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Abstract

Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes
and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor—leucine—can modify
insulin resistance by acting on multiple tissues and at multiple levels of metabolism. Mice were placed on a normal or high
fat diet (HFD). Dietary leucine was doubled by addition to the drinking water. mRNA, protein and complete metabolomic
profiles were assessed in the major insulin sensitive tissues and serum, and correlated with changes in glucose homeostasis
and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and
insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid
metabolites, TCA cycle intermediates, glucose and cholesterol metabolites, and fatty acids in liver, muscle, fat and serum.
Doubling dietary leucine reversed many of the metabolite abnormalities and caused a marked improvement in glucose
tolerance and insulin signaling without altering food intake or weight gain. Increased dietary leucine was also associated
with a decrease in hepatic steatosis and a decrease in inflammation in adipose tissue. These changes occurred despite an
increase in insulin-stimulated phosphorylation of p70S6 kinase indicating enhanced activation of mTOR, a phenomenon
normally associated with insulin resistance. These data indicate that modest changes in a single environmental/nutrient
factor can modify multiple metabolic and signaling pathways and modify HFD induced metabolic syndrome by acting at a
systemic level on multiple tissues. These data also suggest that increasing dietary leucine may provide an adjunct in the
management of obesity-related insulin resistance.
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Introduction

Obesity and type 2 diabetes are determined by the interplay

between genetics and environmental influences. Diet, physical

activity, intrauterine environment and even social factors have

been shown to impact on genetic background and alter metabolic

homeostasis [1,2]. With regard to diet, most attention has focused

on how changes in macronutrient composition, i.e., the proportion

of fat, carbohydrate and protein, can affect metabolic disease risk.

However, how individual nutrients may act as metabolic

regulators is less clear.

The branched chained amino acids (BCAA) leucine, isoleucine

and valine have been shown to function as regulators of hormonal

signaling in addition to serving as nutrients. High protein diets

(HPD), a source of BCAA, have been shown to be beneficial for

weight loss and reduce glucose concentrations in type 2 diabetes

patients [3–7]. In some studies, however, HPDs increase fasting

glucose, primarily through impairment of insulin suppression of

hepatic glucose output [8]. At the molecular level, BCAA,

especially leucine, can activate the mammalian Target Of

Rapamycin (mTOR) leading to activation of p70S6 kinase and

increased serine phosphorylation of IRS-1 [9], which inhibits

insulin signaling and insulin-stimulated glucose transport in muscle

[10] and fat [11]. Recently, Newgard et al showed that

administration of a mixture of BCAA to rats on a HFD increased

insulin resistance [12]. On the other hand, leucine has been shown

to rescue insulin signaling in adipose tissue explants obtained from

insulin resistant db/db mice [13].

In the present study we have examined how a single dietary

BCAA, leucine, alters metabolism and insulin signaling in a mouse

model of insulin resistance and metabolic syndrome, namely

HFD-induced obesity. We show that despite its effects to activate

p70S6K, a two-fold increase in dietary leucine improves glucose

tolerance, prevents hepatic steatosis, reduces obesity-induced

adipose tissue inflammation and rescues insulin signaling in

muscle, liver and fat. Furthermore, increasing dietary leucine
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restores many abnormalities in the metabolomic profile of serum

and tissues of mice on HFD, illustrating how a single environ-

mental factor can influence multiple tissues and multiple metabolic

pathways to alter the development of type 2 diabetes and the

metabolic syndrome.

Results

Leucine supplementation of mice on chow (CD) and high
fat diets (HFD)

Mice were placed on either a regular CD or HFD, without or

with supplemental leucine (1.5% w/v) in the drinking water. This

resulted in a doubling of leucine intake from 60–70 mg/day to

130 mg/day (Figure 1A) and an approximate doubling of serum

leucine levels (Figure 1B), without affecting food or caloric intake

(Figure 1E).

As expected, HFD mice increased their body weights 40% more

than CD mice over the 8 weeks of study and had increases in

perigonadal (PG) and subcutaneous (SC) fat pad and liver weight,

reflecting increased obesity and hepatosteatosis (Figure 1D). Mice

on HFD+Leu had similar increases in body weight (Figure 1C) and

PG fat pad weight (Figure 1D) and showed no significant difference

in total fat or lean mass on DXA scanning (Figure S1). However,

upon sacrifice, mice on HFD+Leu had a significantly smaller

increase in SC fat pad weight than mice on HFD alone (2.7- vs. 4.7-

fold, p,0.05) and did not show the 2-fold increase in liver weight

observed in HFD mice (Figure 1D) (P,0.05). These changes

occurred with no difference in food consumption between mice on

HFD and HFD+Leu (Figure 1E). Metabolic cage assessment

showed no differences in energy expenditure or heat production in

HFD+Leu mice compared to HFD (Figure S2). Likewise, serum

adiponectin, leptin, triglycerides, glucagon and c-peptide levels were

similar between HFD and HFD+Leu fed mice (Figure S3). Addition

of leucine to mice on CD had no effect on weight gain, organ weight

or any of the physiological parameters studied (examples shown in

Figure S4). Therefore, in subsequent sections, data on the effects of

leucine in CD mice is presented only with regard to effects on

metabolite profiles.

Leucine supplementation improved glucose tolerance
and reduced hepatic steatosis

As expected, mice on a HFD showed markedly impaired

glucose tolerance (GT) compared to CD mice with peak glucoses

of 420621 mg/dl versus 274641 mg/dl, respectively (Figure 2A).

