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The construction of artificial membrane proteins from first principles is of fundamental
interest and holds considerable promise for new biotechnologies. This review considers
the potential advantages of adopting a strictly minimalist approach to the process of
membrane protein design. As well as the practical benefits of miniaturisation and simpli-
city for understanding sequence-structure-function relationships, minimalism should also
support the abstract conceptualisation of membrane proteins as modular components for
synthetic biology. These ideas are illustrated with selected examples that focus upon α-
helical membrane proteins, and which demonstrate how such minimalist membrane pro-
teins might be integrated into living biosystems.

Why design membrane proteins?
It is estimated that up to 30% of all proteins are integral membrane proteins [1], with at least one part
of the protein sequence passing through a lipid bilayer membrane. This abundance reflects the univer-
sal role of such proteins in essential life processes such as signalling, solute transport, bioenergetics
and much more. Developing a basic understanding of membrane protein biosynthesis, trafficking,
insertion, folding, and assembly continues to attract considerable attention [2–7]. There is also now a
growing interest in using membrane proteins in the emerging field of synthetic biology (e.g.[8–11]). In
this minireview, we discuss the prospects of designing artificial membrane proteins from scratch — ‘de
novo’ — as a particular way to explore the fundamental principles of membrane biology and to realise
new applications in synthetic biosystems.
The motivations for membrane protein design are much the same as those put forward for ‘water-

soluble’ proteins, which have recently been discussed in several excellent reviews and perspectives [12–19].
We do not intend to reproduce these arguments in full here, but they can be broadly and briefly
summed up as follows. Natural proteins are intricate and complex, which can obscure the core
physical principles underlying their structure and function. Building simplified model proteins can,
therefore, be a useful way to cut through this complexity and understand the fundamental connections
between sequence, structure and function. Another motivation for the designer is that natural selec-
tion has not had sufficient time to sample every possible combination of amino acids. Hence there are
a large number of protein sequences (and by extension, structures and functions) that have never yet
occurred in the natural world. De novo design allows us to survey the full scope of protein sequence
and structural space, and to see whether artificial constructs could replace natural proteins or have
useful non-natural functions. Exciting innovations in the field take advantage of new enabling tech-
nologies such as gene synthesis, automation and recombinant engineering as well as the improved
accessibility, lower cost and greater sophistication of established techniques including peptide synthe-
sis, mass spectrometry, NMR and computation.
In the case of integral membrane proteins, there are at least two additional motivations for the pro-

spective designer. The most obvious stimulus is that our understanding of membrane proteins is now
being revolutionised by a dramatic increase in the number of high-resolution structures available -
although at the time of writing this still only accounts for <2% of all structures deposited in the
protein databank [20]. This progress in structural biology provides a rich new source of information
for design; for example, as discussed below, analysing known structures can identify general sequence
motifs involved in transmembrane helix packing [21,22]. A second impetus is that the design of
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membrane proteins has been less well-explored compared with their water-soluble counterparts and so there
remains much to learn. One aspect of this is that membrane proteins have a notorious reputation for being dif-
ficult to work with. Low expression levels, misfolding and non-specific aggregation can often frustrate efforts to
apply biophysical methods to membrane proteins. This can make it hard to judge the success of the design
process. However, both the knowledge base and practical toolkit around expressing, purifying and reconstitut-
ing membrane proteins continue to rapidly mature, which now substantially improves the chances of overcom-
ing these barriers for de novo membrane proteins [23–29].
Given that there seem to be good reasons to engage in membrane protein design, how should one proceed?

A number of different approaches are possible, and the field embraces a swathe of creative computational and
knowledge-based strategies that account for some notable recent successes [30–33]. Here, we will discuss ascetic
minimalism as one particular tactic for the design of de novo integral membrane proteins. We suggest that the
stage is set for the development of genetically encoded, low-complexity proteins that can provide new insights
into membrane biogenesis and can be harnessed to introduce novel functions into living cells.

