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TherapeuTic advances in 
neurological disorders

Introduction
Myasthenia gravis (MG) is characterized by fati-
gable weakness in ocular, bulbar, limbs, and res-
piratory muscles, with an annual incidence of 
roughly 10–29 cases per million people.1 It is an 
autoimmune disease mediated by antibodies tar-
geting the postsynaptic components in the neuro-
muscular junction.2 Of them, 80–85% have 

antibodies against the acetylcholine receptor 
(AChR), while about 5–8% have antibodies 
against the muscle-specific tyrosine kinase 
(MuSK) and 7–33% against low-density lipopro-
tein receptor-related protein 4 (LRP4).3 It can be 
further divided into different subgroups according 
to the involved muscle domains, thymoma associ-
ations, antibody specificity, and the onset ages.4
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Abstract
Background: Myasthenia gravis (MG) is an autoimmune disease characterized by muscle 
weakness and fatigability. The fluctuating nature of the disease course impedes the clinical 
management.
Objective: The purpose of the study was to establish and validate a machine learning  
(ML)–based model for predicting the short-term clinical outcome in MG patients with different 
antibody types.
Methods: We studied 890 MG patients who had regular follow-ups at 11 tertiary centers in 
China from 1 January 2015 to 31 July 2021 (653 patients for derivation and 237 for validation). 
The short-term outcome was the modified post-intervention status (PIS) at a 6-month visit. A 
two-step variable screening was used to determine the factors for model construction and 14 
ML algorithms were used for model optimisation.
Results: The derivation cohort included 653 patients from Huashan hospital [age 44.24 
(17.22) years, female 57.6%, generalized MG 73.5%], and the validation cohort included 237 
patients from 10 independent centers [age 44.24 (17.22) years, female 55.0%, generalized 
MG 81.2%]. The ML model identified patients who were improved with an area under the 
receiver operating characteristic curve (AUC) of 0.91 [0.89–0.93], ‘Unchanged’ 0.89 [0.87–0.91], 
and ‘Worse’ 0.89 [0.85–0.92] in the derivation cohort, whereas identified patients who were 
improved with an AUC of 0.84 [0.79–0.89], ‘Unchanged’ 0.74 [0.67–0.82], and ‘Worse’ 0.79 
[0.70–0.88] in the validation cohort. Both datasets presented a good calibration ability by fitting 
the expectation slopes. The model is finally explained by 25 simple predictors and transferred 
to a feasible web tool for an initial assessment.
Conclusion: The explainable, ML-based predictive model can aid in forecasting the short-term 
outcome for MG with good accuracy in clinical practice.
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The hallmark of MG is the highly heterogeneous 
muscle involvement and fluctuating muscle weak-
ness. Most patients require consistent and even 
lifelong treatment to reduce relapse or avoid con-
version from ocular MG (OMG) to generalized 
MG (GMG).5,6 Although recent advances have 
been made in targeted immunotherapies,7 very 
few patients have achieved complete stable remis-
sion.8 A clinically distinct subgroup of patients 
who are refractory to treatment and continue to 
experience worsening accounts for 10–30% of MG 
patients.3 In addition, rapid worsening in respira-
tory muscles may lead to a myasthenic crisis (MC), 
which is a life-threatening condition that occurs in 
15–20% of patients.9 The mortality rate in MC 
was estimated to be 5–12%,9 which leads to a con-
siderable disease burden. The fluctuating nature of 
muscle weakness and the variable responsiveness 
to immunotherapies remained the most intracta-
ble issues in the clinical management of MG. 
Furthermore, biologics are emerging as important 
therapeutic tools that promise to provide better 
corticosteroid-sparing effects than standard treat-
ments and can even induce remission. These tar-
get-specific immunotherapies mainly include 
anti-complement therapeutics, the anti-FcRn and 
B cell monoclonals.10–12 Early identification of 
patients prone to worsening may prompt advanced 
targeted immunotherapies. This defines an urgent 
clinical need for additional tools to forecast the 
prognosis and personalize disease management.

Previous retrospective studies have attempted to 
explore the baseline risk factors for predicting the 
outcome in MG patients, which included clinical 
characteristics and relevant biomarkers. For 
instance, vital capacity, disease duration, and bul-
bar symptoms were significantly associated with 
the occurrence of postoperative MC.13 A high 
reduction rate in anti-AChR antibody titers is 
associated with a favorable outcome at 1-year 
post-treatment.14 Peripheral memory B cell per-
centage has been used to predict relapse in rituxi-
mab-treated MG.15 More recently, adult-onset 
OMG, abnormal repetitive stimuli (RNS) find-
ings, seropositivity for anti-AChR antibody, and 
thymoma concurrence were identified as risk fac-
tors for generalization.16 However, these studies 
mainly focused on specific subtypes, for example, 
anti-AChR antibody-positive generalized MG; or 
pre-defined conditions, for example, well-con-
trolled patients treated with steroids, and were not 
suitable for a consecutive follow-up setting.17,18

In the current study, we aimed to develop and 
validate a data-driven, machine learning (ML)-
based, predictive model to forecast the short-term 
outcome for MG. The advantages of this model 
include (1) accommodating three subtypes of 
MG (AChR, MuSK, negative); (2) being robust 
and replicable; (3) feasible for health professional 
evaluations. If successful, the ML-based predic-
tive model would be clinically helpful in inform-
ing the aggressiveness of treatment on an 
individual basis at each visit.