Addition of Leu to the HFD, on the other hand, showed

significantly improved GT compared to mice on HFD alone with

peak glucoses of 356625 mg/dl (p,0.05 vs HFD alone)

(Figure 2A). The improved glucose tolerance could also be

observed by calculation of the area under the curve (AUC) during

Figure 1. Effect of dietary leucine on body weight, fat mass and food consumption. Eight week-old male C67BL/6 mice were fed a chow
diet or a high fat diet, with or without supplementation by leucine (1.5% w/v) in the drinking water for 8 weeks as described in Methods. A) Leucine
intake was calculated based on the amount of leucine consumed in the drinking water and the amount contained in the food as provided by the
manufacturers (25 mice per group). B) Histogram plots showing relative levels of serum leucine as measured by UHPLC-MS/MS at the end of the
eighth week with 8–10 mice per group. C) Body weights were monitored at the weeks indicated (25 mice per group). D) Tissue weight was measured
at the end of the 8 weeks on each diet (5 mice per group). E) Food intake was measured every week and the mean consumption was calculated for
every dietary intervention (25 mice per group).
doi:10.1371/journal.pone.0021187.g001
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the GTT, with a 50% increase in AUC of the HFD mice

compared to the CD mice and an intermediate 25% increase in

area in HFD+Leu mice compared to mice on CD (p = 0.01

between HFD and HFD+Leu) (Figure 2A). Random fed glucose

levels were also lower in the HFD+Leu mice compared to HFD,

but there was no difference in the glucose lowering effect of insulin

during the insulin tolerance test (Figure S5). Histological

examination of liver revealed marked intracellular lipid accumu-

lation in mice on HFD compared to controls, and this was

markedly reduced in mice on HFD+Leu (Figure 2B), consistent

with decreased expression of lipogenic enzymes observed under

these conditions. For example,expression of lipogenic enzymes

fatty acid synthase and acetyl CoA carboxylase mRNA levels were

increased 3-fold and 2-fold, respectively, in livers of HFD mice

compared to CD mice, and these reverted to control levels in the

HFD+Leu mice (Figure 2C). Leucine supplementation also helped

normalize expression of glucokinase and pyruvate kinase, and

reduced expression of inflammation markers genes: TNFa, F4/80

and CD68 in liver (Figure S6).

Effect of leucine supplementation on insulin signaling,
p70S6K and AMP Kinase

To determine if the effect of leucine to improve glucose

tolerance was due to improved insulin sensitivity, we analyzed the

insulin signaling pathway in muscle, liver and adipose tissue. In the

control CD mice, i.v. insulin injection resulted in a robust increase

in phosphorylation of the insulin receptor (IR), IRS-1 and AKT in

muscle, liver and fat (Figures 3A, C, E and Figure S7). In HFD

mice, these insulin effects were markedly blunted. In muscle and

fat, there was almost no detectable increase in IR and IRS-1

tyrosine phosphorylation and a 50% decrease in AKT serine

phosphorylation (Figures 3A and 3E). Likewise, in liver of HFD

Figure 2. Leucine supplementation improves glucose tolerance and hepatic steatosis in mice on HFD. A) Glucose tolerance tests were
performed after an overnight fast in the three study groups. Mice received an intraperitoneal injection of 2 g/kg body wt glucose. Glucose was
measured in tail vein blood samples at the indicated times. The area under the curve (AUC) was calculated for each dietary condition. Data points are
means 6 SEM with 7–8 mice in each group. B) Mice were sacrificed and livers were harvested after 8 weeks on each diet. The livers were then
formalin fixed, embedded in paraffin and sections stained with H&E. Three mouse livers per group were analyzed. C) mRNA was extracted from
200 mg liver and subjected to quantitative real time PCR. Gene expression for FAS and ACC were normalized against TATA-binding protein (TBP). 5
livers per group were used. *P,0.05.
doi:10.1371/journal.pone.0021187.g002
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mice, there was .50% decrease in tyrosine phosphorylation of

IRS-1 and IR and a 40% decrease in insulin stimulated serine

phosphorylation of AKT (Figure 3C). Addition of leucine to the

HFD almost completely rescued the insulin-stimulation of IR,

IRS-1 and AKT, returning them to levels similar to those in the

CD mice (Figures 3A, 3C and 3E). HFD-induced insulin resistance

also caused a decrease in IR and IRS-1 protein in muscle by 60%

and 64%, respectively (Figure 3A) and a reduction of IR protein in

fat by 48% (Figure 3E and Figure S8), whereas AKT protein levels

were increased upon HFD feeding (Figure 3E). All these changes

also normalized in the HFD mice supplemented with leucine

(Figures 3A, 3C, 3E and Figure S8, also extra loading controls for

all tissues in Figure S9).

Leucine acts together with insulin to increase protein synthesis

in muscle via the activation of the mTOR/p70S6K pathway [14].

To determine if leucine supplementation could increase the

activation of p70S6K, Western blots were performed on muscle,

liver and fat extracts. In the basal state, p70S6K phosphorylation

was not detectable in any of the mice. Following insulin

stimulation, there was a robust increase in the phosphorylation

of p70S6K in muscle and liver of CD mice (Figures 3B and 3D). In

liver, insulin-stimluated phosphorylation of p70S6K was reduced

in HFD mice and returned toward normal in HFD+Leu mice

(Figure 3D). In muscle, insulin-stimulated p70S6k was enhanced in

HFD mice and further enhanced in the HFD+Leu mice,

indicating the effects of both HFD and leucine to potentiate

insulin-stimulated p70S6K activation (Figure 3B).

Increases in IRS-1 Ser307 phosphorylation have been shown to

reflect activation of stress kinases in many insulin resistant states

[15]. Ser307 phosphorylation of IRS-1 was barely detectable in fat

from CD mice and increased 5.4-fold in mice on HFD (Figure 3F

and Figure S8). This phosphorylation was observed in both the

basal and insulin stimulated state. Surprisingly, despite the

increased phosphorylation/activation of p70S6K, fat from mice

fed a HFD+Leu had reduced IRS-1 Ser307 phosphorylation.

