respectively to have a better understanding of the biological characteris-

tic of these isolates. Both strains are likely Mycobacterium cosmeticum as supported by the

evidence from molecular phylogenetic, comparative genomic and Average Nucleotide Iden-

tity (ANI) analyses. We found the presence of a considerably large number of putative viru-

lence genes in the genomes of UM_RHS and UM_NYF. Interestingly, we also found a

horizontally transferred genomic island carrying a putative dsz operon proposing that they

may have potential to perform biodesulfization of dibenzothiophene (DBT) that may be

effective in cost reduction and air pollution during fuel combustion. This comparative study

may provide new insights into M. cosmeticum and serve as an important reference for future

functional studies of this bacterial species.

Introduction

Mycobacterium is a genus under the actinobacteria phylum classified together with other well-

known human pathogens likeM. tuberculosis (causing tuberculosis) andM. leprae (causing

leprosy) [1–3]. This genus consists of another group of mycobacteria known as the nontuber-

culous mycobacteria (NTM). NTM has been associated with human diseases and was first

reported in pathological human secretions in 1884 [4]. It represents a diverse group of
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environmentally opportunistic human pathogens widely found at peat-rich potting soil, drink-

ing water in buildings and households, on animals and also in food [5–7]. The NTM can cause

human infections mainly occurring under environmental exposures, sternal wound infections,

plastic surgery wound infections, or post-injection abscesses [8–10].

M. cosmeticum is usually recovered from water including household potable water [11] and

water collected at the nail salon [12] and activated sludge from wastewater treatment [13]. A

case whereM. cosmeticum has been implicated as a gastrointestinal tract pathogen causing

ascites in a 63-year-old woman [14] has been reported. Moreover, it has also been reported

that this bacterium has induced severe diffuse granulomatous colitis in a non-immunocom-

promised 32-year-old Turkish patient [15].

In this paper, we sequenced two new clinically-derivedMycobacterium sp. UM_RHS

(referred as UM_RHS after this) andMycobacterium sp. UM_NYF (referred as UM_NYF after

this). We have also performed bioinformatics analyses particularly, comparative analyses to

further understand the genomics, phylogeny and biology of this bacterial species. The genome

sequences of UM_RHS and UM_NYF have been deposited at GenBank with the accession

numbers of GCA_000455185.1 and GCA_000987455.1, respectively.

Results and discussion

Genome sequencing and assembly

The genome of UM_RHS sequenced using Illumina HiSeq 2000 sequencing technology

yielded 51,391,676 paired-end (PE) reads. 50,813,644 usable reads were obtained after quality

based trimming with Phred score of 20 and removal of exact duplicates and reverse comple-

ment duplicate reads using PRINSEQ lite version 0.20 [16]. The de novo assembly of these

reads generated 167 contigs with a total genomic length of 6,775,899bp and G+C content of

67.9%. This UM_RHS assembly has a N50 value of 95,298bp with minimum contig length of

510bp and maximum contig size of 242,034bp, suggesting considerably high quality of this

assembly for downstream analyses.

Similar to the UM_RHS, the genome of UM_NYF sequenced with the same sequencing

platform yielded 39,868,088 raw PE reads. After the filtering steps, 39,529,963 preprocessed

reads were used for assembly. The assembly of UM_NYF genome resulted in 332 contigs with

a total genomic length of 6,809,253bp and a G+C content of 67.9% and N50 value of 61,947bp.

Recognition of Isolated Species

To determine the taxonomic positions of the UM_RHS and UM_NYF, we first constructed

phylogenetic trees using housekeeping genes. We constructed a 16S rRNA-based phylogenetic

tree using UM_RHS, UM_NYF and other mycobacterial species (Fig 1). Our data suggested

that our strains were closely related toM. cosmeticum with four mismatches and 99% sequence

similarities to the referenceM. cosmeticumDSM44829. The 16S rRNA gene-based tree has

been used to separate between the rapid and slow growing mycobacteria [17]. As anticipated,

our data clearly separated the two distinct groups and suggested that both UM_RHS and

UM_NYF are rapid growing mycobacteria (Fig 1).

The possibility of our strains beingM. cosmeticum is further supported by a supermatrix

tree constructed using multiple genes: hsp65, rpoB, tuf, sodA and 16S rRNA. This approach

would produce more robust tree compared to the single gene approach (Fig 2) [18]. Our

supermatrix tree showed that both UM_RHS and UM_NYF shared highest genome similari-

ties (98.0%) with the referenceM. cosmeticum strain, again acting as an evidence that

UM_RHS and UM_NYF are likelyM. cosmeticum.

