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5-Fluorouracil induces apoptosis in human colon cancer
cell lines with modulation of Bcl-2 family proteins
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Summary Recently. apoptosis has been implicated as one of the end points of cells exposed to chemotherapeutic agents. The p53 and Bcl-
2 family of proteins are involved in chemotherapy-induced apoptosis. but in a cell type-dependent manner. We sought to determine the roles
played by the p53 and Bcl-2 family of proteins in 5-fluorouracil (5-FU)-induced apoptosis of human colon cancer cell lines. We first studied the
p53 genetic and functional status, and then 5-FU, at inhibitory concentration of 50% (ICj) doses, was used to induce apoptosis, which was
confirmed by morphological analysis and enzyme-linked immunosorbent assay (ELISA). Bcl-2, BCI-XL, Bax, Bad, Bak and p53 protein
expression was analysed by Westem blotting. Using five human colon cancer cell lines, we found that equitoxic (IC5) doses of 5-FU induced
apoptosis in both wild-type p53 and mutant p53 cells. Analysis of the steady-state levels of Bcl-2 family proteins showed high expression of
BcI-X, in all of the cell lines except Colo320. Bcl-2 was expressed in two of them. Bax presented with the lowest basal expression and Bad
showed homogeneous expression. On the other hand, Bak expression varied more than fivefold among these cells. In cells containing wild-
type p53 (e.g. LoVo), 5-FU-induced apoptosis was accompanied by increased expression of Bax and Bak without consistent modulation of
other bcl-2 family proteins. In contrast in cells containing mutant p53 (e.g. DLD1), Bak expression was remarkably increased. There was a
significant correlation between chemosensitivity and Bcl-X, to Bax ratio, rather than Bcl-2 to Bax. In conclusion, these results suggest that
some members of the Bcl-2 family of proteins, in human colon cancer cell lines, are modulated by 5-FU and that the ratio of Bcl-XL to Bax may
be related to chemosensitivity to 5-FU.

Keywords: colon cancer: 5-fluorouracil: chemosensitivity; Bcl-XL: Bax: Bak

Colon cancer is one of the most common malignancies wvorldwide.
and the majoritv of patients are diagnosed at an advanced stage. so
that chemotherapy is required. 5-Fluorouracil (5-FU) is the oold
standard for these patients. However. many of these patients have
tumours intrinsically resistant to 5-FUT. Determinants of 5-FU
resistance have been extensivelv studied. focusinu mainly on the
drui-target interaction and its consequent sequelae (Inaba et al.
1990: Aschele et al. 1992: Beck et al. 1994). More recentlv. the
pattern and extent of cell damage induced by chemotherapeutics.
for example fluoropyrimidines. in human cancer cells have been
suggested to depend also on pathwasas downstream from drug-target
interactions that. once trigaered. will initiate programmed cell death
(apoptosis) (Canman et al. 1992: Fisher et al. 1993: Lowe et al.
1993). For example. a human colon cancer cell line (HT29) has
recently been reported to be induced to apoptosis by 5-FLT (Piazza
et al. 1997). The wside vafietv of currently available drugs. with
disparate mechanisms of actions leading to the same mode of cell
death. supports this proposal (Dive and Hickman. 1991).

In vitro and in vivo experiments have sugagested the involvement
of the p53 and Bcl-2 family in chemotherapy-induced apoptosis
(Harris. 1996: Yangy and Korsmeyer. 1996). The tumour-suppressor
p53 is involsed in the control of cell growth. arrest and apoptosis
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(Enoch and Norbur-. 1995). Cells exposed to a DNA-damaging
agent will activate wsild-type p53 (wt-p53) and the cell can then
either arrest at G, and be repaired or undergo apoptosis (Guillouf et
al. 1995): shichever of these options predominates might reflect
the relative levels of p2l1"IF' (Poly-ak et al. 1996) and/or bcl-2
family expression. How-ever. p53-defectisve cells also show
apoptosis induction after exposure to DNA-damaging agents.
suggoesting the importance of alternative pathw ay s inducinc
apoptosis after DNA damage (Dou et al. 1995).