AMPK can act as an insulin sensitizer in muscle and therefore

improve the general metabolic profile. As expected, AMPK

phosphorylation was decreased in muscle of HFD mice compared

to CD fed animals, and leucine rescued its phosphorylation

(Figure 3B). This occurred independent of insulin stimulation.

Effect of dietary leucine on adipose tissue morphology
and inflammation

Despite the 35% reduction in weight of the SC fat pad,

adipocyte size in both SC and PG fat did not change in HFD+Leu

compared to HFD mice (Figures 4A and 4B). As expected, there

were ‘‘crown-like’’ structures in the PG fat from HFD mice

characteristic of increased macrophage infiltration and tissue

inflammation [16]. HFD also increased the expression of the pro-

inflammatory cytokine TNFa and the macrophage marker F4/80

in the PG fat by ,6 -fold compared to mice fed a CD (Figures 4C

and 4D). Addition of leucine to the HFD blocked appearance of

the macrophage infiltrates (Figure 4A) and reduced the levels of

TNFa and F4/80 by 40–45%. This was confirmed by immuno-

histochemistry of the PG fat using F4/80 antibody with a decrease

in the number of crown-like structures from 33.3 per field in HFD

to 7.7 per field in HFD+Leucine mice (Figure 4E). These changes

were also reflected in changes in expression of genes important for

adipocyte function. Thus, adiponectin and GLUT4 were de-

Figure 3. Leucine supplementation rescues insulin signaling in muscle, liver and fat and stimulates p70S6K and AMPK
phosphorylation. After 8 weeks on the different diets, mice were injected i.v. with insulin (5 U per mouse) or saline, and tissues were harvested 5
minutes later. Tissue protein lysates (20 mg) were run on SDS-PAGE and subjected to western blot using antibodies directed against phosphorylated
or total p70S6K, IRS-1 and AKT. Insulin receptor was immunoprecipitated with anti-IR antibody and blotted for phosphotyrosine 4G10 or insulin
receptor (ß-subunit). Panels A and B show the muscle data; panels C and D, the liver data; and panels E and F, the fat data. IRS-1 phosphorylated on
Ser 307 was also assessed in fat lysates (panel F), and AMPK phosphorylated on T172 was assesed in muscle lysates (panel B) by western blotting. 5
animals per group were used, the experiments and the blots were repeated 2 times.
doi:10.1371/journal.pone.0021187.g003
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Figure 4. Effects of HFD and leucine on adipose tissue morphology, macrophage content and inflammatory markers. After 8 weeks
on each diet, mice were sacrificed and perigonadal (PG) and subcutaneous (SC) adipose tissues were harvested, formalin fixed and paraffin
embedded. A and B) Sections were H&E stained and cell size calculated measuring the area of 100 individual cells in three fields per slide, in three
different tissues per group for each adipose depot. C and D) mRNA was extracted from PG and SC fat and subjected to quantitative real time PCR for
inflammatory markers TNFa and F4/80. Five samples per group were used. *P,0.05. E) Perigonadal adipose tissues from HFD and HFD+Leu mice
were also paraffin embedded, and sections processed for immunohistochemistry using F4/80 antibody to stain for macrophages. 3 samples per
group were analyzed and showed similar results. Quantifications were calculated from 3 different fields from 3 different mice per group. *P,0.05.
doi:10.1371/journal.pone.0021187.g004
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creased in HFD and normalized to control levels in HFD+Leu

mice (Figure S10). Expression of FAS and ACC did not change.

Effects of dietary leucine on metabolomic profiles
To define the changes in metabolites that might contribute to

leucine’s positive effects on insulin sensitivity and metabolism, we

performed an unbiased, comprehensive metabolomic profiling of

serum, liver, perigonadal fat and muscle of mice on CD, CD+Leu,

HFD and HFD+Leu. This revealed changes not only in leucine and

its metabolites, but in a broad range of metabolites in multiple

metabolic pathways of protein, lipid and carbohydrate metabolism.

Leucine metabolism. Ingestion of HFD vs. CD had no

effect on serum BCAA levels, but doubling the dietary intake of

leucine increased serum leucine levels in both the CD+Leu and

HFD+Leu groups by 1.5- to 2-fold (p#0.05) without changes in

serum levels of isoleucine and valine (Figure 5A). Interestingly,

the levels of leucine and its metabolites in tissues were quite

different from those observed in serum. Thus, leucine levels in

skeletal muscle were not changed by leucine supplementation, but

levels of the leucine metabolite hydroxyisovaleroyl-carnitine

(HIV-carnitine) were increased 2.3-fold (p#0.05) in CD+Leu,

reduced to 46% of CD (p#0.05) by HFD and restored to slightly

above control levels in HFD+Leu mice (Figures 5B and 5C).

Likewise in liver, leucine levels were not changed in CD + Leu

mice, while the level of HIV-carnitine was increased 2.2-fold

(p#0.05). Interestingly, levels of both leucine metabolites in liver

were significantly reduced by HFD (61% and 90%, respectively,

p#0.05), and addition of leucine to the HFD restored lecuine

Figure 5. Changes in leucine metabolites in serum, muscle, liver and fat. After 8 weeks on each diet, serum, hindlimb skeletal muscle, liver
and perigonadal fat were obtained, extracted and subjected to non-targeted metabolomic analysis by UHPLC-MS/MS and GC-MS (Metabolon). Box-
and-whisker plots of the relative levels of (A) serum leucine, isoleucine, and valine, (B) Leucine levels in muscle, liver and perigonadal fat, (C) Leucine
catabolite hydroxyisovaleroylcarnitine metabolite levels in muscle, liver and perigonadal fat. 3–9 samples per group were used. *P,0.05. The X-axis
shows the four groups (CD, CD+Leu, HFD, HFD+Leu) and the Y-axis shows the relative normalized intensity for the metabolites measured. Within the
boxplot, the mean value is represented by the black arrowhead, the median by the horizontal dividing line, and the top and bottom of the box
represent the seventy-fifth and twenty-fifth percentile, with the whiskers indicating the maximum and minimum points and outlier points shown as
small circles.
doi:10.1371/journal.pone.0021187.g005
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levels to normal and increased HIV-carnitine levels by 2.2-fold

(p#0.05). By contrast, leucine levels in PG fat increased in mice

on HFD and were reduced toward normal in HFD+Leu mice.