Comparative genome sequencing and analyses of Mycobacterium cosmeticum
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To further confirm the identity of UM_RHS and UM_NYF, we also performed ANI analy-

sis using whole-genome data. The ANI is one of the most robust measurements of genomic

relatedness between bacterial strains [19], and has a great potential in the taxonomy classifica-

tion of bacteria as a substitute for the traditional labor intensive DNA-DNA hybridization

Fig 1. 16S rRNA based phylogeny analysis of 32 Mycobacteria strains belonging to different species: Differentiation into rapid and

lowly growing Mycobacteria. The 16S rRNA gene-based phylogenetic tree clearly distinguishesMycobacterium grouping based on the

growth rates. UM_RHS and UM_ NYF were clustered in the rapid growing mycobacterial group.

https://doi.org/10.1371/journal.pone.0214663.g001

Comparative genome sequencing and analyses of Mycobacterium cosmeticum

PLOS ONE | https://doi.org/10.1371/journal.pone.0214663 April 9, 2019 3 / 18

https://doi.org/10.1371/journal.pone.0214663.g001
https://doi.org/10.1371/journal.pone.0214663


(DDH) technique. The algorithm designed is based on the calculation of average percentage of

whole-genome sequence similarity between a pair of bacterial genome. An ANI threshold of

95% determined for species demarcation has previously been suggested based on intensive

comparative investigations [19].

To calculate the ANI values (in percentage), we compared the UM_RHS and UM_NYF sep-

arately to other 35Mycobacterium species (representative strains for knownMycobacterium
species) that have genome sequences available in the National Center for Biotechnology Infor-

mation (NCBI) GenBank depository.

The ANI values of each pairwise genome comparison varied from 70% to 99% of sequence

identity (Fig 3). The ANI values of UM_RHS and UM_NYF against other 34 strains (excluded

the reference strain ofM. cosmeticumDSM44829) ranged from 70% to 78% (below the cut-off

to define a species), suggesting that our strains do not belong to these known species. However,

Fig 2. Supermatrix tree of five markers (hsp65, rpoB, tuf, sodA and 16S rRNA). UM_RHS and UM_NYF are closest toM. cosmeticum, supported by a high bootstrap

value of 85%.

https://doi.org/10.1371/journal.pone.0214663.g002
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when comparing against the referenceM. cosmeticumDSM44829, the UM_RHS and

UM_NYF have ANI values of 98.14% and 98.16% respectively, again supporting our view that

both UM_RHS and UM_NYF are likelyM. cosmeticum.

Fig 3. Average nucleotide analysis for 37 Mycobacterium species. The ANI values of UM_NYF and UM_RHS againstM. cosmeticumDSM44829

are above 95%, supporting that these strains belong to the speciesM. cosmeticum.

https://doi.org/10.1371/journal.pone.0214663.g003
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Here we have successfully sequenced and analyzed the genomes of probable two new mem-

bers ofM. cosmeticum, UM_RHS and UM_NYF, which were isolated from patients in Indone-

sia and Malaysia respectively. The taxonomic position of the two UM_RHS and UM_NYF has

been supported by evidence from phylogenetic and ANI analysis.

Gene prediction and annotation

As anticipated, both UM_RHS and UM_NYF genomes generally share similar genomic features

such as the genome size, number of protein-coding genes and RNA as predicted by the Rapid

Annotation using Subsystem Technology (RAST) pipeline [20]. For instance, the UM_RHS has

a genome size of 6,780,714bp with 6,608 protein-coding genes and 49 RNA genes, whereas

UM_NYF has a genome size of 6,809,253bp with 6,579 protein-coding genes and 50 RNA genes

(Table 1). Both genomes have single copy of rRNA operons. The summary of functional assign-

ments of the RAST-predicted protein-coding genes for the UM_RHS, UM_NYF andM. cosme-
ticumDSM44829 are shown in Fig 4. As anticipated, all the 3 genomes generally share very

similar functional distributions since they are most probably belonging to the same species.

Functional annotation showed that most of the genes were involved in functional categories

such as amino acid and derivatives, carbohydrates, cofactors, vitamins, fatty acids, lipids and

isoprenoids, which are responsible for basic functions of bacteria. No plasmids were predicted

in either of the genomes. RAST predicted the presence of a number of genes encoding integrase,

transposase like proteins, phage like proteins and mobile element proteins in both genomes

(Table 2). There are about 136 genes categorized under the virulence, disease and defence.