Bcl-2 is a member of a g rosing family of apoptosis regulators.
Bcl-2 and Bcl-XL can block cell death in various cell systems under
a variety of conditions. For example. forced Bcl-2 overexpression
in lymphoid (Miyashita and Reed. 1992) or leukaemic (Miyashita
and Reed. 1993) cell lines results in an increased resistance to
apoptosis. Similarly. Bcl-X,. transfected into neuroblastoma (Dole
et al. 1995) cells. can protect these cells from apoptosis induced by
various chemotherapeutic compounds. Conversely. overexpression
of Bax. Bak and Bad among, the other Bcl-2 family proteins has
been shown to induce apoptosis. Os-erexpression of Bax in an
oVarian cancer cell line (Strobel et al. 1996) enhanced the apoptotic
response to antineoplastic drugs. as has been observed in breast
cancer cell lines (Sakakura et al. 1996).

Thus. although apoptosis has emerged as a nosvel potential
mechanism of druc resistance. it appears to vary according to the
cell ts pe and the triggering stimulus. We designed this study to
gain further insights into the effect of 5-FLT in human colon cancer
cell lines (CCCLs) by studying the Bcl-2 family response to this
agent and its correlation with p53 status.
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MATERIALS AND METHODS

Reagents and antibodies

5-FU wvas provided by Kyoxx a Hakko Kog-vo Co. Tokyo. Japan.
Anti--actin mouse monoclonal antibody (m_Ab) w-as purchased
from Siama. Saint Louis. MO. USA: anti-p53 rabbit polI-clonal
antibodv (CM1) from Novocastra Laboratories. Nescastle. UK:
anti-p2l mAb (clone 70). anti-Bcl-2 mAb (clone 7). anti-Bad mAb
(clone 32) and anti-Bcl-X, rabbit polvclonal antibody from
Transduction Laboratories. Lexington. KY. USA: anti-Bak mAb
(clone TCIOO) from Oncogene Research Products. Cambrinde.
MA. USA: and anti-Bax mAb (clone 4F1 1) from MBL Hiteclone.
Nagoya. Japan.

Cell lines and growth inhibition assays

CCCLs (Colo320. DLD1. HT29. LoVo and SW480) were cultured
in Roswxell Park Memorial Institute (RPMI)-164I medium supple-
mented wvith 10%7c fetal calf serum (FCS). 1%7c penicillin and strep-
tomvcmn. Cells A ere routinely cultured in a humidified incubator at
37 C with 5%7c carbon dioxide. In the preliminary experiments.
different cell numbers and incubation times wvith a chemothera-
peutic agent were used to determine the optimal assay conditions
for all experiments. Drug sensitivityswas determined by the 3-(4.5-
dimethy lthiazol-2-v 1)--2.5-diphenNltetrazolium bromide (MTT)
cVtotoxicitx assay (Promega. Madison. WI. USA) after a 72-h
continuous drug incubation. Cells (5xl0W-lxl04) were seeded in

96-well microtitration plates 24 h before exposure to various
concentrations of 5-FUT (ranginga from 0.5 to 800 gsm). Each
concentration was performed in four replicate wells. Untreated
cells w-ere used as the control. The a'erage growth inhibition rates
compared w-ith the control were calculated from the results of at

least three independent experiments. The 5-FL' concentrations
causing a 50% ggrowth inhibition compared with the controls (IC,Q
were calculated from a semilogarithmic dose-response cur'e by
linear interpolation. The determinations of significant differences
amona the cell lines w-ere made w-ith the Mann-Whitney test.