The leucine metabolite HIV-carnitine was increased by 2.3-fold

(p#0.05) in PG fat from CD+Leu mice, tended to decrease on

HFD mice (0.7-fold) and increased on HFD+Leu mice (1.6-fold,

p = 0.05) compared to levels in CD mice (Figures 5B and 5C).

Glucose and energy metabolism. In addition to increasing

serum glucose, HFD increased glucose and glucose metabolites

(glucose 6-phosphate, fructose and fructose 6-phosphate) in muscle

as compared to CD by 1.4- to 1.6-fold, and levels of all these

metabolites returned to normal in HFD+Leu mice (Figure 6A).

Tissue levels of several TCA cycle intermediates were also

perturbed by HFD and normalized by leucine treatment. For

example, fumarate was reduced in livers of HFD mice and tended

to normalize in HFD + Leu (Figures 6B and 6C). Likewise, malate

levels tended to be reduced 30–40% in both muscle and liver from

HFD fed mice compared to CD mice and were normalized by

leucine supplementation (Figures 6B and 6C), while the level of

citrate in muscle was reduced in HFD and was further reduced in

HFD + Leu. In perigonadal fat, on the other hand,TCA cycle

intermediates (malate, citrate, fumarate), as well as fructose-6-

phosphate, were significantly increased by 1.3–2.5 fold in HFD vs.

CD mice. Addition of leucine to the HFD restored all of these

metabolites to the levels found in CD mice (Figure 6D).

Fatty Acids. HFD resulted in increases in serum levels of

several long chain free fatty acids LC-FFA), including

arachidonate, dihomolinoleate, eicosatrienoate and adrenate, by

1.3- to 2.5-fold (all p,0.05). Surprisingly, the serum levels of the

latter three were increased further by 30–60% in mice on

HFD+Leu, despite the general improvement in metabolism.

Levels of the majority of the remaining LC-FFA were decreased

in HFD mice, and most were restored toward normal in mice on

HFD+Leu (Table 1). The most dramatic changes in tissue FFA

were observed in the perigonadal fat, where half of the FFA species

analyzed were increased in the HFD group. Again, most of these

were restored toward normal in the HFD+Leu group (Table 1).

Cholesterol and bile acid and sterol metabolism. Serum

cholesterol levels were increased in mice on HFD 1.4-fold

(p#0.05) and not changed by leucine supplementation in either

CD or HFD mice. Cholesterol can be metabolized into bile acids

and steroid hormones. Interestingly, the level of the serum bile

acid taurochenodeoxycholate was reduced by leucine

supplementation in both CD+Leu and HFD+Leu mice

compared to their controls (Figure 7A). This reduction mirrored

an increase in serum corticosterone levels induced by leucine

Figure 6. Changes in glucose and TCA cycle metabolites in muscle, liver and fat. After 8 weeks on each diet, serum, hindlimb skeletal
muscle, liver and perigonadal fat were obtained, extracted and subjected to non-targeted metabolomic analysis by UHPLC-MS/MS and GC-MS
(Metabolon). Box-and-whisker boxplots of relative levels are shown for A) Glucose and glucose metabolites in muscle, B) TCA cycle metabolites in
muscle, C) TCA cycle metabolites in liver, and D) TCA cycle metabolites and fructose-6-phosphate in perigonadal. 3–9 samples per group were used.
*P,0.05.
doi:10.1371/journal.pone.0021187.g006
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treatment (CD+Leu, 1.4-fold; HFD+Leu, 1.7-fold) (Figure 7A). In

contrast to the changes in serum, cholesterol levels in the liver were

reduced to 72% of control in mice on HFD (p#0.05), and these

levels increased toward normal in HFD+Leu mice (Figure 7B).

Other pathways related to liver energy metabo-

lism. Nicotinamide adenine dinucleotide (NAD+), a cofactor

for energy production and the action of the sirtuin protein

deacetylases, was reduced in liver (and muscle) from HFD mice

to 74% of control levels (p#0.05), and was restored to normal

levels by leucine supplementation. Tryptophan, a precursor of

NAD+, was also reduced in livers from HFD mice (p,0.05) and

restored to normal levels in HFD+Leu mice (Figure S11).

Fructose and sorbitol tended to increase in livers of mice on

HFD and return towards normal in HFD+Leu. The changes

suggest an increase in polyol pathway activity induced by HFD,

a pathway involved in development of diabetic complications

[17]. Most of these changes were reduced by addition of leucine

to the diet (Figure S11).

Finally, levels of a-hydroxybutyrate (a-HB) were found to be

elevated in liver from HFD mice and restored to normal by

leucine. In serum, a-hydroxybutyrate levels also increased upon

HFD but were not normalized by leucine supplementation, despite

the fact that leucine reduced the serum levels of a-HB in mice on a

CD (Figure S11). In humans, we have shown that among

metabolites in the circulation, a-hydroxybutyrate shows the best

correlation with insulin resistance and serves as an early marker of

glucose intolerance [18].