Methods

Patients and criteria
We used ML algorithms to establish a prediction 
model for short-term outcomes in a derivation 
cohort and a multicenter-derived validation 
cohort (Figure 1). The Huashan MG registry 
(established Jan 1, 2015) is a disease-specific 
database that comprised the records of 4126 visits 
in 1560 MG patients, who were mainly referred 
from the coastal areas in Southeast China. The 
derivation cohort included 653 patients from the 
Huashan MG registry from 1 January 2015 
through 31 July 2021. The validation cohort 
comprised 237 MG patients referred by 10 inde-
pendent tertiary medical centers from northern, 
western, and southern China from 1 June 2016 
through 1 December 2020.

All MG diagnoses were made by a specialist in 
neurology, and the baseline and follow-up evalu-
ations were made by a neuromuscular specialist. 
Eligible criteria for the patient enrollment 
included (1) onset symptoms and signs compati-
ble with OMG or GMG; (2) seropositive for at 
least one antibody: AChR or MuSK, or LRP4 
antibodies; and/or (3) positive repetitive nerve 
stimuli (RNS); (4) follow-up duration of 6 
months or longer from baseline. Exclusion crite-
ria included those participants who had more 
than 5% missing variables. The 6-month interval 
was set due to the large sample size and the com-
mon implementation in MG studies.19–21

One MG patient was only followed by one center. 
None of the MG patients in the derivation cohort 
was enrolled in the multicenter-derived validation 
cohort. This study protocol and patient data 
usage were approved by the Ethics Committees of 
Huashan Hospital and all participating centers. 
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Figure 1. The workflow for the myasthenia gravis (MG) short-term outcome prediction model generation and application.
The derivation cohort (n = 653) was derived from the Huashan MG patient registry, while the validation cohort (n = 237) was from other 10 MG 
centers in China. The bar plot shows the distribution of patient visiting stages ranging from V1–V7 (V for a visit). 1686 consecutive follow-up 
records comprised the derivation dataset, and 249 records contained the validation dataset. Commonly used machine learning (ML) algorithms 
were compared in the training process, including LightGBM (light gradient boosting), catboost, rf (random forest), et (extra trees), ada (adaptive 
Boosting), and xgboost (extreme gradient boosting), and in this study, the random forest was the best algorithm.

Written informed consent was obtained from 
each enrolled participant.

A total of 58 baseline features were collected from 
the derivation cohort, including demographic 
characteristics (n = 3), clinical features (n = 46), 
treatment types (n = 6), thymoma status (n = 1), 
and comorbidity (n = 2). This study followed the 
Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) guideline for prognostic 
studies (Table S1).22 Detailed items from MG 
scales, including Quantitative Myasthenia Gravis 
(QMG), MG Activity of Daily Living (ADL), and 
MG Quality of Life 15-items (QOL-15), were 
specifically considered instead of the sum scores.23 
Participants were required to discontinue pyri-
dostigmine for at least 10 hours before the clinical 
assessment.

Primary outcome and outcome measurement
The primary outcome was the modified Post-
Intervention Status (PIS) at the 6-month visit, 

categorized by the changes in QMG score. We 
defined the outcome in categorical status as 
‘Improved’, ‘Unchanged’, and ‘Worse’, referred 
to and modified from the Myasthenia Gravis 
Foundation of America (MGFA) PIS classifica-
tion.24 The ‘Unchanged’ category was added 
based on the following reasons: (1) Through anal-
ysis of the short-term outcome by minimizing 
measurement error at each visit, around 25% of 
patients exhibited a Unchanged status and still 
did not meet the improvement criteria;25,26 (2) 
during the following time frame of 6 months, the 
therapeutic efficacy of immunosuppressants have 
not been fully demonstrated.3,27

Previous studies on minimal clinically significant 
differences have been set at a 3-point change  
if baseline QMG > 16 and a 2-point change if 
baseline QMG ⩽ 16.23,25,28 Herein, we defined 
three categories (1) when the baseline QMG 
score > 16, ‘Improved’ means reduced score ⩾ 3, 
‘Unchanged’ means increased or reduced 
score < 3, and ‘Worse’ means increased score ⩾ 3; 
(2) when the baseline QMG score ⩽ 16, 
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‘Improved’ means reduced score ⩾ 2, ‘Unchanged’ 
means increased or reduced score < 2, and ‘Worse’ 
means increased score ⩾ 2. In addition, acute MG 
worsening and the outcome of death was classified 
as the ‘Worse’ outcomes.