Assays for apoptosis analysis

We chose 72-h continuous 5-FU exposure for all experiments

because 5-FL is stable for this period of time in culture medium
(Bosanquet. 1989). Furthermore. others have sugaested different
mechanisms of 5-FL action depending on the duration of 5-FU
exposure. i.e. a DNA-directed effect is observed w-hen cells are

continuously exposed for a relatixely long time (Inaba et al. 1990:
Aschele et al. 1992). We confirmed this to be the case in our prelim-
inarys experiments. All the experiments w-ere performed using the
floating and attached cells. The cells wAere cultured in either the
absence or the presence of 5-FL using IC, (equitoxic doses) for 3
consecuti'e days. and cell morphology was then studied by staininc
the cells w-ith acridine orange (AO) (5 go, ml-'. Sigma. Saint Louis.
MO. USA) as described elsew here (Gregory et al. 1991) and
obserned by fluorescence microscopy. Cells designated as apoptotic
wxere those that displaved the characteristic morphological features
of apoptosis. includine cell s-olume shrinkage. condensed chro-
matin and fragmented nuclei. compared with non-apoptotic cells
(Kerr et al. 1994). Apoptosis was confirmed by 'Cell Death'
Detection ELISAP'5-u (Boehringer Mannheim. Mannheim.
Germanv). w-hich measures cVtoplasmic DNA-histone complexes

Table 1 Characteristics of human colon cancer cell lines

Cell lines p53 status ICso'
Gu )

Genea Up-regulation5

Colo320 Mutant No 3.1 t 0.18:
DLD1 Mutant No 21 0.92
HT29 Mutant No 19.3+ 173
LoVo Wild type Yes 1.5 +0.09c
SW480 Mutant No 17.5 1 22

aAccording to the present and previous studies (Baker et al. 1990: Rodrigues
et al. 1990). cUp-regulation of p2lwAF1. as determined by Westem blotting
performed as described in Materials and methods. after exposure of these
cell lines to 5-FU (ICSo) for 48 h. c1CO: inhibitory concentration of 50O is
defined as the drug concentration necessary to inhibit 50°o of cell growth
compared with untreated controls. IC was calculated by MTT assay, after
72 h of continuous incubation with 5-FU. Each experiment was performed in
four replicate wells and the results are the means ± s.d. of three independent
experinents. 'Not statistically significant.

generated during apoptotic DNA fragmentation. W'e measured the
level of apoptotic cells and compared this with untreated control
cells to confirm a higher level of apoptosis in the treatment group.
In our preliminarv experiments. different numbers of cell equiva-
lents were used to determine the optimal conditions. CCCLs were
exposed to equitoxic (IC,,,) doses of 5-FUT for 72 h and cytoplasmic
extracts of the equivalent of lxlO cells were used in the enzvme-
linked immunosorbent assav (ELISA) performed accordinc to the
manufacturer's specifications.

Polymerase chain reaction (PCR) amplification and
DNA sequencing

Exons 4-8 of the p53 gene w-ere amplified from genomic DNA.
using primer sequences described elsew-here (Lehman et al. 1991).
Asymmetric PCR w-as performed as described by Gy-llensten and
Erlich (1988) w-ith some modifications. In brief. each 25-g.l reac-
tion mixture. containingr about 10 ng of DNA obtained bv the first
PCR. 50 pmol of the upstream primer. 1 pmol of the downstream
primer. 67 mmt Tris-HCl (pH 8.8). 16.6 mmI diammonium sulphate.
10 mm S-mercaptoethanol. 6.7 jm EDTA. 6.7 mm magnesium
chloride. 1.5 mim of each deoxvnucleotide and 0.5 units of Taq
DNA polymerase. A-as amplified for 40 cycles of 94-C. 55^C and
72:C for 30. 30 and 60 s respectively. After PCR. DNA sequences
were determined by the dideoxy nucleotide-termination method
w ith sequence primers synthesized in the amplified region.