Discussion

In the present study we sought to determine how a single,

minimal environmental change, i.e., a modest increase in the

intake of one amino acid, could impact on metabolic homeostasis

and insulin resistance. We chose the essential BCAA leucine, since

is not synthesized in the body and is obtained entirely through

dietary intake. Leucine is abundant in all protein food sources [19]

and is also interesting physiologically, since it regulates mTOR

signaling [20,21] and impacts on several metabolic processes [22].

We show that increasing dietary leucine by as little as two-fold

can have an impact on insulin signaling, tissue macrophage

Table 1. Fatty Acid Levels in Serum and Perigonadal Fat.

SERUM

Fatty Acids Fatty Acid HFD/Chow HFD+ Leu/Chow HFD/Chow HFD+Leu/Chow

P-VALUE P-VALUE

Essential fatty acids Docosapentaenoate (n3 DPA; 22:5n3) 0.55 0.82 0.0001 0.1917

Docosahexaenoate (DHA; 22:6n3) 0.65 0.84 0.0000 0.0867

Long chain fatty acid Palmitate (16:0) 0.73 0.88 0.0001 0.1507

Margarate (17:0) 0.82 1.06 0.0224 0.5128

10-heptadecenoate (17:1n7) 0.67 0.85 0.0102 0.3118

Oleate (18:1n9) 0.84 1.03 0.0297 0.7254

Linoleate (18:2n6) 0.75 0.88 0.0004 0.1284

Nonadecanoate (19:0) 0.68 0.95 0.0189 0.6420

10-nonadecenoate (19:1n9) 0.57 0.78 0.0009 0.2374

Eicosenoate (20:1n9 or 11) 0.64 0.93 0.0053 0.6917

Dihomo-linoleate (20:2n6) 1.34 1.79 0.0236 0.0001

Eicosatrienoate (20:3n9) 1.96 3.05 0.0180 0.0000

Arachidonate (20:4n6) 2.48 3.23 0.0000 0.0000

Adrenate (22:4n6) 1.48 2.23 0.0024 0.0000

PERIGONADAL FAT

Fatty Acid HFD/Chow HFD+ Leu/Chow HFD/Chow HFD+Leu/Chow

P-VALUE P-VALUE

Essential fatty acid Linolenate [alpha or gamma; (18:3n3 or 6)] 1.41 0.99 0.0324 0.9274

Medium chain fatty acid Laurate (12:0) 2.02 0.91 0.0297 0.2381

5-dodecenoate (12:1n7) 5.04 1.16 ,0.001 0.5021

Long chain fatty acid Myristate (14:0) 1.75 0.96 0.0100 0.9505

Myristoleate (14:1n5) 3.86 1.20 ,0.001 0.5122

Pentadecanoate (15:0) 2.28 0.75 0.0550 0.6313

Palmitate (16:0) 1.26 0.97 0.0618 0.9933

Palmitoleate (16:1n7) 1.59 0.92 0.0026 0.6022

Heptadecanoate (17:0) 3.65 1.02 0.0043 0.7948

Linoleate (18:2n6) 1.20 0.94 0.0862 0.7844

Free Fatty Acids were analyzed by metabolomics in serum and fat from mice after 8 weeks on each diet. Essential, medium and long chain fatty acids are represented.
Differences between HFD and CD as well as HFD + Leu and CD (ratios) are shown iserum (top panel) and perigonadal fat (bottom panel).
doi:10.1371/journal.pone.0021187.t001
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infiltration and the entire metabolic profile of an animal. While the

changes in metabolite profile induced by leucine are similar in

both CD and HFD mice, the physiological effects are most

profound in the context of HFD, where doubling dietary leucine

reduces HFD-induced insulin resistance, inflammatory changes in

adipose tissue, glucose intolerance and hepatic steatosis, without

modifying weight gain. Leucine’s effect to reduce the hepatic

steatosis induced by HFD occurs via reduced expression of

lipogenic genes, and, like the effects on glucose metabolism, is

independent of changes in adiposity. Similarly, in humans, high

protein diets have shown to decrease hepatic lipid deposition

without altering body weight or adiposity [23].

The data herein demonstrate that improvement of glucose

tolerance and hepatic steatosis by leucine supplementation

correlates with improved insulin signaling in muscle, liver and

fat. This includes enhancement in the phosphorylation/activation

of the insulin receptor, IRS-1 and AKT. This is in contrast to the

in vitro effects of leucine to increase mTOR-p70S6K mediated

serine phosphorylation of IRS-1 resulting in decreased insulin

signaling and insulin action in muscle, fat and liver [24]. We find

that despite the increase in activation of p70S6K in HFD+Leu

mice compared to HFD mice, which in vitro results in increased

serine phosphorylation and decreased tyrosine phosphorylation of

IRS-1 [25–27], the increased serine phosphorylation of IRS-1 in

vivo produced by leucine supplementation is associated with

improved insulin signaling and increased tyrosine phosphorylation

of IRS-1. Whether this reflects a difference between in vitro and in

vivo activities or differences between insulin resistant and non-

insulin resistant conditions is unclear, but the observations

reported here are in agreement with Hinault et al [13,28] who

found that BCAA treatment can rescue AKT activation in insulin

resistant adipocytes from ob/ob mice or adipocyte cell lines, in

which PI 3-kinase activity has been blocked by wortmannin.

Consistent with effects of hyperosmotic stress to also contribute

to the development of insulin resistance and diabetes [29,30], we

observe sorbitol and downstream intermediates (fructose, fructose-

6-phosphate) accumulating in the liver in HFD mice (Figure S11).

When glycolytic capacity is reduced such as in muscle and liver

(Figure 6 and Figure S11) under insulin resistant conditions,

glucose is redistributed to other glucose utilization pathways such

as sorbitol. Sorbitol serves as a energy storage repository in

overnutrition conditions, and such excess nutrient availability has

been associated with increases in the S6K1 kinase pathway. The

hyperosmotic stress that occurs when sorbitol is elevated in tissues

has been shown to contribue to the reduction in insulin sensitivity

[31].