Data preparation and feature selection
Since MG is a fluctuating disease that can dete-
riorate within days to months, each visit was con-
sidered an independent event for simplifying the 
model. In the derivation dataset, follow-up 
records and clinical features with more than 5% 
missing data were dropped, and the remaining 
missing data were filled using a light gradient 
boosting machine (LightGBM) iterative imputa-
tion method.29 A two-step feature selection pro-
cedure was first processed to filter the most 
influential features (n = 58), including MG 
scales, primary status (gender, age, height, 
weight), thymoma states, comorbidities, and 
treatments. Since some items have similarities in 
clinical significance in different MG scales (e.g. 
eyelid droop in ADL and upward gaze ptosis in 
QMG) or in left and proper comparison (e.g. left- 
and right-hand grip force in QMG), redundant 
items were then removed. Height and weight 
were converted to body mass index (BMI). In 
Step 1, a correlation matrix was made, and redun-
dant features with correlation efficient r > 0.6 or 
having similar clinical significance were excluded. 
In Step 2, the selection was algorithm-based, and 
those features that contributed mainly to the pre-
diction were automatically selected using a per-
mutation importance technique with a 0.6 
filtering threshold.

Model development and validation
A total of 14 different ML algorithms were pre-
liminarily tested on the derivation dataset, and 
seven commonly used model performance met-
rics including accuracy, the area under the 
receiver operating characteristic curve (AUC), 
recall, precision, F1, Kappa, and Matthew’s cor-
relation coefficient were calculated to help deter-
mine the optimal algorithm. The best-performed 
algorithm was further fine-tuned to generate a 
better model. The internal and external valida-
tion were processed by a 10-fold cross-validation 
procedure and an external validation dataset, 
respectively. The precision of the model was  
evaluated by calibration plots. Finally, the 

interpretation and feature importance of the 
model with the best performance was sought by a 
game theory–based SHAP (Shapley Additive 
Explanations) approach.30

Statistical analysis
Continuous features were reported as mean (SD) 
and compared by a one-way analysis of variance 
(ANOVA) test. In contrast, semi-quantitative fea-
tures (QMG, ADL, and QOL-15 scores) were 
reported as median (IQR) and compared by 
Kruskal–Wallis test. Categorical features were 
reported as percentages (%) and compared by the 
chi-square test and Fisher’s exact test. The model 
was generated using the PyCaret pipeline (https://
pycaret.org/about) on Python version 3.8.3 
(Python Software Foundation). The specific fea-
tures were analyzed using tidyverse, tableone, 
ggstatsplot, and cowplot packages on R version 
4.03 (R Foundation for Statistical Computing). 
The model was finally deployed on a web server 
using a Streamlit python library (https://stream-
lit.io/).

Results

Clinical cohort comparison
The derivation cohort included 653 MG patients 
[age 44.24 (17.22) years, female 57.6% (376/653), 
generalized MG 73.5% (480/653)] and the aver-
age visit interval was 6.60 (2.85) months (Table 
1). The validation cohort included 237 MG 
patients [age 44.24 (17.22) years, female 55.0% 
(130/237), generalized MG 81.2% (192/237)] 
and the average visiting interval was 7.51 (2.19) 
months (Table 2). In the derivation cohort, 
76.9% (502/653) were AChR antibody-positive, 
and 4.3% (28/653) were MuSK antibody-posi-
tive, and 18.8% (123/653) were seronegative; 
while in the validation cohort, 75.9% (180/237) 
were AChR antibody-positive and 4.2% (10/237) 
were MuSK antibody-positive, and 19.8% 
(47/237) were seronegative. At the baseline, the 
thymoma concurrence proportion was higher in 
the derivation cohort (22.7% versus 14.0%, 
p = 0.022), whereas the proportion for thymec-
tomy was higher in the validation cohort (20.2% 
versus 10.6%, p < 0.001). However, the deriva-
tion cohort has similar proportions in other 
chronic comorbidities (19.5% versus 22.9%, 
p = 0.274) and autoimmune diseases (15.6% 
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Table 1. Demographic and clinical features of the derivation dataset.

