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High-veracity functional imaging in scanning probe
microscopy via Graph-Bootstrapping

Xin Li"234 Liam Collins'2, Keisuke MiyazawaS, Takeshi Fukuma®, Stephen Jessel? & Sergei V. Kalinin 1.2

The key objective of scanning probe microscopy (SPM) techniques is the optimal repre-
sentation of the nanoscale surface structure and functionality inferred from the dynamics of
the cantilever. This is particularly pertinent today, as the SPM community has seen a rapidly
growing trend towards simultaneous capture of multiple imaging channels and complex
modes of operation involving high-dimensional information-rich datasets, bringing forward
the challenges of visualization and analysis, particularly for cases where the underlying
dynamic model is poorly understood. To meet this challenge, we present a data-driven
approach, Graph-Bootstrapping, based on low-dimensional manifold learning of the full SPM
spectra and demonstrate its successes for high-veracity mechanical mapping on a mixed
polymer thin film and resolving irregular hydration structure of calcite at atomic resolution.
Using the proposed methodology, we can efficiently reveal and hierarchically represent
salient material features with rich local details, further enabling denoising, classification, and
high-resolution functional imaging.
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fter the first demonstration of atomic force microscopy

(AFM) by Binnig and Rohrer!, AFM and related force-

based scanning probe microscopies (SPMs) have rapidly
become the tool that opened the nanoworld for exploration and
modification®. Since the late 1980s, a variety of SPM methods
sensitive to magnetic’, electrostatic*~%, mechanical®!!, and pie-
zoelectric'>~1° properties of surfaces have been realized, followed
by the development of a number of spectroscopic modes that
provided insight into kinetics and thermodynamics of single-
molecule reactions'®"!® and mechanisms of bias-induced phase
transitions?*~2* on a single defect level.

Despite this progress, for over 20 years, the progress in SPM
methods was associated preponderantly with the development of
low noise and controlled environment platforms, as well as
functionalized probes. At the same time, the basic principles of
signal processing and visualization involved in SPM imaging
remained the same, namely the use of the single frequency het-
erodyne detection methods in lock-in and phase-locked loop
detection, and plotting-associated amplitude/phase or frequency
maps. Considerable progress in SPM instrumentation was
achieved in the early 2000s, with the introduction of dual fre-
quency methods by Garcia®® and Proksch?®. The next step was
the development of the band excitation (BE) method by Jesse and
Kalinin?"> 27731, which enabled quantitative measurements of
conservative and dissipative interactions on the nanoscale. Since
then, an increasing number of multifrequency SPM techniques
including, amongst many others, bi-/tri-modal SPM>> 33 and
intermodulation techniques®® 3 as well as multidimensional
approaches such as three-dimensional force mapping AFM3¢-38
(3D-AFM), holography®®, and time-resolved®"*? " techniques
have been realized. Finally, the general acquisition (G)-Mode*>~4>
approach has recently been developed to enable full capture of the
information stream from the photodetector, potentially reaching
the information limit of SPM.

However, multifrequency/multidimensional techniques such as
intermodulation SPM>* 3>, BE?’31, and G-Mode*>~*> generate
large, often complex, datasets, necessitating approaches for
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visualizing and converting the data to materials specific infor-
mation. In prior BE work, we have primarily used functional
fitting of the data in the Fourier domain?’~3!, relying on a prior
based on simple harmonic oscillator physics (SHO model) of the
tip—surface interactions. This approach by definition ignores the
materials behaviors associated with deviations from SHO models,
for example, nonlinearities that lead to dynamic stiffening or
softening of the tip-surface junction and hence require more
complex dynamic models. The introduction of such models, in
turn, can lead to significant issues such as spurious growth in the
number of free parameters, expansive analysis times, potential
overfitting, etc. Meanwhile, the linear unmixing methods based
on principal component analysis*® show only limited usefulness,
since the BE signal is non-linear with respect to the local
mechanical properties.