Western blotting analysis

After incubation of CCCLs in either the absence or the presence of
5-FU for appropriate durations. total cell l states were han-ested
and equix alent amounts of proteins w ere used for W'estem blotting
as described elsex-here (Tominaga et al. 1997). S-Actin was used
as a control for the amount of protein applied in each sample.
Densitometric scanning was performed on Westem blot radio-
graphic films by acquisition into Adobe Photoshop (Adobe
Ss-stems. Mountain Viewx. CA. USA) and digitized images were
analysed with a software Luminous Imager (Aisin Cosmos R&D
Co. Tokyo. Japan). The relative expression w-as calculated after
correction of the background and the amount of protein loaded by
means of normalization against j-actin. Relative expression is the
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Figure 1 5-FU-induced apoptosis in CCCLs. Acridne orange staining of
CCCLs observed by fluorescence microscopy. Control cells, not exposed
to 5-FU. and cells exposed to equitoxic (ICJ) doses of 5-FU for 72 h.
(A) Coko320; (B) DLD1: (C) HT29; (D) LoVo: (E) SW480. Apoptotic cells
are indicated by arrowheads

ratio of 5-FEU-treated cells to untreated control cells. Values are

representative of tx o independent experiments. Associations
among data ere made with Pearson's product moment correlation
coefficient (P-values less than 0.05 were considered sianificant).

RESULTS

Correlation of p53 gene status and protein with growth-
inhibition effects of chemotherapeutic drugs

First. we analysed the p53 gene in the CCCLs and its functional
status. As shoun in Table 1. the p53 gene is wild type (w%t) in the
LoVo cell line. In contrast we found Colo320. DLD1. HT29 and
SW480 to have mutant p53. confirming previous reports (Baker et

al. 1990: Rodrigues et al. 1990). To further confirm the p53 status.
we exposed CCCLs to equitoxic (IC-) doses of 5-FU and
observed up-regulation of both p53 and p2lw--Fl protein in cells
with the wt gene. but not in those with a known mutant p53 gene.

confirmina that. besides having a structurallv wt gene. LoVo has a

functionally normal p53 protein. Table 1 further shows that while
LoVo. the most sensitive cell. has a wt-p53 gene. colo320. which
has a mutant p53 gene. has a similar IC.

Apoptosis analysis after exposure of CCCLs to 5-FU

We next evaluated whether 5-FU induces apoptosis in these
CCCLs as reported previously (Piazza et al. 1997). Equitoxic

Bax _

Bad_ -_.

Bak_-1_.

Figure 2 Steady-state levels of p53 and Bd-2 family of proteins (Bd-2. Bc)-
XL, Bax, Bad and Bak) in CCCLs. Equal amounts of protein were applied for
Westem botting and F-acfin was used to control for the amount of each
protein. Arrows indicate the expected size of the corresponding protein

doses (IC ) of 5-FU induced apoptosis in all CCCLs as deter-
mined by morphological analy sis after AO staining, (Figure 1). In
addition to morphological evaluation. cytoplasmic DNA-histone
complexes generated during apoptotic DNA fragmentation as

detected by ELISA confirmed that 5-FU (ICQ induced apoptosis.
For example. treatment of Colo320 cells with 5-FU for 72 h
augmented levels of fragmented DNA by approximatelv 11 -fold
compared with untreated control cells. Apoptosis had no correla-
tions with p53 gene status in these CCCLs. Therefore. we

conclude that 5-FU effectivelv induced apoptosis in both mutant

and wt-p53.

Effect of 5-FU exposure on Bcl-2 family contents

Considering that the Bcl-2 family of proteins is emerging as one of
the key regulatory factors in apoptosis. wAe studied the steady-state
levels of some of the Bcl-2 family proteins (Figure 2). Among the
apoptosis inducers. Bax presented with the lowest basal expression

and in LoVo was almost undetectable. All of the cell lines
expressed essentially the same level of Bad. On the other hand.
SW480 barely expressed Bak. whereas Colo320 expressed more

than five times more Bak than SW480. The apoptosis inhibitor
protein Bcl-2 was detected in Colo320 and LoVo. Bcl-XL was
present in all cell lines other than Colo320. and expression levels
-aried about twofold among the cell lines.
We also examined the protein changes associated with equitoxic