A manifesto for minimal membrane proteins
The concept of minimalism emerged from the art world in the 1960s and has since been adopted by theatre,
choreography, music, architecture, and other spheres. Although minimalism invokes simplicity and reduction-
ism, it is more than just a paring-back of superfluous elements [34]. The original minimalist artworks are
three-dimensional objects that lack any ornament or obvious makers’ craft. They are modular and repetitive,
and the methods and materials of construction are obvious. They are geometric and deliberately eschew any
reference to the organic or natural. Fundamental to minimalist art is that the work contains little illusion or
allusion, ensuring that the meaning of the piece is constructed by the viewer rather than the originator
(Figure 1). By analogy, minimalist de novo membrane proteins should have little or no sequence similarity to
natural proteins. They should be of the lowest-possible sequence complexity, using the fewest available amino
acids to achieve their form and function, and be modular at the level of either sequence or structure. They
ought to stand alone and not be fusions to other, natural, proteins. And they ought to ideally be genetically
encoded, so that they might eventually become part of cell physiology and be susceptible to laboratory
evolution.
What is the case for such austere minimalism in membrane protein design? There should be some straight-

forward advantages to diminution and simplification, which have been recognised previously [35,36]. Minimal
membrane proteins should allow us to identify the most basic sequence requirements for particular behaviours
and functions. Such elementary proteins could be more predictable, tractable, pliable, adaptable and robust
than many natural membrane proteins. When recombinantly expressed one might expect minimalist proteins
to impose a relatively low demand for cellular resources and to be highly orthogonal to the host cell, minimis-
ing the metabolic load on the host and reducing the potential for unwanted interference with natural pathways.
The lower the complexity of the protein sequence, the easier it should be to understand the impact of individ-
ual mutations on the protein as a whole. In many ways, this seems like a natural progression of the widespread
and influential use of minimal transmembrane segments to probe multiple aspects of membrane protein bio-
physics [37–39]. A full consideration of this extensive body of work lies outside the scope of the current short
review, but examples include the study of protein–lipid interactions [40,41], protein–protein interactions [42–45]
and the biogenesis of transmembrane helices [46,47].
Minimal proteins could provide other benefits to the field of synthetic biology. The unifying vision of syn-

thetic biology is the artificial cell; a man-made complex system that diverges to a greater or lesser degree from
extant modern life [48–50]. Realising this ambitious goal in its fullest sense requires not just an artificial
genome, but an artificial proteome. Minimal de novo proteins could provide modular ‘building blocks’ for
assembling such a proteome, and will be useful in allowing the size of the synthetic genome to be as small as
possible. But there are also implications of minimalism that go beyond this.
One important part of synthetic biology is abstraction. With regards to proteins, this requires that they

are seen less as the compelling products of natural history and more as engineering components: durable, reli-
able, consistent and interchangeable parts to be adopted or discarded as the situation demands. But natural
proteins come with an origin story — a narrative constructed around their discovery and study. We ought to
recognise that these narratives and contexts make it difficult to really see proteins in the same light as a house
brick or hose-clip, however much we might think otherwise. For example, one of the cornerstones of synthetic
biology research is the green fluorescent protein (GFP). Scientists and schoolchildren alike cherish the story of
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Figure 1. The concept of minimalism in protein design.

(a and b) Minimalist art rejects traditional representations of the natural world, such as landscapes and portraits, in favour of

abstract, serial, and repetitive 3D forms. (c and d) By analogy, minimalist membrane proteins do not attempt to recreate the

complex sequences and structures of natural proteins but instead provide modular biocompatible objects with some specific

properties. (a) La Gioconda (‘The Mona Lisa’) Leonardo Da Vinci (1452–1519) from https://en.wikipedia.org/wiki/Mona_Lisa.