Here, we propose and implement an approach based on low-
dimensional embedding of high-dimensional data via a combi-
nation of graph analytics and hierarchical clustering, illustrated
for BE-SPM and 3D-AFM but generally applicable to other data-
rich SPM modalities. We note that fundamental physics of the
tip-surface interactions is intrinsically low-dimensional and is
determined by a relatively small number of materials parameters.
The transfer function of the cantilever is a non-linear!> 4 (and
generally very complex) function of these parameters, precluding
the use of the linear unmixing methods for the analysis. However,
we argue that the intrinsic low dimensionality of the physics
suggests the presence of the low-dimensional manifold can be
derived from the high-dimensional response space of SPM
measurements. Figure 1 illustrates the concept of manifold-
physics inference applied to functional imaging using SPM.

Results

Traditional BE-SPM Imaging. Unlike single frequency techni-
ques, which excite/detect the tip-sample interaction within a
single frequency bin, BE detection utilizes a non-sinusoidal
excitation signal having finite amplitudes over a selected fre-
quency space. Practically, this is achieved using a digitally

Manifold learning

Manifold space

Fig. 1 Concept of manifold-physics inference. The properties of the surface that define the scanning probe microscopy (SPM) signal form a low-
dimensional parameter space, for example, defined by the Young and Poisson moduli and the work of adhesion. These properties are translated onto a
(very high dimensional) response space by means of the imaging mechanism of the cantilever/microscope. Aside from possible discontinuities due to
changes in imaging regimes, points that are in close proximity in the parameter space will generally be in close proximity in the response space, forming a

complex non-linear manifold

2 | (2018)9:2428 | DOI: 10.1038/541467-018-04887-1| www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/541467-018-04887-1

ARTICLE

synthesized signal having a defined band of frequencies (in the
Fourier domain), which are subsequently inverse fast Fourier
transformed (iFFT) to generate a signal in the time domain, used
to modulate the tip-sample interaction. Further, the band of
frequencies is typically chosen to be positioned (in the Fourier
domain) across one or many contact resonance (CR) peaks,
allowing further insight into the cantilever dynamics than
accessible in single frequency techniques.

In the linear regime, the behavior of the cantilever CR can be
approximated by a SHO and described by three independent
parameters: CR frequency, w,, amplitude at the CR, Ao, and
quality factor, Q, which can be deconvoluted and stored as images
as given by Egs. (1) and (2):
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In this way, knowledge of the full CR behavior in BE allows
both conservative (Aw,) and dissipative (AQ) contributions of the
tip-sample interaction to be decoupled. In terms of mechanical
property measurements, this enables separating the influence of
elastic (conservative) and viscous (dissipative) material behavior.
This makes BE-SPM (sometimes referred to as CR-SPM) a
promising route for mapping local mechanical properties of
materials.

Figure 2 represents the topography and the SHO fitting results
of the BE measurements on a thin-film polymer blend of
polycaprolactone (PCL) in a polystyrene (PS) matrix. In Fig. 2b,
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the amplitude response is seen to be reasonably constant across
the entire image, with abrupt changes in the amplitude response
detected at the interfaces between materials, likely due to sudden
changes in sample topography leading to imperfect tip—sample
contact. At the same time, clear evidence of differences in
viscoelastic behavior of the polymer blend can be observed in the
resonance frequency and Q maps, Fig. 2¢, d, respectively. The PS
matrix clearly shows a higher resonance frequency and Q factor
than observed in the PCL inclusions. The shift in the CR to a
higher frequency indicates an increase in the stiffness (Young’s
modulus) of the material. Whereas peak shape (Q) behavior is
reflective of energy dissipation in the tip-surface junction, such
that a lower relative Q value is indicative of a more viscous/
compliant material. In summary, the results in Fig. 2 strongly
suggest that the PS matrix is stiffer and less viscous than the PCL
material, in agreement with previous works involving nanome-
chanical mapping by SPM techniques*® of these samples.

