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Abstract: Viral infectious diseases pose a serious threat to animal husbandry, especially in the pig
industry. With the rapid, continuous variation of viruses, a series of therapeutic measures, including
vaccines, have quickly lost their efficacy, leading to great losses for animal husbandry. Therefore, it is
urgent to find new drugs with more stable and effective antiviral activity. Recently, it has been
reported that antimicrobial peptides (AMPs) have great potential for development and application in
animal husbandry because of their significant antibacterial and antiviral activity, and the antiviral
ability of AMPs has become a research hotspot. This article aims to review the research situation of
AMPs used to combat viruses in swine production of animal husbandry, clarify the mechanism of
action of AMPs on viruses and raise some questions, and explore the future potential of AMPs in
animal husbandry.
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1. Introduction

Viral infection of pigs is one of the bottlenecks restricting the development of the pig
industry globally. The widely spread common porcine pathogenic viruses, including herpesvirus
(such as pseudorabies virus (PRV)), coronavirus (such as porcine epidemic diarrhea virus (PEDV)),
and arterivirus (such as porcine reproductive and respiratory syndrome virus (PRRSV)), have caused
many serious infectious diseases and huge economic losses in the pig industry [1–3]. At present, only a
few effective treatments are available for most viral diseases. In the past few decades, research on
fighting viral infections in pigs has been mainly focused on vaccines, wherein the adaptive immunity of
pigs is improved by vaccination [4,5]. However, some viruses can escape from host immunity through
different strategies. It is reported that PRRSV evades the host immune response by glycosylation
modification of its envelope proteins [6], and PEDV evades the host innate immune response by
encoding interferon (IFN) antagonists to disrupt the innate immune pathway and hide its viral RNA to
avoid exposure of viral RNA to immune sensors [7]. The emergence of new variants of viruses is one
of the important causes of disease outbreaks in pigs, such as the reemergence of PRV in China since
late 2011 [8], the outbreak of porcine epidemic diarrhea (PED) in China at the end of 2010 [9], and the
spread of African swine fever worldwide since 2007 [10]. Besides, the development of new vaccines is
usually complex, technically challenging, and time-consuming [11]. Therefore, there is an urgent need
to develop novel effective agents to kill viruses and prevent their infection in swine [4].

Antimicrobial peptides (AMPs) are small proteins with potential activity against, for example, bacteria,
viruses, fungi, tumors, and parasites, which are widely found in animals, plants, and microorganisms [12].
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The discovery of AMPs can be traced back to 1939; Dubos isolated an antibacterial agent from a strain of
soil Bacillus and found that it could protect mice from pneumococcal infection for the first time [13,14].
According to their key structural characteristics, AMPs can be usually divided into four categories: α-helix
AMPs, β-folded AMPs, extended structural AMPs, and cyclic structural AMPs [15]. Since their discovery,
AMPs have become important alternative drugs in the field of disease prevention and immune regulation,
attracting worldwide attention [16,17]. In the field of human viral diseases, at present, AMPs have
become an important direction and field in antiviral research. Previous studies have shown that the
amphibian-derived AMPs, caerin 1.1 and maculatin 1.1, completely inhibited human immunodeficiency
virus (HIV) [18]; arthropod-derived AMPs, cecropin A and melittin, could effectively inhibit Junin virus
(JV) multiplication and impede the multiplication of herpes simplex virus (HSV) and JV, respectively [19];
plant protein kalata B1 analogs could inhibit dengue virus (DENV) [20]. The above results suggested
that AMPs with antiviral activity have the potential to be antiviral drugs and could be highly expected to
become clinical drugs for both human viral diseases and animal viral infections. However, there have only
been a few studies on AMPs in animals compared with humans so far. It is important to pay attention to
the role of AMPs in animal health because most upstream studies specialized for human usage are run
with model animals.