However, there are subtle differences between the UM_RHS and UM_NYF in the catego-

ries of RNA metabolism, and cell wall and capsule. For instance, UM_NYF genome has 107

genes involved in the RNA metabolism, which is relatively higher compared to the UM_RHS

genome (72 genes) (S1 Table and S2 Table). Interestingly, further examination of these genes

revealed that UM_NYF possessed many genes in two extra sub-categories: tRNA modification

bacteria (26 genes) and 16S rRNAmodification within the P site of its ribosome (6 genes),

which were absent in UM_RHS. Out of these six genes categorized under the 16S rRNAmodi-

fication within the P site of its ribosome, we identified two methyltransferases, RsmH and

RsmI responsible for the N4-methylation and 2’-O-methylation in the 16S rRNA [21]. These

two genes can stabilize the local structure and interaction of the ribosome P-site to accommo-

date the codon-anticodon helix21. Kimura and Suzuki showed that deletions of rsmH or rsmI
can affect the efficiency of non-AUG initiation and the fidelity of translation. Thus, the

absence of these two genes in UM_RHS could affect its decoding fidelity [21].

Comparative genome analysis of M. cosmeticum
To better understand the genomic structure ofM. cosmeticum, we compared UM_RHS and

UM_NYF to a reference genome,M. cosmeticumDSM 44829 at genome and gene levels. At

the genome level, we aligned and reordered the genome sequences of the three strains using

Mauve software withM. cosmeticumDSM 44829 as a reference [22]. We found that the three

M. cosmeticum genomes were generally similar or conserved as most of the genome regions

for the three strains were nicely aligned to each other (Fig 5). The UM_RHS and UM_NYF

mapped approximately 92% of the reference genome with a high sequence identity of 98%.

However, the genome size of UM_RHS and UM_NYF was comparatively larger (~0.4Mbp)

than the reference genome which has a genome size of about 6.4Mbp. Both UM_RHS and

UM_NYF have larger genome size probably due to the presence of considerably large number

of horizontally transferred genomic islands found in both genomes which we will discussed

below.

Comparative genome sequencing and analyses of Mycobacterium cosmeticum
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Table 1. RNAs identified by RAST in the genomes of UM_NYF and UM_RHS.

UM_NYF RAST Feature ID UM_RHS RAST Feature ID

1 tRNA-Leu-TAA fig|6666666.28483.rna.1 tRNA-Pro-GGG fig|6666666.28480.rna.1

2 tRNA-Ile-GAT fig|6666666.28483.rna.2 tRNA-Asn-GTT fig|6666666.28480.rna.2

3 tRNA-Ala-TGC fig|6666666.28483.rna.3 tRNA-Lys-CTT fig|6666666.28480.rna.3

4 tRNA-Leu-CAG fig|6666666.28483.rna.4 tRNA-Arg-CCG fig|6666666.28480.rna.4

5 tRNA-Pro-TGG fig|6666666.28483.rna.5 tRNA-Thr-CGT fig|6666666.28480.rna.5

6 tRNA-Gly-TCC fig|6666666.28483.rna.6 tRNA-Tyr-GTA fig|6666666.28480.rna.6

7 tRNA-Trp-CCA fig|6666666.28483.rna.7 tRNA-Met-CAT fig|6666666.28480.rna.7

8 tRNA-Met-CAT fig|6666666.28483.rna.8 tRNA-Met-CAT fig|6666666.28480.rna.8

9 tRNA-Thr-GGT fig|6666666.28483.rna.9 tRNA-Ala-GGC fig|6666666.28480.rna.9

10 tRNA-Arg-ACG fig|6666666.28483.rna.10 tRNA-Val-GAC fig|6666666.28480.rna.10

11 tRNA-Pseudo-GCT fig|6666666.28483.rna.11 tRNA-Cys-GCA fig|6666666.28480.rna.11

12 tRNA-Ser-TGA fig|6666666.28483.rna.12 tRNA-Gly-GCC fig|6666666.28480.rna.12

13 tRNA-His-GTG fig|6666666.28483.rna.13 tRNA-Val-CAC fig|6666666.28480.rna.13

14 tRNA-Tyr-GTA fig|6666666.28483.rna.14 5S RNA fig|6666666.28480.rna.14

15 tRNA-Gln-CTG fig|6666666.28483.rna.15 Large Subunit Ribosomal RNA; lsuRNA; LSU rRNA fig|6666666.28480.rna.15