This analysis based on the simple model of harmonic oscillator
is extremely useful; however, as previously discussed, the reliance
on a SHO type model precludes the investigation of subtle but
important materials non-linearities (dynamic mechanical
responses in compliant materials). Hence, further progress
requires comprehensive data-driven approaches to visualize the
data and elucidate underlying physics, ultimately yielding higher
veracity functional imaging.

Graph-Bootstrapping. Over the past 2 decades, networks have
become an invaluable tool for extracting insights from large-scale
complex systems in many branches of science*” 0. Despite
successful applications in numerous areas, network analytics
usually require existing graph databases, which are constructed by
manually labeling instances over a long time. However, of interest
here is the emerging class of SPM techniques involving
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Fig. 2 Traditional BE-SPM imaging on a thin-film polymer blend of PCL in a PS matrix. a Band excitation scanning probe microscopy (BE-SPM) topography
of polystyrene/polycaprolactone (PS/PCL) sample. Spatial mappings of (b) amplitude, A, ¢ contact resonance (CR) frequency, wo, and d Q-factor, fitted via

the simple model of harmonic oscillator (SHO)
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significantly increasing levels of data capture, which often lack
prior physical understanding of the tip-sample interactions and
their relationship to particular material functionalities. Therefore,
to gain insights into the behavior of both global and local rela-
tionships within high-dimensional measurements, we first con-
struct the nearest neighborhood graph®!. The complexity of
constructing an exact nearest neighbor graph is O(#p), which is
too expensive for high-dimensional datasets {X;, X, ...... , X}
where X; € R?, especially for SPM datasets in which depending on
the detection mode (Broad-band, G-Mode) p can reach to 104,
Recently, Tang et al.”? proposed LargeVis, a very efficient algo-
rithm to build approximate nearest neighbor gragh based on
random projection tree>> and neighbor-exploring®® techniques.
The weights of edges are calculated in a similar way to the dis-
tributed stochastic neighbor embedding (t-SNE)> method, by
converting the Euclidean distances between neighbors into con-
ditional probabilities that represent similarities. Furthermore,
LargeVis layouts the nearest neighbor graph in low-dimensional
manifold space following a principled probability model solved
via asynchronous stochastic gradient descent’®.

For SPM datasets, especially for high-dimensional detection
mode (p~10%), we found LargeVis projection on the low-
dimension manifold space tends to be few bulk modules, which
can usually distill most salient parts of the material. However, it is
difficult to further explore local details in those modules. At the
same time, the low-dimensional (2D/3D) coordinates calculated
by LargeVis preserve all relationships between measurements. To
explore intrinsic structures and present them in a clearer way, we
propose reconstructing the graph based on the LargeVis low-

dimensional manifold coordinates and subsequently recalculating
the manifold layout positions based on the reconstructed graph,
following the same principled probability model. We refer to this
method as Graph-Bootstrapping.

Traditionally, manifold embeddings are used for visualization
purposes only, that is, to overlay known labels on the manifold
points. Here, we expand this approach by learning manifold from
high-dimensional measurements and subsequently clustering on
the manifold to provide a natural way of visualizing and
denoising the data, as well elucidating the relevant physics. This
task however brings two main challenges. First, the manifold
layout should consist of distinguishable groups which when
accessible will enable straightforward clustering to be performed.
Second, the clustering algorithm should be robust enough to
cover irregular manifold layouts. Figure 3 presents a concrete
example of manifold embedding and clustering with simulated
Gaussian curves. Specifically, we consider four groups of
parameters (Fig. 3a): two ranges of mean in [0, 1], [10,11] with
the step size of 0.01, and two standard deviations: 0.2, 1. Each
Gaussian curve has a unique combination of mean and standard
deviation (Fig. 3b). We compare two popular visualization
methods, Isomap®' and t-SNE, with our proposed Graph-
Bootstrapping (GB) method. For clustering, we use K-means
and hierarchical density estimates method (HDBSCAN>’), which
is explained in detail in subsequent sections.