(b) Untitled, 1990 Donald Judd (1928–1994) © Judd Foundation/ARS, NY and DACS, London 2019. From the Tate Images

Collection © Tate, London 2019. (c) Photosynthetic reaction centre from R. viridis, PDB ID 1PRC [102]. (d) Molecular model of a

minimal de novo membrane protein (not to scale with (c)) adapted from ref. [82] (https://creativecommons.org/licenses/by/4.0/).
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GFP; how a seemingly unpromising source, the jellyfish, gave rise to a revolutionary technology that has trans-
formed the molecular biosciences. This means that like many natural proteins GFP remains indelibly associated
with certain people, places, and times. Truly artificial proteins circumvent this issue since they have no such
narrative constructed around them, but instead are deliberately utilitarian. It seems reasonable to suggest that
the simpler such de novo sequences are, and the less they echo their natural counterparts, the easier it will be
to think of them in the abstract. In this spirit, minimalism appears to be an important, productive and liberat-
ing area for protein design.

How to realise minimalism in membrane protein design?
The most obvious targets for the minimal design of membrane proteins are transmembrane α-helical bundles,
and this will be the focus of the discussion below. Nearly all of the natural proteins in cell plasma membranes
feature α-helical secondary structure and these integral membrane proteins are responsible for a wealth of dif-
ferent cellular functions. The remainder of membrane proteins are β-barrels, which occur in the outer mem-
branes of bacteria, mitochondria and chloroplasts and have received less attention in terms of engineering and
design [51,52].

Amino acid sequences
The interior of a lipid bilayer membrane is hydrophobic. It is energetically favourable for hydrophobic amino
acid sidechains to partition into this environment, but energetically unfavourable for exposed peptide bonds to
do the same. These competing effects are resolved by the spontaneous formation of a transmembrane α-helix,
which exposes the hydrophobic sidechains to the bilayer interior and fully satisfies backbone hydrogen
bonding. This means that virtually any sufficiently hydrophobic sequence of ∼18–26 amino acids can form
transmembrane α-helices that are long enough to span a biological lipid bilayer [4]. This suggests that it will be
relatively easy to reduce the complexity of transmembrane segments while retaining secondary structure, and
indeed the lipophillic domains of natural helical membrane proteins are already built from a somewhat
restricted palette of amino acids. Slightly over half of all the amino acids in biological transmembrane helices
are the hydrophobic residues Leu, Ile, Val, Phe and Ala, with Leu being most prevalent [53–55]. Others, espe-
cially the charged residues Glu, Arg, Lys and Asp, are relatively rare (although certainly can be found, and Lys
and Arg in particular can be accommodated by their ‘snorkelling’ into the lipid headgroup region [56,57]). The
primary consideration then is not whether a minimal sequence based on one or more of the common hydro-
phobic amino acids will form a transmembrane helix, since we may assume that it will do so, but how these
helices will interact with the membrane and with each other.

Interactions of transmembrane helices
The membrane milieu impacts the type of interactions that can drive helix association. In the low dielectric of
the membrane interior, sidechain hydrogen bonding can be a means of impelling helix association [43,45].
However, it appears that for many natural membrane proteins a key driving force is Van der Waals interac-
tions. These forces are optimised through shape complementarity and sidechain geometry that allow the close
approach of transmembrane helices [58]. In some cases, this also allows for the formation of interhelical
Cα-H···O hydrogen bonds that likely influence both stability and packing specificity [59,60]. Close packing can
be successfully accomplished even with a small subset of hydrophobic amino acids, probably supported by a
lipophobic effect that favours protein–protein over protein–lipid interactions. For example, transmembrane
polyleucine helices can self-associate via a ‘knobs-into-holes’ leucine zipper interaction also found in natural
proteins (Figure 2a), and this is maintained when Leu is replaced at the helix interface by other hydrophobic
amino acids [44,61]. It does seem that natural membrane proteins adopt a relatively limited range of helix–
helix packing orientations. About 30% of natural antiparallel helical pairs exploit an Ala-coil motif to pack with
a slight left-handed crossing angle [22]. In this motif, small amino acid sidechains (typically Gly, Ala or Ser)
occupy positions a and d or e of the helical heptad to allow close packing via sidechain interdigitation. A fre-
quent feature of both parallel and antiparallel right-handed pairwise packing interactions is the well-known
small-xxx-small motif, where small residues occur at i and i + 4 sequence positions [22,55,59,62]. These small
residues are often flanked by the β-branched sidechains Val and Ile, and it was suggested that the limited rota-
tional freedom of these sidechains reduces the entropic cost of helix association [55]. These analyses were
recently extended from helical pairs to consider helical trimers, which Feng & Barth [21] recognised as the
most basic structural unit in natural membrane proteins. Just over half of these helical trimers could be sorted
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into one of six major categories. They identified 13 common sequence motifs that are able to optimise side-
chain Van der Waals interactions as well as interhelical backbone–backbone and backbone–sidechain hydrogen
bonds. Many of these motifs featured large hydrophobic residues at the helical interfaces. Although such simple
sequence motifs are only one aspect of membrane protein folding [63], the examples above certainly describe
features of helix packing in natural proteins that can be incorporated into minimal designs.