16 tRNA-Glu-CTC fig|6666666.28483.rna.16 Small Subunit Ribosomal RNA; ssuRNA; SSU rRNA fig|6666666.28480.rna.16

17 tRNA-Ala-CGC fig|6666666.28483.rna.17 tRNA-Cys-GCA fig|6666666.28480.rna.17

18 tRNA-Met-CAT fig|6666666.28483.rna.18 tRNA-Leu-CAA fig|6666666.28480.rna.18

19 tRNA-Gln-TTG fig|6666666.28483.rna.19 tRNA-Leu-TAG fig|6666666.28480.rna.19

20 tRNA-Val-TAC fig|6666666.28483.rna.20 tRNA-Ser-GGA fig|6666666.28480.rna.20

21 tRNA-Lys-CTT fig|6666666.28483.rna.21 tRNA-Ser-CGA fig|6666666.28480.rna.21

22 tRNA-Met-CAT fig|6666666.28483.rna.22 tRNA-Pro-TGG fig|6666666.28480.rna.22

23 5S RNA fig|6666666.28483.rna.23 tRNA-Gly-TCC fig|6666666.28480.rna.23

24 Large Subunit Ribosomal RNA; lsuRNA; LSU rRNA fig|6666666.28483.rna.24 tRNA-Arg-TCT fig|6666666.28480.rna.24

25 Small Subunit Ribosomal RNA; ssuRNA; SSU rRNA fig|6666666.28483.rna.25 tRNA-Ile-GAT fig|6666666.28480.rna.25

26 tRNA-Leu-GAG fig|6666666.28483.rna.26 tRNA-Ala-TGC fig|6666666.28480.rna.26

27 tRNA-Leu-CAA fig|6666666.28483.rna.27 tRNA-Leu-TAA fig|6666666.28480.rna.27

28 tRNA-Thr-TGT fig|6666666.28483.rna.28 tRNA-Phe-GAA fig|6666666.28480.rna.28

29 tRNA-Ala-GGC fig|6666666.28483.rna.29 tRNA-Asp-GTC fig|6666666.28480.rna.29

30 tRNA-Asn-GTT fig|6666666.28483.rna.30 tRNA-Glu-TTC fig|6666666.28480.rna.30

31 tRNA-Thr-CGT fig|6666666.28483.rna.31 tRNA-Lys-TTT fig|6666666.28480.rna.31

32 tRNA-Ser-CGA fig|6666666.28483.rna.32 tRNA-Arg-CCT fig|6666666.28480.rna.32

33 tRNA-Ser-GGA fig|6666666.28483.rna.33 tRNA-His-GTG fig|6666666.28480.rna.33

34 tRNA-Arg-CCT fig|6666666.28483.rna.34 tRNA-Leu-GAG fig|6666666.28480.rna.34

35 tRNA-Leu-CAA fig|6666666.28483.rna.35 tRNA-Thr-TGT fig|6666666.28480.rna.35

36 tRNA-Cys-GCA fig|6666666.28483.rna.36 tRNA-Ser-TGA fig|6666666.28480.rna.36

37 tRNA-Gly-CCC fig|6666666.28483.rna.37 tRNA-Pseudo-GCT fig|6666666.28480.rna.37

38 tRNA-Arg-CCG fig|6666666.28483.rna.38 tRNA-Arg-ACG fig|6666666.28480.rna.38

39 tRNA-Pro-GGG fig|6666666.28483.rna.39 tRNA-Thr-GGT fig|6666666.28480.rna.39

40 tRNA-Leu-TAG fig|6666666.28483.rna.40 tRNA-Met-CAT fig|6666666.28480.rna.40

41 tRNA-Pro-CGG fig|6666666.28483.rna.41 tRNA-Trp-CCA fig|6666666.28480.rna.41

42 tRNA-Val-CAC fig|6666666.28483.rna.42 tRNA-Val-TAC fig|6666666.28480.rna.42

43 tRNA-Gly-GCC fig|6666666.28483.rna.43 tRNA-Ala-CGC fig|6666666.28480.rna.43

44 tRNA-Cys-GCA fig|6666666.28483.rna.44 tRNA-Glu-CTC fig|6666666.28480.rna.44

45 tRNA-Val-GAC fig|6666666.28483.rna.45 tRNA-Gln-CTG fig|6666666.28480.rna.45

46 tRNA-Arg-TCT fig|6666666.28483.rna.46 tRNA-Pro-CGG fig|6666666.28480.rna.46

47 tRNA-Lys-TTT fig|6666666.28483.rna.47 tRNA-Gly-CCC fig|6666666.28480.rna.47

(Continued)
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At the gene level, we clustered all RAST-predicted genes of the three strains using BLAS-