AMPs exhibit different mechanisms on viruses, and their main antiviral mechanisms and types are
summarily shown in Figure 1. (i) AMPs neutralize viruses by integrating into the viral envelope or host
cell membranes, and both enveloped RNA and DNA viruses can be targeted [21,22]. Indolicidin could
inactivate human immunodeficiency virus (HIV) by binding to the envelope and cracking the membrane
through a membrane splitting mechanism, thereby preventing the virus from infecting the host cell [23].
(ii) AMPs bind to glycoproteins on the virus surface to inhibit viral infection. Defensin retrocyclin 2
bound to immobilized herpes simplex virus type 2 (HSV-2) glycoprotein B with high affinity so that
HSV-2 could not bind to the surface of host cells [24]. (iii) AMPs can interact with specific receptors of
host cell membranes, preventing virus particles from binding to host cells. HSV particles infect host
cells by binding to heparan sulfate on the host cells, while the α-helix cationic polypeptide lactoferrin
can prevent HSV infection by occupying heparan sulfate [25]. (iv) In addition to the above points,
AMPs may also act on other stages of the viral life cycle. For example, human beta-defensin-3 (hBD-3)
inhibits HIV replication by acting on entry, reverse transcription, and nuclear import of retroviral
DNA [26]. Besides, some AMPs, such as cecropin D (CD), could block apoptosis induced by PRRSV at
the late stage of infection, thus inhibiting the assembly, release, and transmission of the virus [27].



Antibiotics 2020, 9, 801 3 of 18
Antibiotics 2020, 9, x FOR PEER REVIEW 3 of 17 

 

 
Figure 1. Antiviral mechanisms of AMPs. (a) AMPs inactivate a virus by destroying the viral 
envelope. (b) AMPs bind to glycoprotein on the viral envelope. (c) AMPs occupy a specific receptor 
on the host cell membrane to prevent viral attachment. (d) AMPs inhibit viral replication, 
transcription, reverse transcription, translation, and release. 

As the pig industry has developed to account for the largest proportion of food animals in China, 
AMPs have been widely studied as antimicrobial agents and/or feed additives [28–31]. Studies have 
shown that the plectasin-derived peptides NZ2114 and MP1102 could effectively kill Streptococcus 
suis type 2 [28,29], and NZX exhibited antibacterial activity against Staphylococcus hyicus [30]. Diets 
supplemented with AMPs could improve the growth performance, nutrition maintenance, intestinal 
morphology, and immunity of weaned piglets, while also reducing the presence of harmful 
microorganisms in these animals [31]. In addition to antibacterial activity and immune regulation, 
AMPs should also be actively encouraged and utilized to combat common porcine pathogenic viruses 

Figure 1. Antiviral mechanisms of AMPs. (a) AMPs inactivate a virus by destroying the viral envelope.
(b) AMPs bind to glycoprotein on the viral envelope. (c) AMPs occupy a specific receptor on the host
cell membrane to prevent viral attachment. (d) AMPs inhibit viral replication, transcription, reverse
transcription, translation, and release.

As the pig industry has developed to account for the largest proportion of food animals in China,
AMPs have been widely studied as antimicrobial agents and/or feed additives [28–31]. Studies have
shown that the plectasin-derived peptides NZ2114 and MP1102 could effectively kill Streptococcus suis type
2 [28,29], and NZX exhibited antibacterial activity against Staphylococcus hyicus [30]. Diets supplemented
with AMPs could improve the growth performance, nutrition maintenance, intestinal morphology,
and immunity of weaned piglets, while also reducing the presence of harmful microorganisms in these
animals [31]. In addition to antibacterial activity and immune regulation, AMPs should also be actively
encouraged and utilized to combat common porcine pathogenic viruses in pig molecular breeding via
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genetic engineering. The purpose of this article is mainly to review the research status of AMPs combating
viruses in swine production, clarify the mechanism of action of AMPs on viruses, and explore the future
potential of AMPs as antiviral drugs in animal husbandry.

2. Antimicrobial Peptides Used against Viruses in Swine

2.1. AMPs Active against PRV and PEDV

PRV is a large, enveloped, double-stranded DNA virus that is the pathogen of Aujeszky’s disease
and belongs to the porcine neurotropic herpesviruses [1,32]. Clinically, it is characterized by severe
neurological disorders in newborn piglets and reproductive disorders in sows [32]. PEDV is also
an enveloped virus; it is a positive-sense, single-stranded RNA virus, belonging to the family of
Coronaviridae [2]. PEDV is the pathogen of porcine epidemic diarrhea (PED), which is an acute infectious
enteropathy and is characterized by severe watery diarrhea, vomiting, and dehydration of suckling
piglets, causing huge economic losses for the pig industry [33].