Topology and biogenesis
Polytopic (or multipass) membrane proteins contain multiple helices that thread back-and-forth across the
membrane and are connected by extramembrane loops. Establishing and maintaining the topology of these
helices across the membrane is more complex than might have previously been thought [64–66], but a few
general principles can be distilled. In bacterial systems, the major pathway for biogenesis of polytopic proteins
involves the first TM helix acting as the membrane localisation sequence, also known as a signal-anchor. This
engages with the signal recognition particle to target the nascent polypeptide to the cytoplasmic membrane
and supports insertion via the Sec translocon. Protein topogenesis then has a close correlation with the charac-
ter of the extramembrane loops, with cytoplasmic loops being enriched in positively charged amino acids. This
is the ‘positive inside’ rule [67,68], which has been experimentally verified many times and can be exploited to
deliberately dictate topology [69,70]. Another notable feature of natural proteins is the statistical preference for

(a) (b)

(c)

Figure 2. Some approaches in the minimalist design of membrane sequences.

(a) A transcriptional activation assay shows that polyleucine sequences self-assemble in vivo. Mutational analysis confirms the

importance of leucine at heptad positions a and d, suggesting a leucine zipper interface. Republished with permission of The

American Society for Biochemistry and Molecular Biology from Gurezka et al. [44] © 1999. Permission conveyed through

Copyright Clearance Center, Inc. (b) Topological control of a recombinant minimal membrane protein. Two slightly different

sequences for minimal TM helices are used to assemble a four-helix construct as shown, and charged residues are introduced

at the N-terminus and intracellular loop to control topology according to the ‘positive inside’ rule. Topology within the E. coli

inner membrane is assessed by proteolysis of the exposed periplasmic loops, which leads to the predictable differences in gel

migration shown. PK, Proteinase K. Left panel adapted by permission from Springer Nature. Whitley et al. [81] © 1994. (c)

Introducing hexafluoroleucine at heptad positions a and d encourages dimerisation of a minimal peptide as determined by

equilibrium analytical ultracentrifgation. Adapted with permission from Bilgiçer and Kumar [86]. © 2004 National Academy of

Sciences, U.S.A.
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Trp and Tyr residues in the lipid headgroup region, which appear to be important as ‘anchors’ that control
helical positioning and dynamics [40,71–74]. In the popular recombinant host Escherichia coli, about 80% of
all membrane proteins have a topology that results in their C-terminus residing in the cytoplasm, and probably
60% have both their N- and C-termini within the cytoplasm [75]. A similar orientation bias was also found in
the model eukaryote Saccharomyces cerevisiae [76]. Hence when contemplating the transmembrane topology of
multipass de novo membrane proteins, locating both termini in the cytoplasm seems like a sensible design choice.

Polyleucine as a minimal scaffold
Considering all of the above, polyleucine emerges as an appropriate starting point for the design of minimal
α-helical membrane proteins. Leu has a high helical propensity, is the most common amino acid in natural
transmembrane helices, and can engage in both protein–protein and protein–lipid interactions. Polyleucine is
already established as a suitable and neutral ‘host’ for known motifs than can drive helical association. PolyLeu
helices can be tolerated by biological systems and the topology of these helices can be controlled by the charge
distribution in the flanking extramembrane domains.