TClust (http://ftp.ncbi.nih.gov/blast/documents/blastclust.html) which resulted in non-redun-

dant 6,957 orthologous gene families. Our data clearly showed that the three strains shared a

high number of common gene families (5,657), which accounted for 81.3% of the total gene

families suggesting that they are considerably conserved among them (Fig 6). Interestingly, we

found a relatively higher number of strain-specific gene families (333) in DSM 44829 com-

pared to UM_RHS (87) and UM_NYF (33). Of these 333 genes, 89 (26.7%) were believed to be

inserted into theM. cosmeticumDSM 44829 genome as these genes were found inside the pre-

dicted horizontally transferred genomic islands in theM. cosmeticumDSM 44829. In addition,

we also found two putativeM. cosmeticumDSM 44829 specific-genes, Type I restriction modi-

fication enzymes that may play important roles in the defense mechanism of the bacteria [23].

Another interesting observation is that 558 gene families were present only in both

UM_RHS and UM_NYF but not in theM. cosmeticumDSM 44829. The high number of

Table 1. (Continued)

UM_NYF RAST Feature ID UM_RHS RAST Feature ID

48 tRNA-Glu-TTC fig|6666666.28483.rna.48 tRNA-Gln-TTG fig|6666666.28480.rna.48

49 tRNA-Asp-GTC fig|6666666.28483.rna.49 tRNA-Leu-CAG fig|6666666.28480.rna.49

50 tRNA-Phe-GAA fig|6666666.28483.rna.50

https://doi.org/10.1371/journal.pone.0214663.t001

Fig 4. RAST functional categories of UM_RHS and UM_NYF genes. Number of genes in UM_RHS in comparison to UM_NYF which belong to specific

RAST functional categories withM. cosmeticumDSM 44829 as the reference genome.

https://doi.org/10.1371/journal.pone.0214663.g004
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shared genes between UM_RHS and UM_NYF is probably due to the horizontal gene transfer

supported by the observation that at least 154 of these genes are (28%) found within the pre-

dicted genomic islands. These specific genes may have arisen from the ancestors of UM_RHS

and UM_NYF and probably contribute to the unique traits/phenotypes of these strains which

are absent in the previously reportedM. cosmeticumDSM 44829. Among these specific genes,

five specific genes together with other four non-specific genes formed a cluster of nine genes

(~12 Kbp) encoding enzymes which metabolize acetone and acetoacetate to acetyl-CoA (Ace-

tone utilization pathway) [24]. Similar gene cluster has also been found inHelicobacter pylori
andHelicobacter acinonychus strains [24]. However, theHelicobacter pylori strains contain

only a cluster of eight genes lacking one gene (acxD) compared to the UM_RHS and

UM_NYF, harboring four acx genes (acxABCD), scoA, scoB, fadA and two hypothetical pro-

teins. The presence of the gene cluster in the sequenced genomes of UM_RHS and UM_NYF

may indicate the capability of these strains to metabolize acetone to acetyl-CoA and feed into

the TCA cycle, thus providing them with energy [24].

Furthermore, we wanted to identify genes that are specific toM. cosmeticum, but not in

otherMycobacterium species. To examine this, we further clustered the 5,657 common gene

families of UM_RHS and UM_NYF with genes from other known mycobacterial genomes

belonging to 27 different mycobacterial species. We successfully identified 552 gene families

specific toM. cosmeticum but not present in other mycobacterial species that we examined.

Among these specific genes, we found a gene operon involved in the sorbitol (glucitol) specific

phosphoenolpyruvate-dependent sugar phosphotransferase (PTS) system, which has three

components (EIIA, EIIB and EIIC) [25, 26].

Table 2. RAST predicted genes related to gene transfer in the genomes of UM_NYF and UM_RHS.