Feature Improved 
(n = 629)

Unchanged 
(n = 841)

Worse (n = 216) p

Visit interval (months) 6.60 (2.96) 6.51 (1.87) 6.63 (3.52) 0.344

Age (years) 43.11 (16.32) 44.37 (16.44) 45.41 (16.57) 0.145

Gender = male (%) 256 (40.7) 363 (43.2) 78 (36.1) 0.158

Weight (kg) 63.32 (13.55) 64.73 (14.19) 65.21 (13.65) 0.095

Height (cm) 164.86 (7.98) 164.57 (8.40) 164.34 (10.90) 0.698

Waistline (cm) 82.08 (12.18) 83.31 (12.51) 84.42 (11.57) 0.039

Hipline (cm) 94.00 (8.68) 94.25 (10.37) 95.26 (8.57) 0.262

SBP (mmHg) 125.15 (18.14) 125.47 (17.95) 123.81 (18.50) 0.498

DBP (mmHg) 81.71 (10.84) 81.25 (10.93) 80.06 (12.22) 0.178

Heart rate (beats per minute) 83.28 (14.26) 83.00 (13.64) 82.60 (14.30) 0.824

MGFA classification (%) < 0.001

I 140 (22.3) 391 (46.5) 113 (52.3)  

IIa 189 (30.0) 223 (26.5) 45 (20.8)  

IIb 146 (23.2) 151 (18.0) 36 (16.7)  

IIIa 67 (10.7) 27 (3.2) 13 (6.0)  

IIIb 60 (9.5) 31 (3.7) 8 (3.7)  

IVa 14 (2.2) 2 (0.2) 0 (0.0)  

IVb 9 (1.4) 5 (0.6) 1 (0.5)  

V 4 (0.6) 11 (1.3) 0 (0.0)  

QMG (scores) 10.00 [7.00, 14.00] 4.00 [2.00, 8.00] 4.00 [2.00, 7.00] < 0.001

ADL (scores) 4.00 [2.00, 7.00] 1.00 [0.00, 4.00] 1.00 [0.00, 3.00] < 0.001

QOL-15 (scores) 16.00 [7.00, 28.00] 8.00 [2.00, 18.00] 7.00 [1.00, 18.00] < 0.001

Antibody type (%) 0.524

AChR + 481 (76.4) 641 (67.2) 174 (80.6)  

MuSK + 25 (4.0) 32 (3.8) 10 (4.6)  

Negative (AChR/MuSK/LRP4 -) 123 (19.6) 168 (20.0) 32 (14.8)  

Thymectomy = yes (%) 71 (11.3) 89 (10.6) 15 (6.9) 0.189

Thymoma = yes (%) 158 (25.1) 210 (25.0) 48 (22.2) 0.669

Other autoimmune diseases = yes (%) 118 (18.7) 119 (14.2) 26 (11.9) 0.017

(Continued)

https://journals.sagepub.com/home/tan


TherapeuTic advances in 
neurological disorders Volume 16

6 journals.sagepub.com/home/tan

versus 17.7%, p = 0.452) compared with that in 
the validation cohort.

The derivation dataset comprised 1686 visits 
from all categories according to MGFA clinical 
classification: MGFA I (38.2%, 644/1686), 
MGFA II (46.9%, 791/1686), MGFA III (12.2%, 
206/1686), MGFA IV (1.8%, 30/1686), and 
MGFA V (0.9%, 15/1686); while for the valida-
tion dataset, the proportions were MGFA I 
(28.9%, 72/249), MGFA II (42.2%, 105/249), 

MGFA III (22.1%, 55/249), MGFA IV (5.6%, 
14/249), and MGFA V (1.2%, 3/249), 
respectively.

Clinical predictors with a two-step selecting 
strategy
A total of 58 baseline variables entered the screen-
ing (Table S2). After Step 1 selection, 21 varia-
bles were excluded due to being correlated with 
other features or not being convenient enough. In 

Feature Improved 
(n = 629)

Unchanged 
(n = 841)

Worse (n = 216) p

Comorbidity = yes (%) 130 (20.7) 164 (19.5) 34 (15.6) 0.287

Treatment (pyridostigmine) = yes (%) 515 (81.9) 700 (83.2) 176 (81.5) 0.727

Treatment (corticosteroids) = yes (%) 518 (82.4) 589 (70.0) 154 (71.3) < 0.001

Treatment (immunosuppressants) = yes (%) 119 (18.9) 215 (25.6) 62 (28.7) 0.002

Treatment (monoclonal antibody drugs) = yes (%) 36 (5.7) 66 (7.8) 20 (9.3) 0.141

Treatment (urgent relief) = yes (%) 16 (2.5) 8 (0.9) 5 (2.3) 0.052

AChR, acetylcholine receptor; ADL, activity of daily living; DBP, diastolic blood pressure; IQR, interquartile range; LRP4, lipoprotein receptor-
related protein 4; MGFA, Myasthenia Gravis Foundation of America; MuSK, muscle-specific tyrosine kinase; QMG, quantitative myasthenia gravis; 
QOL-15, Quality of Life 15 items; SBP, systolic blood pressure; SD, standard deviation.
Continuous features are reported as mean (SD) test, semi-quantitative features are reported as median (IQR), and categorical features 
are reported as percentage (%). ‘Other autoimmune diseases’ represents commonly accompanied autoimmune diseases with MG including 
rheumatoid, systemic lupus erythematosus, leukoderma, and so on. ‘Comorbidity’ represents a more common comorbidities occurring also in 
normal population, including hypertension, hyperlipidemia, stroke, tumor, and so on.