From Fig. 3, we can see that the Isomap method could not
differentiate Gaussian curves of different standard deviations. For
clustering, K-means works correctly on t-SNE and Graph-
Bootstrapping manifolds, given the right tuning parameter, K,

Manifold learning
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Fig. 3 lllustration of manifold embedding and clustering on simulated Gaussian curves. a Four groups of parameters including two ranges of mean in [0, 1],
[10,11] with the step size of 0.01, and two standard deviations of 0.2, 1. b Four groups of Gaussian curves, generated from the four groups of parameters in
a. Each Gaussian curve has a unique combination of mean and standard deviation. c-e Manifold points estimated by Isomap®’, colored by true labels and
clustered labels via K-means and hierarchical density estimates method (HDBSCAN?®?), respectively. f-h Manifold points estimated by t-SNE>, colored by
true labels and clustered labels via K-means and HDBSCAN, respectively. i-k Manifold points estimated by Graph-Bootstrapping (GB), colored by true

labels and clustered labels via K-means and HDBSCAN, respectively
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the number of clusters. However, the number of clusters is usually
an unknown parameter, which in the case of SPM imaging is
related to material properties that we would like to estimate.
Thus, the manifold learning and clustering should share
conjugate hyperparameters that are based on the local structure
(such as nearest neighbors), which is the underlying logic behind
the Graph-Bootstrapping presented herein.

High-veracity BE-SPM Imaging. Graph-Bootstrapping is firstly
applied for analysis of the BE and broadband BE-SPM mea-
surements of the polymer mixture. Graph-Bootstrapping reveals
domain differentiation despite the fact that the algorithm is
purely statistical in nature and does not require any prior infor-
mation regarding the material and any differentiating structures.
It is also an efficient approach. SHO fittings for a high-
dimensional broadband excitation (p=15,159) is prohibitive,
yet Graph-Bootstrapping took 20 min to process 4GB of broad-
band BE-SPM measurements on a single workstation (Intel
Xenon E5-1650V3, 32GB DDR3 RAM). Figure 4 compares the
results by LargeVis and Graph-Bootstrapping. The relationship
between LargeVis and Graph-Bootstrapping clusters is illustrated
in following sections. Here we distinguish BE datasets, which
contain a single CR peak (narrow band) with broadband reso-
nance BE datasets that capture a broad frequency range spanning
several resonance peaks.

Previous studies have shown that complex networks often
exhibit hierarchical organizations®®~®, Correspondingly, the
geometry derived from bootstrapping clearly displays the
hierarchical groups within SPM measurements, which allows us
to utilize HDBSCAN®” ®! to gain insights into many network
properties, yielding the spatial mapping of heterogeneous local
structures of material. Mathematically, HDBSCAN relies on the
mutual reachability distance, which works in a conjugate way with
the neighbor exploring stage during graph construction, that is, a

a LargeVis, BE data sets

s

LargeVis, broadband-BE data sets

neighbor of a neighbor is also likely to be a neighbor: Dy each
(a,b) = max{corei(a), corey(b), d(a,b)}, where d(a,b) is the
original metric distance between points a and b, corei(x) is the
core distance of a point x to cover its k nearest neighbors.
Supplementary Fig. 1 shows the relationship between the total
cluster number and the minimum nearest neighbor number, k.
HDBSCAN mostly yields two clusters with a few outliers of three
clusters based on LargeVis manifolds (Supplementary Fig. 1).
Since there is no clear trend in the resulting cluster number, we
choose the majority of total cluster numbers, a value of 2.
Supplementary Fig. 2 illustrates the spatial mappings of the two
LargeVis clusters.