Types of genes encoding UM_RHS UM_NYF

Integrase 4 4

Mobile element proteins 37 34

Phage like proteins 18 18

Transposases like proteins 6 3

https://doi.org/10.1371/journal.pone.0214663.t002

Fig 5. Genomic structure of M. cosmeticum genomes. The genome structures are generally conserved among three studied genomes (UM_RHS, UM_NYF

and DSM44829).

https://doi.org/10.1371/journal.pone.0214663.g005
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Comparative genomic islands analysis

To predict horizontally transferred genomic islands, all genome sequences used in this analysis

were uploaded to the IslandViewer server [27, 28]. A total of 41 putative genomic islands were

found in the two genomes with genomic sizes ranging from 4k to 32kbp (S3 Table). Both

strains shared 34 common genomic islands by which five are specific to UM_RHS and two

other specific to UM_NYF. A high number of putative genomic islands were present in the

two genomes indicating that horizontal gene transfer events might have played significant

roles in reshaping the genomes of UM_RHS and UM_NYF throughout the evolutionary

period. Among these common genomic islands, some have harbored putative virulence genes

which could contribute to the virulence of the two strains. For instance, one of the genomic

islands (GI23) harbored two putative virulence genes, espR and phoP. Another genomic island,

GI28, has a virulence gene sigH.

Furthermore, we found a genomic island which is believed to have originated fromMyco-
bacterium goodie X7B being inserted into both UM_RHS and UM_NYF during the evolution-

ary period. This genomic island contains the dsz (dibenzothiophene biodesulfurization)

operon harboring three desulfurization genes (dszA, dszB, dszC). Combustion of sulfur-con-

taining compounds can cause adverse effects on health and environment [29]. Benzothiophene

Fig 6. Gene family distribution. TheM. cosmeticumDSM 44829, UM_RHS and UM_NYF have generally shared a

high number of common gene families.

https://doi.org/10.1371/journal.pone.0214663.g006
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(BTH) and dibenzothiophene (DBT) account for more than 50% of the sulfur content of diesel.

Current industries usually apply hydro-desulfurization which requires high temperature and

pressure. However, biodesulfurization is an environmental friendly method to eliminate sulfur

from the refractory organic compound. The major pathway of DBT desulfurization has been

reported as the “4S pathways”. The “4S pathway” includes four steps which will catalyze DBT

into sulfoxide (DBTO), sulfone (DBTO2), sulfinate (HPBSi) and hydroxybiphenyl (HBP).

These catalytic reactions are carried out by three Dsz enzymes namely DszA, DszB and DszC

encoded by the dsz operon. Thus, we postulate that the acquisition of this genomic island pos-

sibly fromM. goodie X7B might have given both UM_RHS and UM_NYF the capability to cat-

alyze the DBT desulfurization.

Besides, three large common genomic islands associated with prophages were identified by

screening the genomic regions using PHAST software, a software to predict prophage

sequences in bacterial genomes or plasmids [30]. As predicted by PHAST, two are intact pro-

phages and the remaining one is an incomplete prophage in the genomes of UM_RHS and

UM_NYF. However, the origin of these prophages are yet to be identified as no hit could be

found from BLAST search of these sequences against the NCBI databases.

Virulence gene analyses

Our analysis revealed that both UM_RHS and UM_NYF share 117 similar putative virulence

genes with UM_RHS having one extra virulence gene (secA) resulting in a total of 118 putative

virulence genes in UM_RHS and 117 in UM_NYF (Fig 7). Furthermore, most of the virulence

genes found in both genomes were orthologs to well-known human pathogens likeM. tubercu-
losis. Gey van Pittius and colleagues have shown that the ESX-5 genes cluster, a type VII secre-

tion system, is able to separate the rapid and slow growing mycobacteria. They showed that

this ESX-5 genes cluster is only present in the slow growing mycobacteria [31]. Likewise, our

strains UM_RHS and UM_NYF do not have the ESX-5 gene cluster, further supporting that

the two strains are rapid growing mycobacteria and this is also consistent with the results from

the phylogenetic analysis. The data showed that UM_RHS and UM_NYF contain three ESX
gene clusters (ESX1, 3, 4) although a few genes were missing in these clusters probably due to

gene deletion events. However, since both UM_RHS and UM_NYF are draft genomes, addi-

tional experiments e.g. PCR are crucial to further confirm the existence of these genes.