Table 2. Demographic and clinical features of the validation dataset.

Feature Improved 
(n = 127)

Unchanged 
(n = 76)

Worse (n = 46) p

Visit interval (months) 7.37 (1.96) 6.88 (2.55) 7.04 (1.73) 0.211

Age (years) 45.20 (17.18) 46.22 (17.91) 47.00 (18.64) 0.83

Gender = male (%) 61 (48.0) 37 (48.7) 17 (37.0) 0.379

Weight (kg) 67.46 (11.52) 65.81 (11.92) 65.64 (14.11) 0.555

Height (cm) 166.56 (7.25) 164.81 (7.03) 164.30 (7.06) 0.108

Waistline (cm) 83.62 (10.02) 79.22 (7.67) 81.62 (3.70) 0.229

Hipline (cm) 95.27 (8.34) 94.89 (5.51) 90.25 (5.85) 0.219

Table 1. (Continued)

(Continued)
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Feature Improved 
(n = 127)

Unchanged 
(n = 76)

Worse (n = 46) p

SBP (mmHg) 127.96 (17.64) 130.30 (16.53) 130.06 (15.51) 0.835

DBP (mmHg) 77.92 (11.34) 76.40 (8.78) 81.12 (8.69) 0.371

Heart rate (beats per minute) 75.89 (8.64) 76.52 (10.14) 75.65 (8.10) 0.949

MGFA classification (%) 0.201

 I 28 (22.0) 29 (38.7) 15 (32.6)  

 IIa 24 (18.9) 19 (25.3) 15 (32.6)  

 IIb 28 (22.0) 13 (17.3) 6 (13.0)  

 IIIa 18 (14.2) 6 (8.0) 4 (8.7)  

 IIIb 19 (15.0) 5 (6.7) 3 (6.5)  

 Iva 1 (0.8) 1 (1.3) 0 (0.0)  

 IVb 7 (5.5) 2 (2.7) 3 (6.5)  

 V 2 (1.6) 1 (1.3) 0 (0.0)  

QMG (scores) 11.00 [8.00, 16.00] 6.00 [3.00, 9.00] 4.00 [1.25, 6.00] < 0.001

ADL (scores) 6.00 [4.00, 8.00] 3.00 [1.00, 5.25] 3.00 [1.25, 6.00] < 0.001

QOL-15 (scores) 6.00 [0.00, 16.00] 1.00 [0.00, 8.00] 0.00 [0.00, 4.75] 0.001

Antibody type (%) 0.149

AChR + 99 (78.0) 56 (73.7) 36 (78.3)  

MuSK + 4 (3.1) 2 (2.6) 4 (8.7)  

Negative (AChR/MuSK/LRP4 -) 24 (18.9) 18 (23.7) 6 (13.0)  

Thymectomy = yes (%) 21 (17.1) 20 (26.7) 9 (20.0) 0.268

Thymoma = yes (%) 23 (18.7) 13 (17.8) 9 (22.0) 0.858

Other autoimmune diseases = yes (%) 23 (18.1) 11 (14.5) 10 (22.2) 0.552

Comorbidity = yes (%) 33 (26.0) 15 (19.7) 9 (19.6) 0.495

Treatment (pyridostigmine) = yes (%) 122 (96.1) 67 (88.2) 43 (93.5) 0.096

Treatment (corticosteroids) = yes (%) 106 (83.5) 52 (68.4) 43 (93.5) 0.002

Treatment (immunosuppressants) = yes (%) 89 (70.1) 58 (76.3) 26 (56.5) 0.069

Treatment (monoclonal antibody drugs) = yes (%) 34 (26.7) 17 (22.4) 10 (21.7) 0.694

Treatment (urgent relief) = yes (%) 6 (4.7) 3 (3.9) 2 (4.3) 0.966

AChR, acetylcholine receptor; ADL, activity of daily living; DBP, diastolic blood pressure; IQR, interquartile range; LRP4, lipoprotein receptor-
related protein 4; MGFA, Myasthenia Gravis Foundation of America; MuSK, muscle-specific tyrosine kinase; QMG, quantitative myasthenia gravis; 
QOL-15, Quality of Life 15 items; SBP, systolic blood pressure; SD, standard deviation.