Minimal design: from concept to reality
The ideas outlined above can now be illustrated with some key examples of success in producing minimal
membrane proteins. The first example seems to be from Goodall & Urry, who showed in 1973 that synthetic
peptides built around an AAG repeat motif (e.g. (AAG)4) could form conductive ion channels across artificial
membranes [77]. Subsequently, Kennedy et al. [78] extended this observation to polypeptides of various
lengths containing the tetrad repeat motif LSLG. Peptides (LSLG)12 or an N-formyl derivative of (LSLG)6 also
formed conductive channels that were proposed to arise from individual β-helices similar to gramicidin.
However, a detailed molecular understanding was obviously difficult at that time [79]. A major leap forward
was taken in a landmark paper from DeGrado and colleagues in 1988 [35,80]. This described the rational
design of minimal peptides composed only of Ser and Leu that could recapitulate the dimensions and proper-
ties of individual α-helices found within natural ion channels. Two heptad repeat motifs were chosen for this
work. The first of these motifs, LSSLLSL, was repeated in triplicate to give peptide (LSSLLSL)3. The expectation
was that these peptides would self-assemble, with the Ser residues generating a polar helical face that would be
sequestered from the bilayer interior to form an aqueous pore. The (LSSLLSL)3 peptide formed relatively per-
missive cation channels in synthetic lipid bilayers, with a pore size of ∼8 Å and conductance properties remin-
iscent of natural channel proteins (Figure 3a). Substituting Leu for Ser in the repeat motif to give peptide
(LSLLLSL)3 produced channels with markedly different properties. These were apparently highly selective with
much smaller pore size, being only permeable to protons. Computational models suggested that both peptides
could assemble into parallel helical bundles with tightly packed helical interfaces driven by interdigitation of
the Leu sidechains. However, (LSSLLSL)3 was likely to be a hexamer and (LSLLLSL)3 probably a trimer or tetra-
mer. Both of these different tertiary structures allowed the Ser residues to be accommodated in the polar
channel interior.
The minimalist approach was also exemplified by work from von Heijne and colleagues [81]. The sequence

LAALLALLAALLALLAALLA was designed with the expectation that this would form ‘Janus’-like α-helices,
with one face of the helix being Leu and the other face being Ala. Constructs comprising one, two or four suc-
cessive TM helices were successfully biosynthesised from a recombinant plasmid (Figure 2b). These de novo
proteins were localised to the E. coli membrane and the transmembrane topology was controlled by adjusting
the charge in the interconnecting loops. These highly orthogonal constructs were easily accommodated by the
cell — for example their expression did not inhibit cell growth.
Our own work [82] has built upon this by expressing a different minimal sequence into cellular membranes

and then exploring the purification and characterisation of this de novo protein. Our design is an antiparallel
four-helix bundle in which helices of sequence LLLLSGLGLLLLSLLGLLLLS are connected by short loops to
give a Nin/Cin topology. This bioinspired design was an abstracted version of the consensus sequence of the
SMR group of small transporters. It could be expressed with the expected topology in the E. coli membrane
and was surprisingly tractable to further study. The synthetic protein was purified in the gentle maltoside deter-
gents that are widely used in membrane biochemistry and shown to be stable and monodisperse in vitro. The
sequence was only designed for expression and did not specify any tertiary packing interactions, and so unsur-
prisingly appeared to be a dynamic molten-globule [82]. Goparaju and colleagues also showed that a minimal
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four-helix transmembrane bundle, with each helix built around subtle variations of polyLeu/Ala, could be
recovered in detergents for in vitro analysis after being deliberately expressed into cellular inclusion bodies [83].
How easy is it to obtain well-defined structures from minimal sequences? A recent study demonstrated that

Van der Waals packing interactions are sufficient to strongly constrain the structure of minimal membrane pro-
teins, although the packing requirements are rather precise [33]. Inspired by the repeating LxxIxxx heptad
packing motif (register abcdefg) observed in phospholamban, the authors computationally designed and chem-
ically synthesised transmembrane peptides that assembled into tightly packed homopentamers. This was driven
entirely by pairwise nonpolar packing interactions between neighbouring helices. These interactions could be
very sensitive to mutation. For example, even a conservative Leu to Ile mutation at one g position was sufficient
to disrupt packing and abolish oligomerisation. This provides substantial encouragement that low-complexity

Figure 3. Examples of functionality in minimal membrane proteins.