Apart from the ESX gene clusters, both UM_RHS and UM_NYF genomes showed presence

of other putative virulence genes such as ahpC, katG, sodC responsible for enhancing resistance

against host toxic compounds, whereas nuoG and sodA which are involved in evading apoptosis

[32]. Some of these genes (ahpC, katG and sodC) encode enzymes important for detoxification

of bacteria killing component like reactive oxygen species (ROS) and reactive nitrogen species

(RNS), wheareas the nuoG gene encodes for protein involving the inhibition of extrinsic TNF-

α- dependent apoptosis pathway [33]. Furthermore, we also identified virulence genes (fbp, erp,

hbhA,mce) which encode for cell envelope proteins [34]. These proteins are important in the

mycobacterial cell wall maintenance, adhesion and transportation of materials and also survival

of mycobacteria in the host cells [34]. Both UM_RHS and UM_NYF also harbored three fbp
genes (fbpA, fbpB and fbpC) encoding for the antigen 85 complex [34]. This complex is known

to be related to the pathogenesis of mycobacteria, for example, by promoting the entry of bacte-

ria into host cells through the binding of fibronectin [35].

In order to survive in host cells, mycobacteria have to adapt to a wide range of environ-

ments, stressors and growth condition [34]. Two component regulatory signal transduction

systems are important in allowing bacteria to adapt to a variety of environmental stimuli.

Interestingly, four pairs of two-component systems were found (PhoP-PhoR, DevR-DevS,
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Fig 7. Predicted virulence genes in the genomes of M. cosmeticum DSM44829, UM_RHS and UM_NYF.

https://doi.org/10.1371/journal.pone.0214663.g007
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MprA-MprB and PrrA-PrrB) in the genomes of UM_RHS and UM_NYF. Previous studies

have demonstrated that disruption of the phoP-phoR operon can affect the replication ofM.

tuberculosis in the cellular and animal models [36, 37]. This gene operon is also involved in the

regulation of genes with potential roles in mycobacterial virulence by regulating the expression

of both espB and espR genes in the ESX-1 secretion system [38].

Overall, both genomes are structurally conserved although differences in the genomic

islands and virulence genes of these genomes can be observed. We did not notice any large

genome inversions in any of theM. cosmeticum strains. The number of shared genes between

UM_RHS and UM_NYF were higher compared to that of UM_RHS andM. cosmeticum
DSM44829 or UM_NYF andM. cosmeticumDSM44829, probably reflecting the fact that both

UM_RHS and UM_NYF are highly similar because they were isolated from very close geo-

graphical regions (Indonesia and Malaysia respectively), whereas theM. cosmeticum
DSM44829 was isolated from a granulomatous lesion of a female patient in Venezuela [12]

[https://www.dsmz.de/catalogues/details/culture/DSM-44829.html].

Both the genomes of UM_RHS and UM_NYF showed presence of sorbitol (glucitol) spe-

cific phosphoenolpyruvate-dependent sugar phosphotransferase (PTS) system [25, 26]. Sorbi-

tol is a sugar substitute used when caries formation occurs in the presence of readily

fermentable carbohydrate like sucroses. We hypothesize that in the presence of these genes,

UM_RHS and UM_NYF could be capable of utilizing sugars using the PTS system.

One interesting finding in this study is the presence of dsz (dibenzothiophene biodesulfuriza-

tion) operon in the horizontally transferred genomic island in the genomes of UM_RHS and

UM_NYF. Our data suggested that this genomic region might have originated fromM. goodie
X7B, which has the capability to desulfurize benzothiophene (BTH) and dibenzothiophene (DBT)

through the BTH degradation pathway [39]. Combustion of fossil fuel such as petroleum releases

sulfur oxides causing air pollution [40, 41]. Deep desulfurization of gasoline can reduce sulfur

content, but the conventional hydrodesulfurization (HDS) technology of gasoline results in a sig-

nificant reduction of the octane number [42]. The biodesulfization of gasoline can serve as an

alternative method of sources which not only avoids octane degradation but is also less expensive

as compared to the HDS method [39]. Therefore, we postulate that the UM_RHS and UM_NYF

may be able to be used for performing biodesulfization of gasoline or with its additionally poten-

tial to reduce the expenses and air pollution during fuel combustion. However, further experi-

ments are needed to confirm the usability of this bacterial species for these purposes.

In comparison to the reference genome,M. cosmeticumDSM44829, we found relatively

higher number of genes and genomic islands in the genomes of UM_RHS and UM_NYF.