Table 2. (Continued)
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contrast to the QMG scale, both ADL and QOL-
15 were patient-reported outcomes prone to be 
swayed by psychological factors.31 Hence, their 
items were less preferred when redundancy 
appeared with QMG items. Since most QOL-15 
items (n = 12) were clustered and correlated 
with each other, and the rest (n = 3) also corre-
lated well with the items in other scales, the QOL-
15 scale was dropped from our model. In terms of 
synonyms in predictors, talking, chewing, swal-
lowing, breathing, double vision, and ptosis in the 
ADL scale were dropped due to the replications 
in the QMG scale. The MGFA classifications and 
generalised/ocular types were also filtered out for 
MG scales due to the overlapped information 
with other scales. Given that the evaluations on 
the right body side would be affected by right 
dominance, we selected the items measured on 
the left body side, for example, left-arm out-
stretched, left-hand grip, and left-leg stretch in 
QMG.32 Those features that do not meet the cri-
teria of simplicity and convenience including 
waistline, hipline, and vital capacity were also 
dropped. Next, 37 variables have finally entered 
Step 2 selection followed by an automatic proce-
dure with a pre-determined filter rate of 0.7.

In the end, 25 clinical features were finally selected 
out of 58 features after the two-step selection 
procedure. These features include (1) gender;  
(2) BMI; (3) age; (4) systolic blood pressure 
(SBP); (5) diastolic blood pressure (DBP); (6) 
antibody type (AChR/MuSK/Negative); (7) 
thymectomy; (8) thymoma; (9) comorbidity;  
(10) pyridostigmine treatment; (11) corticoster-
oid treatment; (12) immunosuppressant treat-
ment (Azathioprine, Mycophenolate Mofetil, 
Cyclosporine, or Tacrolimus); (13) monoclonal 
antibody treatment (Rituximab or Tocilizumab); 
(14) QMG: Double vision on lateral gaze; (15) 
QMG: Ptosis (upward gaze); (16) QMG: Facial 
muscles; (17) QMG: Swallowing 4 oz. water; (18) 
QMG: Speech following counting; (19) QMG: 
Left arm outstretched; (20) QMG: Head lifted 
(45° supine); (21) QMG: Left leg outstretched; 
(22) ADL: Chewing; (23) ADL: Breathing; (24) 
ADL: Impairment of ability to brush teeth; (25) 
ADL: Impairment of ability to arise.

Random forest classifier was chosen as the 
best algorithm
Finally, 25 variables have entered the training 
process. In the preliminarily training test, the 

random forest classifier outperformed the other 
13 algorithms in 5 of 7 model performance met-
rics (accuracy, AUC, F1, Kappa, Matthew’s cor-
relation coefficient) (Table S2). Then the random 
forest model was further fine-tuned to achieve a 
good average AUC score of 0.7976 in the 10-fold 
cross-validation, which has a better performance 
than the previous untuned random forest model 
with an AUC score of 0.7118. Each of three pre-
dictive results (Improved, Unchanged, and 
Worse) showed an AUC score above 0.89 in the 
derivation dataset, and an AUC score above 0.74 
in the validation dataset (Figure 2(a) and (b)). 
The calibration plots of the two datasets generally 
fitted the direction and slope of the expectation 
slope (Figure 2(c) and (d)). Subsequently, the 
two datasets were combined as a combination 
dataset to subsequently perform a sensitivity anal-
ysis of the model on different MG subtypes. For 
the application in different MG classifications, 
the AUC score is above 0.88 in AChR/MuSK/
Seronegative MG, and the AUC score is above 
0.86 in ocular/generalized MG. In summary, the 
final model showed good discrimination and cali-
bration abilities in the derivation dataset, moder-
ately good performance in the validation dataset, 
and moderately good generalization ability in dif-
ferent MG subtypes.

Feature importance determination in the model
To evaluate each feature’s influence in the ML 
model, we use a SHAP method for quantification 
(Figure 3). The top 4 most important features 
(|SHAP value| > 0.06) were then selected to be 
retrogradely analyzed in the derivation dataset 
with additional information, including QMG left-
arm outstretched, corticosteroid treatment, QMG 
ptosis (upward gaze), and antibody type.

Above two QMG items showed similar composi-
tion ratios in the ‘Unchanged’ and ‘Worse’ cate-
gories, indicating that these two states were 
difficult to discriminate (Figure 4(a) and (b)). We 
reviewed the dosage and the regimen of corticos-
teroids used in both derivation and validation 
cohorts to further explain the model (Figure 
4(c)). Two contradicted trends showed that 
patients sustained with alternative-day corticos-
teroid treatment were more prone to worse after 6 
months (p < 0.001). In contrast, patients treated 
with increasing dosage are prone to become 
improved (p < 0.001). As for antibody types, 
there is no significant results in comparisons 
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Figure 2. The model performance in terms of discrimination and calibration. (a and b) The area under the 
curve (AUC) scores of the model in derivation and validation datasets. (c and d) Calibration plots show the 
calibration ability of the model in derivation and validation datasets. (e and f) The derivation and validation 
datasets are combined to comprise a combination dataset. The model AUC performance in different MG 
subtypes in the combination dataset.
Note that seronegative MG represents negative in AChR/MuSK/LRP4 antibodies.
AChR, acetylcholine receptor; LRP4, lipoprotein receptor-related protein 4; MuSK, muscle-specific tyrosine kinase.
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among three outcomes (Figure 4(d)). Thus, here 
we generated an explainable ML-based model by 
screening the best algorithm and quantifying the 
contribution of each variable.