2.1.1. Piscidin-1

Piscidin-1, a natural polypeptide, is produced by mast cells of fish, belongs to the piscidin family,
and is characterized by a conserved N-terminus rich in histidine and phenylalanine and a variable
C-terminus [34,35]. Piscidin-1 consists of 22 amino acids (Table 1) and shows an α-helix conformation
(Figure 2a) which is the best among its family members in terms of antimicrobial activity towards
multiple pathogenic bacteria [36]. In addition, piscidin-1 has a potent effect on viruses such as catfish
virus (CCV), frog virus 3 (FV3), and HIV-1 [37,38]. Lei et al. demonstrated that piscidin-1 displays
a significant inhibitory effect on PRV and PEDV [39]. The plaque elimination rates were reached as
high as 95% (PRV) and 85% (PEDV) at 1 and 2 µg/mL piscidin-1, respectively, as determined by plaque
reduction assay. Moreover, in a pharmacokinetic study administering 2 mg/kg piscidin-1 by three
drug delivery routes (intravenous injection (i.v.), intramuscular injection (i.m.), and per os (p.o.)) in
rat, the highest bioavailability (73.17%) of piscidin-1 was observed for i.m. administration; therefore,
i.m. represents the best pathway in potential drug delivery when piscidin-1 is used to inhibit PEDV
in vivo [39]. Piscidin-1 could effectively protect mice from PRV infection when PRV was co-injected
along with piscidin-1 at the concentration above 5 µg/mL, and the in vivo protection rate was still as
high as 90% at a low piscidin-1 concentration of 2.5 µg/mL [40]. These results indicate that piscidin-1
may directly interact with PRV particles and block cell apoptosis induced by PRV [40]. In addition,
it was demonstrated that piscidin-1 also has inhibitory effects on several common porcine pathogenic
viruses, including PRRSV, PEDV, transmissible gastroenteritis virus (TGEV), and rotavirus (RV) [40].
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Table 1. Antimicrobial peptides and viruses.

Peptide Sequence No. of Amino Acids Virus Secondary Structure Reference

Piscidin-1 FFHHIFRGIVHVGKTIHRLVTG 22 PRV, PEDV, PRRSV, TGEV, RV α-Helix [35,39,40]
Caerin 1.1 GLLSVLGSVAKHVLPHVVPVIAEHL 25 PRV, PEDV, PRRSV, TGEV, RV α-Helix [40,41]

pBD-2 DHYICAKKGGTCNFSPCPLFNRIEGTCYSGKAKCCIR 37 PRV, PRRSV Combine helix and beta structure [42]
pBD-3 RYYCKIRRGRCAVLGCLPKEEQIGSCSVSGRKCCRKRK 38 PRRSV Combine helix and beta structure [43]

Cecropin D WNPFKELEKVGQRVRDAVISAGPAVATVAQATALAK 36 PRRSV α-Helix [27,44]
Cecropin P1 SWLSKTAKKLENSAKKRISEGIAIAIQGGPR 31 PRRSV α-Helix [45,46]
Protegrin-1 RGGRLCYCRRRFCVCVGR 18 PRRSV β-Strand [47,48]
Protegrin-4 RGGRLCYCRGWICFCVGR 18 PRRSV β-Strand [49,50]

LL-37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES 37 PRRSV α-Helix [51,52]
Epinecidin-1 GFIFHIIKGLFHAGKMIHGLV 21 FMDV α-Helix [53,54]

DNBLK1 RRRRRRRRHPAEPGSTVTTQNTASQTMS 28 ASFV – [55]
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Besides, caerin 1.1 could not only inhibit most of the PRV particles by directly interacting with PRV 
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mechanism as piscidin-1. In addition, caerin 1.1 also inhibits the infection of PRRSV, TGEV, and RV 
[40]. 