(IC ,) doses of 5-FU on CCCLs (Figure 3). We found that. in

LoVo. the cell line with wt-p53. Bax was up-regulated (Figure 4A)
and that cells containing mutant p53 showed no variation in Bax.
More interestingly. we observed a striking increase in Bak levels
with 24-48 h of 5-FUT treatment in CCCLs (Fiaure 4B). in both wt
and mutant p53 cells. Bad showed no significant variations among
these cell lines (Figure 3 and data not shown). Moreover. the same

chemotherapeutic agent produced minor increases in Bcl-X,
(Figure 4D). but no consistent variations in Bcl-2 contents were

detectable (Fiaure 4C). In two replicate experiments. these cells
consistently displayed a similar pattern of expression w'hen
exposed to equitoxic doses of 5-ET.

British Joumal of Cancer (1998) 78(8), 986-992
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Correlation of the Bcl-2 family of proteins with
apoptosis and chemosensitivity

We compared the relative expression ratios of the Bcl-2 familv
proteins with chemosensitivity (expressed as IC ) to 5-FLT. as deter-
mined by MTT assay. We found that the ratio of the relative expres-
sion of Bcl-XL to the Bax correlated significantly with sensitivity to

F_p. 3 Wen bkoing of the Bcd-2 tuady prcehs-i CCCL&s OCCLs
wesed cartS cels (t: lit hak samqp); to 5-Ri (IC) fr

8 h (t. second oham); 24 h (24: V*d cohk ); or48 h (48 xftlh ohm).
EpS anwfl dipyaeliappgde kW_sn bkitg mnd p-fal
used astecnd brQue W cif eat pifleh 1, Bd2- 22 Bdc-XL; 3%Bas
4. Bad; 5, Bat 6. pActL (A) CoI2. (B) OLDI; (C) HFl (D) LoVb; (E)
SW48D. The gw. s a qoed i ugfa rmaoaqttUnim
frm -n cm sp ep

S-FU (Figure 5. The other Bcl-2 families of proteins did not show

anv significant correlation w-ith chemosensitivitv of 5-FlT.

DISCUSSION

After DNA damagge. the cells basically would hax'e three alterna-

tives - cell cycle arrest. apoptosis or necrosis - depending on
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Figure 4 Vanations in the relative expressions of the Bc-2 family proteins after treatment with 5-FU (IC50) for 0. 8. 24 and 48 h. Densitometric scanning was
performed in the series of blots shown in Figure 3. The relative expression was calculated after correction of the background and the amount of protein loaded
by means of normalization vs F-actin. Relative expressions are the ratio of 5-FU treated cells to untreated control cells. (A) Bax; (B) Bak; (C) Bcl-2; (D) BCI-XL.
CCCLs not depicted are cell lines with no detectable band on the digitzed blots. Results shown are representative of one of the two experiments

several factors such as the degree of cell damage and susceptibilitv
of a viven cell to a given drug. among others. Here. we have
confirmed apoptosis induction after 5-FU treatment. but w-e cannot

exclude cell cycle arrest and the presence of necrotic cells in the

treated group. As apoptosis is emerging as a novel mechanism of
chemoresistance. we considered it to be appropriate. once we had
confirmed the presence of apoptotic cells. to study alterations of
p53 and the Bcl-2 family of proteins because they are reported to be
related to apoptosis induction. The pathways involved in apoptosis
have not been fully elucidated. However, it is becoming increas-

ingly clear that regulation of the cell response to chemotherapeutic
drugs mav involNe a dynamic interplay among the Bcl-2 family of
proteins (Oltvai and Korsmeyer. 1994: Yang and Korsmeyer.
1996). A recent report demonstrated that high levels of Bcl-2 or