(a) Electrophysiology of synthetic lipid bilayers containing minimal ion channels. Panel A shows a negative control without any

peptide; Panel B is control using a short peptide that cannot span the bilayer; Panel C is peptide with sequence (LSSLLSL)3;

and Panel D is (LSLLLSL)3. From Lear et al. [80]. Reprinted with permission from AAAS, adapted with permission of the

authors. (b) A minimal 4-helix bundle (‘REAMP’), in which each helix has the sequence LLLLSGLGLLLLSLLGLLLLS, can be

induced to bind a haem cofactor via a bis-Histidine site. The reddish-brown colour and the spectroscopic fingerprint of the

oxidised hemoprotein are both reminiscent of natural cytochromes. Adapted from ref. [82] https://creativecommons.org/

licenses/by/4.0/. (c) A series of minimal single TM helices — termed ‘LIL proteins’ — interact with the PDGF-β receptor and

transform mammalian cells. The activity of each sequence LI1–11 is compared with a natural activator, the small oncoprotein

E5. Adapted with permission from Heim et al. [99].
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sequences could pack well enough to form well-defined structures, but that this will require judicious placement
of residues at key positions.
An interesting alternative is to exploit the properties of non-natural amino acids. With regards to membrane

proteins, fluorinated amino acid sidechains should favour protein–protein interactions over protein–lipid inter-
actions [84,85]. This idea was validated by a study showing that low-complexity hydrophobic peptides contain-
ing hexafluoroleucine at the a and d heptad positions could assemble into either stable helical dimers or
probable tetramers (Figure 2c), with the oligomerisation state depending on the presence of a single Asn in the
membrane core [86,87].
Overall then, two key themes emerge. The first is that minimal membrane proteins are biosynthetically

accessible — that they can be produced in cell systems and targeted to cellular membranes. The second is that
minimal sequences could potentially form robust and well-defined structures by exploiting or mimicking the
helical packing ‘rules’ observed in natural proteins.

Functional minimal membrane proteins
Once minimal sequences are identified, how can these be turned to some useful function? As discussed above,
some minimal proteins can clearly form channels and pores (Figure 3a). In the rest of this review, we look at
other means of functionalising the inert scaffold of a minimal membrane protein.

Cofactor binding
The binding of porphyrins and related tetrapyrroles is an obvious target for introducing function into minimal
membrane proteins. This is because these compounds are hydrophobic, so will spontaneously partition into
lipid membranes and are good interaction partners for transmembrane segments. Natural porphoproteins are
widespread and very well-studied, and the principles governing their structure and function are established.
Metallated porphoproteins, particularly those containing haem, have a number of potentially interesting appli-
cations in electron transfer, gas binding and redox (bio)chemistry. Those containing chlorophylls can be photo-
excited. Cofactor binding can rigidify otherwise dynamic de novo proteins [88,89] and indeed some structural
flexibility in the apoprotein is probably desirable to support the interaction [90]. To this end, most studies with
redesigned or de novo proteins have focussed upon the binding of haem. A popular strategy is to co-ordinate
the haem iron with the imidazole sidechain of histidine, a binding mode that predominates in natural
hemoproteins.
Glycophorin A is a natural single-pass membrane protein in which the membrane domain forms a homodi-