Figure 2. Structure types of typical AMPs. (a) Solid-state NMR structure of piscidin-1 in aligned 1:1
phosphatidylethanolamine/phosphoglycerol lipid bilayers (PDB ID 2MCV). (b) Solution structure of
cecropin P1 with LPS (PDB ID 2N92). (c) Protegrin 1 from porcine leukocytes, NMR, 20 structures
(PDB ID 1PG1). (d) Structure of protegrin-4 by high-resolution NMR spectroscopy (PDB ID 6QKF).
(e) Structure of human LL-37 (PDB ID 2K6O). (f) Solution structures of caerin 1.1 [56]. (g) Structure of
epinecidin-1 [57].

2.1.2. Caerin 1.1

Caerin 1.1 is an AMP that consists of 25 amino acid residues (Table 1) and is derived from granular
glands in the skin of the Australian tree frog [41]. Nuclear magnetic resonance (NMR) shows that
caerin 1.1 has two α-helices and a flexible hinge region; moreover, the hinge region contains two proline
residues (Figure 2f) [56], which play an important role in the mechanism of antimicrobial action [58].
Caerin 1.1 shows activity against bacteria and viruses, destroying the integrity of pathogen particles
by forming holes in the membrane [18,59]. Guo et al. revealed that caerin 1.1 shows low cytotoxicity
and exhibits excellent anti-PEDV activity in a dose-dependent manner even at low concentrations
(2.5, 5, 10, and 20 µg/mL). The study indicated that caerin 1.1 suppresses the growth of PEDV in vitro
via direct binding to the viruses, destroys the structure of viral particles, and decreases the titers of
viruses almost up to 3 logs [60]. In addition, caerin 1.1 also blocks the release of PEDV particles during
virus replication to control the infection process, thus reducing the transmission of virus between
neighboring cells [60]. Hu et al. showed that caerin 1.1 has a potent anti-PEDV activity that resulted in
the residual infectivity being 0.2% in the TCID50 assay [40]. Besides, caerin 1.1 could not only inhibit
most of the PRV particles by directly interacting with PRV but also block host cell apoptosis at the
concentration of 25 µg/mL, sharing the same antiviral mechanism as piscidin-1. In addition, caerin 1.1
also inhibits the infection of PRRSV, TGEV, and RV [40].
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2.1.3. Porcine β-Defensin-2 (pBD-2)

Defensins are a group of cationic antibacterial peptides consisting of 18–45 amino acids forming
three intramolecular disulfide bonds between conserved cysteine residues [61]. Based on their spatial
structure and disulfide linkage, defensins are divided into α-, β-, and θ-defensins in vertebrates [62].
The β-defensin family is mainly expressed in epithelial cells of animal skin, respiratory tract,
and gastrointestinal tract [63]. At present, more than 30 β-defensins have been found in humans,
but only one β-defensin has been reported in pigs. Porcine β-defensin-2 (pBD-2) is highly expressed in
epithelial cells of pigs; it is a cysteine-rich cationic antibacterial peptide composed of 37 amino acid
residues (Table 1), showing the characteristics of antibacterial activity, immunoregulation, and intestinal
tract protection [42,43,64,65]. In addition, pBD-2 is also reported to have antiviral activity. Huang et al.
confirmed the antiviral ability of pBD-2 both in vitro and in vivo. In their research, pBD-2 inhibited
PRV proliferation at a threshold concentration (40 µg/mL) and displayed no significant cytotoxicity
towards PK-15 cells even at a maximum concentration (80 µg/mL) [66]. The results suggested that
pBD-2 has a direct killing effect against PRV by destroying the viral envelopes and also affects PRV
entry into host cells. However, further research is necessary to determine whether pBD-2 can block
virus binding and infiltration by interacting with specific receptors in the host membrane [66].