We also found that AMPK phosphorylation, which is reduced

in muscle of mice on HFD, is rescued to control levels by leucine

Figure 7. Changes in cholesterol, bile acids and sterol metabolism in serum and liver. After 8 weeks on each diet, serum and liver were
obtained, extracted and subjected to non-targeted metabolomic analysis by UHPLC-MS/MS and GC-MS (Metabolon). Box-and-whisker plots showing
relative levels of A) serum sterol, bile acid, and steroid levels, and B) liver cholesterol and bile acid metabolites in sterol-bile acid biosynthetic pathway.
3–9 samples per group were used. *P,0.05.
doi:10.1371/journal.pone.0021187.g007
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supplementation. This change could help explain a number of

components in the improvement in insulin sensitivity and

metabolism in these mice.

This may also reflect a difference between chronic and acute

effects of amino acid exposure. For example, short-term treatment

of rats with BCAA produces insulin resistance [12], while long-

term BCAA supplementation has been shown to improve insulin

resistance in patients with liver disease [32]. Human studies have

also shown that high protein diet, which provides increases in

dietary leucine, can reduce glycemia in patients with type 2

diabetes without effect on body weight [33], but this is, at least in

part, due to improved insulin secretion [6].

Some of the differences between in vivo and in vitro studies may

reflect the fact that in vivo effects of leucine on one tissue can

impact other tissues and hence on whole body metabolic

homeostasis. For example, leucine had no effects on size of the

PG fat pad or PG adipocytes, but leucine supplementation was

able to block the macrophage infiltration and expression of

inflammation markers in PG fat from mice fed a HFD, which in

turn would improve insulin resistance in other tissues and enhance

whole body glucose metabolism. Exactly how leucine modifies the

inflammation in adipose tissue without modifying adipocyte

hypertrophy remains to be determined. Amino acids are essential

for the increase in protein synthesis needed for adequate immune

system function [34]. Rapamycin, an mTOR inhibitor, has been

extensively used as an immunosupressant and suppressor of T-cell

proliferation [35]. However, rapamycin can also have inflamma-

tory side effects [36]. Leucine is an activator of mTOR, and the

mTOR pathway has been shown to reduce inflammation in

monocytes [37]. Thus, dietary leucine may inhibit adipose

inflammation via mTOR inhibition of NFkB, a transcription

factor that has been shown to be an important regulator of adipose

tissue inflammation and participant in the development of insulin

resistance [38].

Exactly how leucine and other nutrients exert effects on

metabolism is complex and may depend on the dietary context,

species and dose of the nutrient. Consistent with our studies,

Zhang, et al [39] and Ropelle, et al [40] have reported improved

metabolism and glucose tolerance in obese mice and rats following

leucine supplementation. Some of these effects of leucine occurred

at higher levels of supplementation, which resulted in reduced food

intake and reduced obesity. On the other hand, Nairizi et al [41]

observed improved glucose levels in HFD fed mice given leucine

supplementation without changes in food consumption, body

weight, or adiposity. Although there was no significant change in

body weight in our HFD+Leu group compared to HFD alone,

there was a significant reduction in subcutaneous fat mass, a

feature not analyzed in other studies. Previous studies from our lab

and others have shown that subcutaneous fat may have beneficial

effects on insulin sensitivity and metabolism [42].

Another comparison to our study is the recent study by

Newgard, et al [12], which showed that rats fed a HFD together

with supplemental BCAA (150% increase of valine, leucine and

isoleucine) became even more insulin resistant than rats fed HFD

only, despite the fact that adding BCAA to the diet resulted in

reduced food intake and reduced weight gain. In addition to the

differences between species, it is interesting to note that feeding the

mixture of BCAA resulted in increases in serum levels of all three

BCAA, whereas feeding leucine only, increased the level of leucine

in serum, but did not change in serum levels of valine and

isoleucine. This difference suggests that increasing the levels of the

other BCAA may contribute to insulin resistance observed.

Metabolomic analysis showed changes in multiple metabolic

pathways driven by leucine supplementation. Thus, while serum

leucine did not change in HFD, some of its metabolites did, and

leucine supplementation normalized levels of these metabolites. In

tissues, HFD results in an increase in leucine levels in fat, but no

change in muscle and a reduction in liver. However, the leucine

metabolite hydroxyl isovaleroyl-carnitine was reduced (or tended

to be reduced) in all tissues from HFD animals, suggesting

decreased leucine metabolism, and these levels were increased to

above normal by leucine supplementation in both CD and HFD.

This C5 acylcarnitine is an intermediate in fatty acid oxidation

and could reflect impaired fatty acid oxidation in HFD that is

restored by leucine treatment. C3 and C5 acylcarnitines are

metabolites of BCAA catabolism, so an increase in dietary leucine

can normalize these levels in HFD fed mice. Recently Muoio, et al

[43] proposed that insulin resistance in skeletal muscle is linked to

an excess, rather than a reduction, in b-oxidation. They showed

decreases in muscle and serum C3 and C5 acylcarnitines, but

increases in long chain C8 to C16 species in rats on HFD.