Bcl-X, proteins are equally effective in terms of inhibiting apo-

ptosis and suggest that the differences in their ability to block apo-

ptosis may be due to different levels of protein expression (Huang
et al. 1997). Bax and Bak may act as apoptosis inducers by inter-

actincg with each other or with Bcl-2 and Bcl-XL in a homo- and/or

heterodimer network. in which the relative amounts of each deter-
mine the response of the cell to DNA-damaging agents (Olth ai and
Korsmever. 1994: Sedlak et al. 1995).
Our data suggest that 5-FU sensitivity may be related to the

interaction of Bcl-XL with Bax. Most reports of an association
between chemosensitivity to the Bcl-2 family of proteins used
forced overexpression of one of these proteins. or analysed mainlv
the interaction with the Bcl-2/Bax ratio. Our results suggest that
chemosensitivity of CCCL to 5-FU may be related to interactions
among Bcl-2 family proteins intrinsically modulated by 5-FU. We
observed a correlation of chemosensitivitv to 5-FU and Bcl-XL to
Bak ratio. nonetheless it was not statisticalIv significant. In
contrast. Bcl-XL to Bax ratio significantlI correlated with
chemosensitivity to 5-FU.

Another finding of our experiments was that Bcl-X,L was
predominantly expressed at steady-state levels in all of these cell
lines other than Colo320 (Fiaure 2). and a slight increase in Bcl-X,
expression was observed in DLD1 after exposure to 5-FU (Figure
4D). A similar pattem of expression. that is high endogenous

British Joumal of Cancer (1998) 78(8), 986-992
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Figure 5 Correlaton between sensitiviy to 5-FU and the ratio of the relative
expression of the Bcl-XL to the Bax reiatve expresson. Drug sensibtviy was
determined by the MTT assay and is expressed as iWhiry concentration Of
50%O (ICJ). The relative expression of each protein is the ratio of 5-FU
treated cells (lC5. at 48 h) to untrated control cels, calcuatons based on
the series of Westem blots shown in Figure 3. y-0.084 + 0.071 x x (F =
coefficiet of determiati)

expression of Bcl-XL rather than Bcl-2, has already been demon-
strated using neuroblastoma cancer cell lines (Dole et al, 1995).
resistant murine leukaemic cells (Kuhl et al, 1997) and non-small-
cell lung cancer cell lines (Reeve et al, 1996). However, to our
knowledge, this is the first such demonstration using CCCLs.
Given that Bcl-XL may suppress cell death in the same way as Bcl-
2, the functional redundancy between these apoptosis inhibitors
may compensate for the absence of Bcl-2 by producing Bcl-XL
instead. In addition, forced expression of p53 activity, by transfec-
tion of a temperature-sensitive mutant p53 into HT29 cells,
induced Bax and Bcl-XL expression rather than Bcl-2 (Merchant et
al, 1996). These data suggest that these CCCLs illustrate Bcl-XL-
related drug resistance to apoptosis. In support of these in vitro
experinmental results. a shift from Bcl-2 to the increased expression
of Bcl-XL has been reported in vivo from colorectal adenoma to
adenocarcinoma (Krajewska et al. 1996).

p53 regulation does not appear to control cellular sensitivity to
apoptosis in CCCLs. Some reports have described p53-dependent
apoptosis as being induced by various chemotherpeutic
compounds in different cell types, including gastric and ovarian
cancer cell lines (Nabeya et al, 1995; Perego et al, 1996).
However, herein we have shown that CCCLs exposed to 5-FU
undergo apoptosis in mutant as well as in wt-p53 (Table 1),
confirming previous reports of p53-independent regulation of
apoptosis in colon cancer (Bracey et al, 1995).

Knowledge of the capacity of p53 to induce apoptosis in a given
cell system may be important for designing new strategies
involving agents that restore the wt-p53 function. In these cell
lines, however. such a strategy might not be the best choice
because 5-FU induced apoptosis independently of p53 status.
Rather, alternatives that reduce a given threshold for triggering
apoptosis may be another option. For example. antisense oligo-
nucleotides targeting Bcl-XL function coupled with chemotherapy-
induced apoptosis might effectively increase the potency of
drug-based therapy.

In conclusion, the roles of the Bcl-2 family proteins as apoptosis
regulators in 5-EU treatment suggest that they may be useful as

novel treatment targets, as well as serving as treatment response
markers and consequently as prognostic factors.
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