2.2. AMPs Active against PRRSV

Porcine reproductive and respiratory syndrome (PRRS), also known as blue-ear pig disease, is one
of the most fatal infectious diseases in the pig industry around the world; it was first reported in
North America and Canada in the late 1980s [67–69]. The pathogen of this disease is called the porcine
reproductive and respiratory syndrome virus (PRRSV), which is an enveloped, single-stranded RNA
virus belonging to the Arteriviridae family of Nidovirales. Its genomic RNA length is about 15.4 kb, with a
5′ cap, 3′ polyadenylation, and 10 open reading frames (ORFs) [3,70]. The main manifestations of the
disease are poor reproductive performance and high miscarriage rate in pregnant sows and dyspnea in
growing–finishing pigs and piglets [71]. PRRSV mainly infects porcine alveolar macrophages (PAMs)
and has the characteristics of high mutation rate and high recombination rate. With the antigen
variation and genetic drift of the virus, the existing vaccines are easily losing their efficacy [72,73].
Therefore, PRRSV is still the greatest challenge facing the pig industry so far, and it is urgent to develop
new antiviral strategies to combat PRRSV infection [74].

2.2.1. Cecropins

Cecropins are small molecules with a size ranging from 3 to 4 kDa and are considered to be the
one of most typical AMPs with a long history [75]. Structurally, cecropins have a strongly basic amino
(N)-terminal and a hydrophobic carboxyl (C)-terminal [76].

Cecropin D (CD) was first isolated from the pupa of Hyalophora cecropia [77]. CD consists of 36 amino
acid residues (Table 1) without cysteine and mainly shows a helical conformation [44]. CD exhibits
homology with cecropin A and cecropin B. Recombinant CD has been successfully expressed in
Pichia pastoris and has antibacterial activity against both Gram-positive and Gram-negative bacteria [75].
CD shows no significant cytotoxicity at the concentration of 300 mg/L, and it was found to effectively
inhibit HP-PRRSV strain Li11 both in Marc-145 cells and PAMs in in vitro experiments. In brief,
the mechanisms of CD against viruses were tracked via the following multiple pathways: (i) blocking
the attachment of PRRSV to the membrane of Marc-145 cells to inhibit virus entry and replication,
thus reducing the generation of progeny virus; (ii) inhibiting virus RNA transcription and viral protein
expression (i.e., the transcription activity of Li11 gene in terms of its mRNA content was highly
inhibited with a treatment of 300 mg/L CD); (iii) attenuating apoptosis induced by PRRSV at the late
stage of infection and suppressing the release of viral particles [27].

Cecropin P1 (CP1) is produced by parasitic nematode Ascaris suum from the intestinal tract of
pigs and composed of 31 amino acid residues (Table 1), and it is highly similar to two insect cecropins
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(Cecropin B and Cecropin IA) [45,78]. CP1 has a continuous amphipathic α-helical structure (Figure 2b)
and the helix can easily span a bacterial lipid membrane [79,80]. CP1 was found to inhibit PRRSV
infection with a 50% effective concentration (EC50) of 112 µg/mL in Marc-145 cells and 65 µg/mL in
PAMs, showing no significant cytotoxicity when the concentration reached 480 µg/mL in Marc-145 cells.
Moreover, the results proved that CP1 potently prevents the replication of PRRSV at multiple points in
the viral life cycle. On one hand, CP1 inhibits the synthesis of RNA and protein and the release of
virus particles in Marc-145 cells; on the other hand, it weakens the apoptosis induced by the virus in
the later stage of infection [46]. The molecular mechanism of CP1 was further investigated by binding
and entry assays in Marc-145 cells, and the results showed that CP1 prevents viral adsorption during
the viral life cycle and thus disrupts the initial step of viral entry into the target cells, suggesting that
CP1 blocks the interaction between PRRSV and its receptors on the cell membrane [46] and effectively
inhibits virus infection.

2.2.2. Host Defense Peptides (HDPs)

There are two main families of host defense peptides (HDPs) in mammals: defensins and
cathelicidins. Defensins are mainly distributed in the epithelial cells and phagocytes of mammals,
while cathelicidins are mainly derived from neutrophils in blood and expressed on epithelial surfaces.