Newgard et al, also found that in rats fed a HFD, the serum C3,

C5 acylcarnitines were reduced compared to controls on a

standard diet and that these levels were increased in rats fed a

HFD supplemented with BCAA, reaching levels similar to those of

control rats. These changes in acylcarnitines C3 and C5 are in

agreement with the findings in our study, but in their case, the

BCAA-treated animals were insulin resistant, whereas our leucine

supplemented animals are rescued from many of the deleterious

effects of HFD. This suggests that acylcarnitine levels alone are not

a good marker of insulin resistance, since animals on HFD have

reduced C3 and C5 levels and are insulin resistant, whereas

animals supplemented with leucine or BCAA have levels similar to

animals on chow diet and can be insulin sensitive (if leucine

supplemented) or insulin resistant (if BCAA supplemented). C3

and C5 acylcarnitines are metabolites of BCAA catabolism, so an

increase in dietary leucine can normalize these levels in serum and

muscle from HFD fed mice. In favor of a positive role of high

levels of acylcarnitine, Lechmann et al. showed that medium chain

acylcarnitines are increased during moderately intense exercise

and support muscle fat oxidation [44], showed that medium chain

acylcarnitines identified by metabolomics are increased during

moderately intense exercise and they support muscle fat oxidation,

the authors propose that increased acylcarnitines might be part of

the beneficial mechanism of excercise to increase beta-oxidation.

Despite impaired glucose tolerance, glucose metabolism, as

estimated by intracellular glucose metabolites, is increased in

muscle in HFD obese mice and normalized by leucine

supplementation. Amelioration of the accumulation of such

glycolytic intermediates in the HFD+Leu condition parallels the

observed improvement in glucose tolerance and demonstrates that

glycolysis efficiency has been restored to control levels. Moreover,

in HFD animals, TCA cycle metabolites are decreased in both

muscle and liver, indicating impaired metabolism, and these are

restored to normal by leucine supplementation. Also, fatty acids

accumulated in fat in animals fed a HFD, and these changes were

normalized by leucine supplementation. Thus, leucine supple-

mentation restores normal glucose and energy metabolism in

tissues of HFD fed mice.

Of particular interest is the cholesterol and bile acid pathway.

Serum cholesterol levels were not changed by leucine, but

cholesterol levels in liver were reduced in HFD fed animals and

normalized with leucine supplementation. Serum corticosterone

was not changed in HFD mice, but was increased with leucine

supplementation in both CD and HFD. This increased cortico-

sterone may contribute to the effects of leucine to reduce the

inflammatory response in adipose tissue which occurred upon

HFD feeding.
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In conclusion, increasing the dietary content of a single amino

acid, leucine, by as little as two-fold can ameliorate many of the

deleterious effects of HFD, including adipose tissue inflammation,

hepatic lipid deposition and insulin resistance. Leucine supple-

mentation also improves insulin signaling and multiple aspects of

the metabolic profile, as well as decreases inflammation in adipose

tissue and decreases ectopic lipid deposition in liver. These data

demonstrate the complex nature of environmental effects in

creating risk for diabetes and metabolic syndrome and point to the

importance of a systems biology approach to understanding, not

just the effects of macronutrients, but the effects of individual

nutrient components on disease pathogenesis.

Materials and Methods

Ethics Statement
Protocols for animal use were approved by the Animal Care

Use Committee of the Joslin Diabetes Center in accordance with

NIH guidelines. Protocol numbers: 1989-23 and 2007-02.

Animals, dietary conditions and physiological
measurements

Eight week old C57BL/6J mice (Jackson Labs) were divided in

four groups of 25 and fed a chow diet (5020, Lab Diets) containing

21% of calories from fat or a HFD containing 60% calories from

fat (D12492 Research Diets) with or without supplemental leucine

(1.5% w/v) (Sigma) in the drinking water. GTT was performed 3

and 8 weeks after starting the diets. Insulin signaling was carried

out by injecting mice with 5 U of insulin or saline in the vena cava

and harvesting tissues five minutes later.

Western blot and Immunoprecipitation
200 mg of tissue were used to prepare protein extracts of

muscle, liver and perigonadal fat. 20 mg of protein extracts from

each tissue were subjected to SDS-PAGE, and blots probed with

antibodies to AKT, phospho-AKT [Ser473], phospho-p70S6K

[Thr389], phospho AMPK [Thr172], AMPK (Cell Signaling),

IRS-1 (BD Transduction), phospho-IRS-1 [Y612] (Biosource),

insulin receptor, p70S6K (Santa Cruz) and phosphotyrosine

[4G10] (Upstate) (all antibodies diluted 1:1000). Detection was

with horseradish peroxidase-coupled secondary antibodies (at a

1:5,000 dilution) and enhanced chemiluminescence. Immunopre-

cipitation of the IR was carried out using 0.5 mg of protein lysates,

1 mg of anti-insulin receptor antibody and protein A/G agarose.

mRNA analysis and histology
Total RNA was extracted from tissues (Rneasy, QIAGEN).

Reverse transcription was performed using 0.5–1 mg of RNA, and

quantitative real-time PCR was performed using an ABI 7900

with SYBR Green. Tissues were embedded in paraffin, sectioned,

and stained with hematoxylin and eosin. Immunohistochemistry

for macrophages was performed with F4/80 antibody (Abcam)

and a Vector Peroxidase Kit.

Sample preparation and metabolomics data acquisition
Briefly, small molecule metabolites were extracted, and the

reconstituted extracts were resolved using mass spectrometry

platforms, comprising UHPLC-LC-MS/MS and GC-MS. Chro-

matographic separation of all ions in each sample was followed by

library matching of these ions to Metabolon’s reference library of

standards (.2000 authentic standards, plus thousands of addi-

tional library entries of unknown biochemicals based on unique

characteristics of retention time, nominal mass and fragmentation

pattern). The identity of metabolites was determined by matching

the combination of chromatographic retention index and mass

spectra signatures compared to the reference library entries. The

total number of biochemicals detected and measured for each

biological matrix were: serum, 398 metabolites; liver, 444

metabolites; muscle, 257 metabolites; and perigonadal fat, 169

metabolites. Relative quantitation was based on peak integration

and expressed in figures as scaled intensity.