Intriguingly, our comparative analysis revealed two genes encoding for Type I restriction mod-

ification enzymes inM. cosmeticumDSM44829, whereas the UM_RHS and UM_NYF lack

these genes that are important for bacterial defense. Therefore, the presence of high number of

genomic islands in our strains may be partially explained by the fact that they might be more

prone to invasion by foreign DNA compared to the reference strain.

In summary, the phylogenetic and ANI analysis of these two investigated strains UM_RHS

and UM_NYF showed that they most likely belong to the speciesM. cosmeticum. The addition

of these genome sequences may be an important avenue for comparative analyses and func-

tional studies ofM. cosmeticum in future.

Methods

Library construction and next-generation sequencing

The DNA of UM_RHS and UM_NYF were sequenced using Illumina HiSeq 2000 PE technol-

ogy at about 1,000X coverage. Covaris S2 was used to fragment the DNA samples for 120
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seconds at a temperature of 5.5–6.0 degree celcius. The quantity and quality of fragmented

materials were examined using Agilent BioAnalyzer 2100. The sample was size selected using

Invitrogen 2% agarose E-gels. Fragments with adapter molecules at both ends further under-

went 10 cycles of PCR for library construction purpose. Agilent BioAnalyzer 2100 was used to

validate the constructed genomic library and a pool of 8pM was loaded onto 1 lane of Illumina

HiSeq2000 flow cell v3 for sequencing using a 100bp PE sequencing strategy.

Read preprocessing and genome assembly

PRINSEQ lite version 0.20 [16] was used to filter exact duplicates and reverse complement

duplicate reads. Reads were trimmed at Phred quality score < 20. The final reads were de novo
assembled using CLC Genomic Workbench version 5.1 (CLC bio, Aarhus, Denmark). The

assembly of the preprocessed reads were performed using the following criteria: length fraction

of 0.7, similarity fraction of 0.9, and any contigs with size lesser than 500bp were discarded.

Phylogenetic inferences

The 16S rRNA-based phylogenetic tree was constructed using Hasegawa-Kishino-Yano DNA

substitution model with a bootstrap value of 500. Five selected bacterial classification marker

genes, hsp65, rpoB, tuf, sodA and 16S rRNA from the closest species were extracted and

concatenated for construction of supermatrix-based tree using the same approach as the 16S

rRNA-based tree.

Genome annotation

The genome of UM_RHS and UM_NYF were annotated using the RAST annotation pipeline

[20]. To predict the genomic islands, the assembled sequences of UM_RHS and UM_NYF

were submitted to IslandViewer [27, 28]. The generated output results were further filtered by

eliminating the genomic islands situated within two different contigs [43]. The RAST-pre-

dicted protein coding genes found in the genomes of UM_RHS and UM_NYF were used for

virulence genes prediction. BLAST search was performed with the RAST-predicted protein

sequences against the Virulence Factors Database (VFDB) [44–46] with e-value of 10 and

orthologous genes that have at least 50% sequence identity and 50% sequence completeness

and with known virulence genes were considered as putative virulence genes.

Gene family clustering

TheM. cosmeticum strain DSM44829 (accession no. GCA_000613185.1) isolated from a gran-

ulomatous lesion of a female patient in Venezuela [12] [https://www.dsmz.de/catalogues/

details/culture/DSM-44829.html], was used as the reference genome sequence for the gene

family clustering study. The RAST-predicted protein sequences of UM_RHS, UM_NYF and

M. cosmeticumDSM44829 were clustered into orthologous gene families using BLASTClust

with maximal e-value of 1e-10 and minimum score of 40 (http://ftp.ncbi.nih.gov/blast/

documents/blastclust.html). Protein sequences with at least 50% sequence identity and 50%

sequence coverage between each other were clustered into the same orthologous gene family.

Genomic islands and virulence gene prediction

Genomic islands in UM_RHS and UM_NYF were predicted using IslandViewer [27, 28] with

the integration of few approaches such as the sequence composition based SIGI-HMM [47]

and IslandPath-DIMOB [48] and the comparative genomics approach IslandPick [28]. The

generated results from IslandViewer were further filtered by eliminating the islands situated
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within 2 contigs. The RAST-predicted protein sequences in UM_RHS and UM_NYF were fur-

ther BLAST searched against the Virulence Factors Database (VFDB). The BLAST results were

filtered using in-house Perl scripts to select orthologous genes that are at least 50% sequence

identity and 50% sequence completeness.
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