Protegrins, as members of the porcine cathelicidins family, were first discovered in porcine
leukocytes; they combine the features of corticostatic defensins and tachyplesins. Protegrins contain
16–18 amino acid residues and show potential activity towards some pathogenic enveloped viruses,
bacteria, and fungi [47]. There are five porcine protegrins, namely PG-1 to PG-5; among them, PG-1 and
PG-4 both contain 18 amino acid residues stabilized with two cysteine bridges by four cysteine
residues (Table 1) [47,49] and have an anti-parallel β-strand structure (Figure 2c,d) [81]. It was initially
reported that PG-1 could inhibit both HP-PRRSV strain Li10 and N-PRRSV strain CH-1a infection
at the concentrations of 20–40 mg/L and inhibit Li10 replication at the concentrations of 30–40 mg/L
without cytotoxicity in Marc-145 cells [50]. The results suggested that PG-1 (40 mg/L) can block the
release of Li10 particles and partially block Li10 internalization. It is reported that PG-1 might disturb
the interactions between viral particles and cell-membrane receptors and thus block the attachment
stage of the virus at the early period. However, later research noted that PG-1 can neither inhibit
Li10 replication nor elevate antiviral cytokine expression in PAMs [50]. In comparison with PG-1,
PG-4 substitutes a phenylalanine for a valine at position 14, and their sequences are different in the
β-turn (Figure 3). Sang et al. showed that PG-4 could suppress PRRSV in PAMs at the concentrations of
5–40 µg/mL, indicating that the activity of PG-4 is much higher than that of PG-1; this finding suggests
that the aromatic side chain of phenylalanine plays an important role in activity against PRRSV [48].
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Figure 3. Sequences of PG-1 and PG-4. The same amino acids are represented by the same color.
PG-4 substitutes a phenylalanine for a valine at position 14, and their sequences are different in
the β-turn.

Porcine β-defensin-2 (pBD-2), which was described in a previous section, can inhibit not only
PRV but also PRRSV. Veldhuizen et al. indicated that pBD-2 can inhibit the proliferation of PRRSV in
MA-104 cells when its concentration reaches 64 µg/mL [42]. In addition, porcine β-defensin-3 (pBD-3)
consists of 38 amino acid residues (Table 1). pBD-3, like pBD-2, is mainly expressed in bone marrow,
liver, lung, skin, and other lymphoid tissues like pBD-2 [43]. A study showed that pBD-3 consistently
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suppressed PRRSV titers in PAMs at the concentrations of 5–40 µg/mL. The precise mechanism by
which pBD-3 inhibits PRRSV infection remains to be determined [48].

Human cathelicidin LL37, consisting of 37 amino acid residues (Table 1), adopts a long helix
covering residues 2–31 with a disordered C-terminal tail (Figure 2e) [51]. LL37 not only possesses
antibacterial, antifungal, antiviral, and anticancer functions but also shows an immunoregulatory
effect and even exhibits a potential activity of promoting wound repair, apoptosis, and angiogenesis
regulation [82]. A previous study showed that cathelicidin LL37 displays direct antiviral activity
instead of inducing apoptosis or necrosis [83]. Levast et al. indicated that LL37 shows anti-PRRSV
activity by reducing viral replication in vitro, and it might enter into PRRSV and directly interact
with nucleic acid to inhibit its replication, but further studies are still needed to fully reveal the exact
anti-PRRSV mechanism of LL37 in detail [52].

2.3. Epinecidin-1 (Epi-1) Fights against FMDV

Foot and mouth disease (FMD) is a very important disease affecting livestock in the world [84] and
is caused by foot and mouth disease virus (FMDV) [85]. FMDV is a nonenveloped virus belonging to the
family of Picornaviridae and genus Aphthovirus [86]; it is highly infectious to pigs and other cloven-hoofed
animals and imposes a significant impact on the global economy [87,88]. Common symptoms of foot
and mouth disease include fever and blistering lesions in the mouth, tongue, and feet. There are seven
antigenic serotypes of FMDV, including O, A, C, SAT1, SAT2, SAT3 (South African 1, 2, 3), and Asia1
(Asian 1); each serotype has multiple subtypes [89], and serotype O is the most common serotype in
the world. As there is still no effective vaccine or antiviral drug, new and better drugs or candidates
are being sought to combat FMDV infection.