mer. This was used as the basis for a de novo helical dimer that could bind haem via bis-Histidine ligation
with apparent Kd in the low μM range [91]. The subsequent hemoprotein was catalytically active as a peroxid-
ase, with a redox potential of −128 mV. A single amino acid substitution was sufficient to both improve the
binding affinity and adjust the haem redox potential by −44 mV [92]. Similar results emerged from the
redesign of a natural helical peptide to adopt the Ala-coil motif [93]. This work generated a tetrameric dihaem
membrane protein, which is of interest since two haems are needed to transfer electrons across a lipid bilayer.
Korendovych and colleagues used computational design to develop a de novo four-helix bundle that also
exploited the Ala-coil motif, and showed that this chemically synthesised peptide could co-ordinate two iron
diphenylporphyrins via bis-His geometry in both detergent micelles and artificial membranes [94]. The redox
potential of the two bound porphyrins was separated by 71 mV, being −97 and −168 mV. This splitting of the
redox potential is typical for porphyrins that are in close proximity and could potentially facilitate biological
electron transfer. The membrane segments of designs that blended water-soluble and hydrophobic regions were
also found to bind haem and bacteriochlorophyll [95,96]. With regards to minimal proteins, Goparaju et al.
[83] showed that four-helix bundles built from low-complexity Leu/Ala sequences could bind multiple haems
as well as the photoactive complex zinc protoporphyrin IX via Histidine ligation. Bound haems had distinct
redox potentials, and simultaneously binding both Fe- and Zn-substituted porphyrins allowed electron transfer
between the two cofactors. Our own work has also shown that genetically encoded minimal proteins could be
induced to bind a single haem in vitro (Figure 3b) with little modification other than introducing coordinating
histidines [82]. These proteins had a redox potential of −101 mV, a shift in the haem potential of +32 mV
from a hydrophobic non-protein environment, and nascent peroxidase activity that demonstrated the potential
for developing these sequences for redox biochemistry and electron transfer.
It will be fascinating now to try and translate this understanding into living systems to influence cell physi-

ology. This will require cofactor binding in vivo as well as the deliberate ‘tuning’ of redox potentials for specific
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applications. To our knowledge cofactor binding within a cellular membrane has not yet been achieved for de
novo integral membrane proteins, although there is precedent for this from some soluble designs [97]. The bio-
chemical pathways underlying cofactor synthesis are well-characterised, and so metabolic engineering to
encourage such cofactor loading is plausible.

Protein–protein interactions
Another potential application is to use minimal proteins to disrupt natural protein–protein contacts within the
membrane, which are essential for the assembly of functional membrane complexes. This has already been
achieved with more complex de novo peptides [98]. A recent report showed that small proteins comprising a
single transmembrane domain consisting of only Leu and Ile (termed LIL proteins; Figure 3c) could be recom-
binantly expressed in mammalian cell lines [99]. Through library screening, specific sequence variants were
identified that could influence cell biology by interacting with, and so activating, the TM domain of platelet-
derived growth factor β receptor (PDGFβR) to initiate a signalling cascade. This remarkable result suggests that
even proteins with elementary amino acid sequences can specifically interact with natural proteins with func-
tional consequences.

Conclusions
The examples above provide substantial encouragement for the membrane protein designer. Sequences with
minimal chemical diversity are chemically and biosynthetically accessible and introducing activity, for example
by cofactor binding, appears to be achievable. Perhaps the major challenge with minimal proteins (just as for
other de novo proteins) lies in understanding the particular sequence features required to arrive at a compact
folded state. As put by Richardson: ‘the hardest part of protein folding, or protein design, is the last little bit’
[100]. Transporters, receptors, ligand-gated channels and others exert their function through specific conform-
ational changes; so defining explicit conformations, and the means to transition between them, will be import-
ant in any effort to recreate these functions [31]. Well-structured de novo membrane proteins — albeit with
greater sequence complexity — have already been achieved by exploiting the helix packing properties apparent
in natural proteins [30–33] and this will be supported by the continuing development of bioinformatic and
computational methods [15,101]. Minimalism is a logical extension of prior work on model membrane systems
that develops our essential understanding of membrane biology and could generate novel synthetic compo-
nents. This makes the minimalist approach an interesting and useful stitch in the broader tapestry of protein
design.

Perspectives
• Integral membrane proteins are very important in biological systems, but are underrepresented

in de novo design. A design strategy that embraces strict minimalism will offer fundamental
insights and could be useful for synthetic biology applications.

• Much of our current knowledge comes from studies of chemically-synthesised peptides in
model bilayers. The use of naturally occurring sequence motifs to control helical packing has
been a productive approach.

• Future directions should include biosynthesis and functionalisation in vivo, in order to integrate
artificial proteins into living systems.
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