Metabolomic Profiling Platform
The untargeted metabolic profiling platform employed for this

analysis was based on a combination of three independent

platforms: ultrahigh performance liquid chromatography/tandem

mass spectrometry (UHPLC/MS/MS) optimized for basic species,

UHPLC/MS/MS optimized for acidic species, and gas chroma-

tography/mass spectrometry (GC/MS), with details of this

platform described extensively in a previous publication [45].

Various standards spiked into each sample allowed for estima-

tions of overall process variation and ensure data quality [45]. The

median relative standard deviation (RSD) for the internal standards

for serum, liver, muscle, and perigonadal fat was 6%, 7%, 9%, and

8%, respectively, reflecting a very low degree of instrument

variability. Overall process variability was determined by calculat-

ing the median RSD for all endogenous metabolites (i.e., non-

instrument standards) present in 100% of a technical replicate

sample that consisted of pooled client samples for serum, liver,

muscle, and perigonadal fat. Indicative of acceptable process

variability, the median RSD for these samples was 13% for liver

and muscle and 15% for serum and perigonadal fat.

Metabolomic Data Normalization and Imputation
The counts for the integrated peak areas for each metabolite in

each sample were normalized to correct for variation resulting

from instrument inter-day tuning differences. For each metabolite,

the raw area counts were divided by its median value for each run-

day, therefore setting the medians equal to 1 for each day’s run. In

this way, the variation between instrument run day is removed,

while the variation that exist across experimental samples (e.g.

from the course of day 0 to day 15) remains. Missing values (i.e.

from an absence of a peak in a particular sample) were imputed

with the observed minimum after the normalization step. Data

were log transformed for statistical analysis.

Statistical Analysis
All data are reported as mean 6 S.E.M. Comparisons were

made using Student’s t test when comparing two groups and

ANOVA for more than two groups. ANOVA repeated meassures

test was used for the GTT and ITT analysis. P,0.05 was

considered significant.

Supporting Information

Figure S1 Lean mass and total body mass are not
altered by leucine supplementation. Lean mass and fat mass

were evaluated by Dual energy X-ray absorptiometry (DEXA) in 5

mice per group after 8 weeks on each diet. *P,0.05.

(PPT)

Figure S2 Leucine supplementation does not change
energy expenditure or activity measured by CLAMS.
Metabolic cage studies were performed over a 24 hour period

following 1 day of acclimation in 8 mice per group. Mice were fed

from 0–24 hrs and fasted from 24–47.5 hrs.

(PPT)
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Figure S3 Leucine supplementation does not change
leptin, adiponectin, triglyceride, glucagon or c-peptide
serum levels. Serum levels were evaluated by ELISA in 5

samples per group in random fed animals at 8 weeks after the

initiation of each dietary condition. Values are means 6 SE.

(PPT)

Figure S4 Leucine supplementation in chow diet does
not change metabolic parameters. Body weight, GTT, liver

histology and liver gene expression were analyzed in mice on a

CD, CD+Leu, HFD and HFD+Leu.

(PPT)

Figure S5 Reduced random fed glucose levels but no
change in insulin tolerance test upon leucine supple-
mentation. Insulin tolerance test was evaluated in random fed

animals by i.p. injection of 1 U/kg BW insulin in 7 animals per

group. *P,0.05.

(PPT)

Figure S6 Leucine supplementation normalizes some
alterations in liver gene expression induced by HFD.
mRNA was extracted from 200 mg liver and subjected to

quantitative real time PCR. Gene expression was normalized

against TATA-binding protein (TBP). 5 livers per group were

used. *P,0.05 vs CD.

(PPT)

Figure S7 Leucine supplementation normalizes phos-
phorylation of IR, IRS1Y and AKT in muscle, liver and
PG fat. Phosphorylation was evaluated by western blot using

specific antibodies for each protein. Quantification was done with

Quantity one software (BioRad). Graphs represent the fold change

in phosphorylation stimulated by insulin vs the non treated control

and normalized by densities of the total proteins. N = 5 samples

per group were quantified and western blots were repeated two

times.*P,0.05 vs CD.

(PPT)

Figure S8 Leucine supplementation normalizes protein
expression of IR and reduces IRS1 S307 phosphorylation
in fat and also normalizes IRS1 in muscle. Protein

expression of IRS1 in muscle, IR in PG fat and IRS1 S307

phosphorylation was evaluated by western blot and quantified

using Kodak software. n = 5 samples per group.*P,0.05.

(PPT)

Figure S9 Loading controls for Western blot on liver,
muscle and PG fat. After 8 weeks on the different diets, mice

were injected i.v. with insulin (5 U per mouse) or saline, and tissues

were harvested 5 minutes later. Tissue protein lysates (20 mg) were

run on SDS-PAGE and subjected to western blot using antibodies

directed against b-actin for liver and muscle or b-tubulin for PG

fat. 5 animals per group were used and the experiments were

repeated 2 times and the blots were repeated 2 times.

(PPT)

Figure S10 Leucine supplementation normalizes some
alterations in metabolic visceral fat gene expression
induced by HFD. mRNA was extracted from 200 mg

perigonadal fat and subjected to quantitative real time PCR.

Gene expression was normalized against TATA-binding protein

(TBP). 5 fat depots per group were used. *P,0.05 vs CD.

(PPT)

Figure S11 Other changes in metabolites induced by
leucine supplementation. After 8 weeks on each diet, serum,

hindlimb skeletal muscle, liver and perigonadal fat were obtained,

extracted and subjected to non-targeted metabolomic analysis by

UHPLC-MS/MS and GC-MS (Metabolon). Box-and-whisker

boxplots of relative levels are shown for A) NADH and

Tryptophan metabolism, B) Polyol Pathway, C) Alpha-hydroxy-

butyrate in liver and serum. 3-9 samples per group were used.

*P,0.05.

(PPT)
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