Epinecidin-1 (Epi-1) is derived from the orange-spotted grouper, Epinephelus coioides [90],
and belongs to the piscidin peptide family. The piscidin family is an evolutionarily conserved,
linear, amphiphilic, antibacterial peptide family that is unique to fish and homologous to cecropins [91].
The length of complete Epi-1 cDNA is 518 base pairs, and the longest open reading frame consists of
204 base pairs and encodes a sequence of 67 amino acids [90]. Studies on the potential pharmacological
activity have mainly focused on amino acid residues 22–42 of Epi-1 (Table 1) [53], which shows an
α-helical structure without disulfide bonds (Figure 2g) [57]. Epi-1 has been reported to have wide
activity against bacteria, fungi, and viruses and shows immune regulation [92–94]. Besides, Huang et al.
found that the synthetic Epi-1 effectively suppresses FMDV (type O/Taw/97) by inactivating virus
particles and inhibiting virus proliferation. Epi-1 not only shows a direct antiviral effect on FMDV at
high concentration (10 × EC90 concentration of 125 µg/mL) but also prevents the adsorption of FMDV
on BHK-21 cells at low concentration (6.2 µg/mL) [54]. Since a structured membrane is absent in FMDV,
research data indicated that the application of Epi-1 in virus adsorption can effectively inhibit virus
replication, and thus it is suggested that Epi-1 could interfere with the early stage of viral infection
through an undisclosed mechanism [54].

2.4. Synthesized Peptides Fight against ASFV

In addition to the above several viral diseases, African swine fever (ASF) is also a viral disease that
lacks effective vaccines for prevention and control in the pig breeding industry; it has spread quickly
as an epidemic viral disease in China since mid-2018. As a highly infectious viral disease of pigs,
ASF causes fatal hemorrhagic fever after infection, resulting in a high mortality rate of nearly 100% [95].
ASF is caused by African swine fever virus (ASFV), which is a large, enveloped, double-stranded DNA
virus with icosahedral morphology and the only member of Asfarviridae family. ASFV is transmitted
by arthropod soft ticks (Ornithodoros moubata), making it the only DNA virus to be transmitted via
insect [96,97].

Studies have shown that ASFV utilizes dynein for internalization and intracellular transport [98],
entering into host cells through dynein- and clathrin-dependent endocytosis and micropinocytosis
(Figure 4) [95,99]. As a microtubular motor protein, dynein is in charge of the intracellular transport
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linked to microtubules. In the early stage of the virus life cycle, the virus carries out intracellular
transportation along microtubules. Once the virus passes through the cytoplasm, it quickly enters into
the perinuclear region or nucleus and starts to replicate [100]. P54 is the main protein of the ASFV
particle membrane, which can interact with the light-chain dynein of 8 kDa (DLC8) both in vitro and
in cells. This interaction allows ASFV to be transported to a viral factory located in the perinuclear
area at the microtubular organizing center (MTOC), which is necessary for viral protein synthesis and
replication [98]. As breaking the interaction between the virus and dynein can hinder the transportation
of the virus, it should be focused on as one of the mechanisms of AMPs against ASFV.
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dynamin- and clathrin-mediated endocytosis and macropinocytosis. Newly synthesized virions are
assembled in the viral factory and will exit the cell either by exocytosis budding at the plasma membrane
or through the formation of apoptotic bodies [95].

In recent years, synthetic AMPs with specific targets have been designed to bind to receptors on
the surface of host cells, rendering these binding sites unavailable to viral proteins and thus impairing
viral adsorption [55,101,102]. DNBLK1 is a synthesized short peptide that consists of 28 amino acid
residues (Table 1) and contains DLC8 binding domain; by binding to DLC8 to prevent the interaction
between ASFV protein p54 and DLC8 in vitro, it may be a useful tool to retard viral replication or
spread [55]. Bruno et al. indicated that DNBLK1 can reduce the infectivity, replication, and production
of ASFV, and the inhibition occurs at the early stage of the ASFV infection cycle. This provides clues for
the treatment of African swine fever and other diseases caused by viruses with the same transmission
mechanism as ASFV [55], and more attention should be paid to this new direction.