Explainable machine learning model in clinical 
settings
We then retrospectively applied the ML model to 
clinical settings in three MG patients with differ-
ent conditions to further explain the model 

(Figure 5). The expected probabilities of the 
three categories all started at 0.333 and were 
pulled by various feature forces in different 
directions.

Patient 1 is a 49-year-old female with AChR-ab+ 
GMG for 3 years. She had converted to GMG 1 
year after ocular onset. At her first visit (V0, 
September 2018), she was immunotherapy-naive 
with a QMG score of 17 and diagnosed with a 
thymoma. After treatment with corticosteroids 

Figure 3. Feature importance of the model.
Summary plot for the 25 clinical features comprise the model calculated by Shapley Additive Explanations (SHAP) method. 
The features are ordered in descending rank according to their importance to the model. Note that a feature has a different 
contribution to three results, which is labeled in the plot with different colors.
DBP, diastolic blood pressure; SBP, systolic blood pressure.
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Figure 4. Further analysis of the top 4 most essential features in the model. All the data are sourced from 
the derivation dataset, and the prognostic categories are in their actual outcomes. (a) The proportional plot of 
QMG: Left-arm outstretch scores in three outcomes. (b) The constitution in corticosteroid strategies used in 
those patients (74.8%) treated with corticosteroid in the derivation dataset. (c) The proportional plot of QMG: 
Ptosis (upward gaze) scores in three outcomes. (d) The proportional plot of antibody types in three outcomes.

and pyridostigmine, the patient significantly 
improved with a reduced QMG score of 8 at her 
second visit (V1, March 2019) and the treatment 
was gradually tapered off, also the patient had a 
history of thymectomy. At her third visit (V2, 
September 2019), she had mild weakness in hand 
griping with a QMG score of 2. Here we retro-
spectively used the model to predict the short-
term outcome for V3 by inputting the key features. 
The prognostic prediction for the outcome at the 
next visit showed a score of 0.11 for ‘Improved’, 
0.41 for ‘Unchanged’, 0.48 for ‘Worse’. The 
actual outcome at fourth visit (V3, March 2020) 
was ‘Worse’ with facial and bulbar muscle weak-
ness and a QMG score of 5 (true positive). From 
a clinical point of view, this is a middle-aged, 
overweight woman with a thymoma history. A 
high BMI and a thymoma history might incline 
the outcome to ‘Worse’ rather than ‘Unchanged’. 
This can also be due to corticosteroid tapering.

Patient 2 is a 53-year-old male GMG patient for 
12 years. He was double negative for anti-AChR 
and MuSK antibodies but positive in RNS and 
neostigmine tests. Oral administration of corti-
costeroids and azathioprine effectively controlled 
disease at previous visits (V1–V3, August 2015 to 
September 2016). At his fifth visit (V4, March 
2017), he had slight weakness in the head lifted 
test with a low QMG score of 1. The prognostic 
prediction model provided a score of 0.08 for 
‘Improved’, 0.59 for ‘Unchanged’, 0.26 for 
‘Worse’, with the supporting evidence of a 
thymectomy history and sustained corticosteroid 
and azathioprine usage. The actual outcome for 
this patient is ‘Unchanged’ at the sixth visit (V5, 
October 2017), with a small increased QMG 
score of 3 (true positive).

Patient 3 is a 31-year-old female with GMG for 2 
years. The patient has a history of Sjogren’s 
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syndrome, and the anti-AChR antibody titer was 
1.65 nmol/L. After oral corticosteroids and tac-
rolimus treatment for 6 months, the QMG score 
significantly decreased from 16 at the first visit 
(V0, February 2017) to 8 at the second visit (V1, 
February 2018). From this time point, we used 
the model to generate a prediction with a score of 
0.41 for ‘Improved’, 0.34 for ‘Unchanged’, and 
0.25 for ‘Worse’. The outcome for this patient at 
her third visit (V2, July 2018) was a significant 
improvement in ptosis and dyspnea with a 
decreased QMG score of 3. This case may benefit 
from the long-lasting effect of tacrolimus.

Discussion
Among MG patients with highly heterogeneous 
clinical features and responses to the therapies, 
the prediction for the short-term outcome is more 
likely to stratify those who had myasthenia wors-
ening and prepared for active therapeutic inter-
ventions. ML has been extensively employed in 
risk stratification and mortality prediction in 
recent years as an advanced tool in data handling 
and unilinear relationship mimicking.33 However, 
the inherent complexity underlying ML still 
obfuscates the model interpretation and the clini-
cal relevance, often labeled as a black box.34 

Therefore, there is an increasing need for an 
explainable model with good interpretation and 
implications for clinical practice. To the best of 
our knowledge, this is the first attempt to estab-
lish a predictive model accommodating all differ-
ent MG subgroups with explainable scores using 
the ML technique. This model was validated by a 
multicenter cohort to verify its external generali-
zation ability, which may provide more conveni-
ence for disease surveillance as a web-based tool.