3. Conclusions

Since there is still no effective treatment for most viral infections in animal husbandry, outbreaks
of viral epidemics are generally followed by the quarantine and slaughter of infected animals,
resulting in great economic losses for the breeding industry and society [33,68,84,88]. In the past few
decades, research on viral diseases in pig breeding has focused on the development of vaccines [5].
Vaccination can inhibit the development of the disease [40], but with the continuous variation of viruses,
traditional vaccines lose their effect on mutated virus strains, and the emergence of mutant strains
leads to the outbreak of viral diseases. In the context of today’s highly globalized world, viral diseases
spread much faster and easier than they did centuries ago [10]. We have to face this threating challenge
by utilizing more feasible options.

Therefore, in addition to the usual development of vaccines as antiviral agents, it is also of great
significance to exploit new strategies to combat viruses. Currently, AMPs, due to their effective antiviral
activity, are the research focus in the field of new antiviral drug development and are expected to
become one of the key drivers of antiviral drug development in the future. AMPs inactivate viruses by
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destroying the viral envelope; binding with virus surface glycoprotein; occupying specific receptors of
the host cell membrane; and inhibiting viral replication, transcription, reverse transcription, expression,
and release. With the improvement of bioinformatics science, more new AMPs with antiviral activity are
continuously being discovered and designed. These AMPs can resist not only porcine viruses but also
Newcastle disease virus [103], duck hepatitis virus [104], bovine herpesvirus 1 [105], dengue virus [106],
and other human and zoonotic viruses and thus hold great importance for research and development in
theory and practice. In addition, synthetic AMPs with specific targets, such as DNBLK1 (targeting the
DLC8 binding domain), have also been designed, providing a new idea and tool for the development
and improvement of AMPs to resist viruses [55].

Although AMPs have great potential activity against viruses, there are still some potential problems
to be solved, such as higher cost of production, shorter half-life time, and poor oral absorption of AMPs,
as well as the challenge of delivery systems [107]. Some AMPs have been shown to have antiviral
effects in vitro against viral diseases in animal husbandry, but their antiviral activity in vivo remains to
be studied and confirmed [27,50,52]. It is known that AMPs are sensitive to trypsin and other lytic
factors in vivo, especially when they are administrated orally or by blood injection. In order to improve
the stability of AMPs, many studies have been carried out considering the controlled site-specific
release and sustained continuous release of AMPs by nanoencapsulation [108,109] and modification of
high resistance to proteolysis [110], as well including unnatural or D-amino acids substitution [111]
and peptide chain cyclization [112,113]. Moreover, targeting modification is also worth considering
as a powerful tool to increase killing specificity to pathogens and decrease host cell toxicity of
AMPs [114,115]. In addition, many mechanisms of action between AMPs and virus molecules are still
unclear and need to be further studied. However, we find it reasonable to assume that the previous
fruitful findings and constructive theories from antibacterial studies with AMPs in vivo and in vitro,
such as those concerning the mechanism of entry into the host cell and bactericidal details, might be
shared and referenced during antiviral studies; it is confirmed from previous works that AMPs enter the
blood circulation through different drug delivery routes, reach various organs, and further internalize
into the cells through endocytosis and micropinocytosis [116–119]. Undoubtedly, wider and deeper
new findings are highly deserving of anticipation and will attract great interest due to the unique
advantages of AMPs, including their high penetration into the host cell owing to their intracellular
origin, their close compatibility with the host, their hypersensitive early-warning/protection response
to infection, and their low drug resistance rate owing to strong penetration and multitargeting of
pathogens [30,120–125]. We strongly believe and optimistically expect that with the further elucidation
of the structure, expression regulation, and mechanism of action of AMPs as a whole, the factors that
limit the development of AMPs will be disclosed and overcome one by one, and more new functions
of AMPs will be discovered. Eventually, AMPs will be widely utilized and commercialized in animal
husbandry and even in the human health industry [16,124,126].

In summary, antimicrobial peptides, which can effectively combat viruses, are highly expected to
break through their special technical bottleneck in the near future; this will enable them to support the
sustainable green development of the husbandry and health industries and thus promote the general
upgrading of green industry in China and the world.
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