Basic demographic features, subitems of MG 
scales, antibody types, thymoma status, and differ-
ent MG-related treatments finally comprised the 
model. Our model identified ‘left arm outstretched’ 
in QMG score as the most influential feature in the 
prediction, which is consistent with our previous 
1-year prognostic model on AChR-ab+ general-
ized MG.17 Interestingly, symptoms in specific 
muscle domains are more stubborn to minimize. 
According to two large-scale retrospective studies 
from the United States and Japan,35,36 95% of 
MG patients eventually experienced an improve-
ment in the first 1–2 years after onset; however, 
around 35% remained with the slightest weakness 
in ocular or leg muscles. The treatment-resistant 
ophthalmoplegia and ptosis were more prevalent 
in AChR-ab+ /African/Asian MG patients.1  

Figure 5. Explainable machine learning model with three patients.
Patient 1 is a ‘Worse’ patient at the next visit, patient 2 an ‘Unchanged’ case, and patient 3 an ‘Improved’ case. Note that the 
model generated three risk scores for one patient (e.g. patient 1); the category with the highest probability score is the result 
of the model.
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In contrast, according to the clinical experience, 
the muscle weakness in the upper limbs is more 
prone to alleviate than other muscle domains at a 
6-month interval, which renders it more sensitive 
to treatments. Notably, 8 QMG items and 4 ADL 
items were finally selected for the model con-
struction. QOL-15 scale did not enter the model 
as a result of correlations between its subitems 
and other scales revealed in the selection step 1. 
In addition, factors unrelated to MG symptoms 
(e.g. the side effect of drugs) may undermine its 
ability to detect improvement in core MG rele-
vant symptoms.23 The ADL scores have been pre-
viously revealed to correlate better with the 
oculobulbar domains than generalized muscle 
domains.37 Hence, items with redundant mean-
ings as QMG items were also not survived at the 
step 1 selection.

Antibody types which were ranked high in our 
model as prognosis were heterogeneous in differ-
ent subgroups. AChR-MG is the most classic 
subtype, MuSK-MG is characterized by more 
severe and generalized muscle weakness, and 
seronegative MG is heterogeneous for including 
patients with antibodies that have low affinities or 
have not yet been defined.38 Another ranked high 
factor was corticosteroid treatment, as it is the 
most common kind of drugs used to treat MG 
patients. We identified that the corticosteroid 
dosage was correlated with the outcomes in the 
post hoc analysis, namely, patients who were 
treated with an increasing dosage were more 
prone to being improved. Interestingly, we also 
found that the proportion of patients who adopted 
an alternative-day tapering regimen significantly 
increased in the ‘Worse’ subgroup, which was 
consistent with a recent trial supporting that rapid 
daily tapering of corticosteroids was better than 
alternative-day regimen in moderate to severe 
generalized MG.39 As for immunosuppressants 
and monoclonal antibody drugs, these factors 
were ranked low in our model. We think this 
might be explained by different onset times and 
duration for each drug. Non-steroidal immuno-
suppressants and monoclonal antibody drugs 
nowadays used in Chinese patients were mostly 
tacrolimus and rituximab,40,41 and their onset 
time is relatively longer to achieve ideal drug con-
centrations and effective duration. Tacrolimus 
can rapidly improve MG symptoms subjectively 
within 1 month and objectively at 2–3 months,42 

while the time to the peak response after a single 
cycle of rituximab is 4.5 ± 1 months.43 This het-
erogeneity in clinical drug selection practice in 
different centers and the different proportions of 
immunosuppressants used in two datasets might 
also explain the relative lower performance in the 
validation dataset. The reason why thymectomy 
was not ranked high might be similar, in that ben-
efits of thymectomy are often seen within the first 
year and will sustain the therapeutic effects 
through at least 3 years.4 While urgent relief treat-
ments were dropped at step 2 selection, due to its 
scarce data sample size.

There are several limitations in our study: (1) 
Only the treatment types and no specific drug 
dosages and exact treatment timeline were 
enrolled in this model. Future studies with 
enough sample size in different drugs and detailed 
regime data may yield more accurate models; (2) 
the follow-up intervals in both datasets were not 
technically consistent and the standard deviation 
is relatively large; (3) the patient source was 
restricted in consecutively follow-up patients, 
which may result in a selection bias that those 
achieved better alleviation were more inclined to 
be lost in follow-up.

Conclusion
In current study, we have developed a short-term 
outcome prediction model using ML for MG 
patients with different antibody types. Our pre-
dictive tool may help promote the clinical man-
agement of MG patients and build a follow-up 
surveillance system for professionals.
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