Compared to LargeVis, the total number of clusters based on
the Graph-Bootstrapping manifold decreases continuously as k
increases (Supplementary Fig. 1). At the first glance, the resulting
number of clusters P(k), varies as a power of k:

P(k) =Ck™* (3)
where « is called the exponent of the power law that exists in vast
branches of natural sciences, computer sciences, economics, and
social sciences®>~®7. To get the fitting of power law distribution,
we used the software developed by Alstott et al.%®, We first
normalized the cluster numbers and calculated the log- log plot of
probability density function of the empirical data as well as fitted
power law (Supplementary Fig. 1). We also fitted the trend with
exponential distributions (Supplementary Fig. 1), another popular
candidate for heavy-tailed distributions:

P(k) — Cef(kfoffset)/r (4)

where 7 is the relaxation constant. For exponential fitting, from
k=3t (more accurately, it should be k=37 offset, for
simplicity, we omit the notation of offset in the rest of paper),
the cluster number tends to be stable as k increases.

b Bootstrapping, BE data sets

2 5
L 4

Bootstrapping, broadband-BE data sets
L4

Y

Fig. 4 Manifold layouts by LargeVis and Graph-Bootstrapping calculated from the polymer mixture datasets. a Manifold points estimated by LargeVis,
based on the band excitation scanning probe microscopy (BE-SPM) datasets. b Manifold points estimated via Graph-Bootstrapping by firstly reconstructing
the graph from LargeVis manifold in a and then recalculating the manifold points based on the reconstructed graph. ¢, d The same analysis procedure with
those in a, b, but applied on the broadband BE-SPM datasets collected on the same polymer mixture sample
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To establish the quality of clustering, corresponding to the
number of distinct surface functionalities, we calculated the
(cumsum) standard deviations (STD) of SPM measurements
within each cluster at different k values. Supplementary Fig. 3
displays the boxplot of cluster STD distributions. Like
Supplementary Fig. 1, we can see big jumps around k = 37, 21,
7. Clusters with lower STDs are more stable numerically. On
one hand, the newly raised clusters could reveal subtler physical
factors that affect materials at higher spatial resolution;
on the other hand, the newly raised clusters could be essentially
of the same material property, but are divided by SPM
measurements noises. Supplementary Fig. 4 displays manifold
clusters and the spatial distributions at low- and high-
hierarchical levels. We note small inclusions (Supplementary
Fig. 4) in the semicrystalline PCL and PS structure, which are
likely smaller crystallites formed during the film synthesis, and
are useful in highlighting the spatial resolution of the approach.
What’s more, we see newly bootstrapped clusters as k decreases

(Supplementary Fig. 4). The above observations are consistent
with our conjecture on Supplementary Figs 1, 3. Combining
Supplementary Figs. 1, 3, 4, we empirically propose k = 37 to be
the optimal choice between accuracy and overfitting. Or, if we
could estimate the measurement noise level, then it may be a
good reference. That is to say, we are less faithful in clusters
whose standard deviations are less than that of system noise (if
obtainable).

Based on above analysis, we can directly denoise the data,
visualize it, and extract underlying physics parameters based on
the manifold clusters in Supplementary Fig. 5, where the BE
signals of bootstrapped clusters and their spatial mappings clearly
distill the subtle material surface details, especially for the
interface region. One can further calculate the similarity loadings
by calculating pairwise distances between the mean SPM curve of
the cluster and every raw SPM curve. The resulting similarity
loadings (inversion of Euclidean distances) clearly highlight
different material regimes (Supplementary Figs. 6, 7), yielding

seem to be randomly located when k is below 27 subtler and more enriched local heterogeneity than the SHO
Frequency (Hz) 0.009
BN T O R B e - |
a A SRl E ey % 225000 goos| D b_child_0
CALAT - — b_child_1
: i . o dATNAT ' 0.007 —b_child_5
4 et 215,000 0.006 | __
=)
210,000 0005 <
E
205,000 0.004 %_
£
200,000 0003|<
195,000 0.002
190,000 0.001
185,000 0.000 Excitation frequency (Hz)
180,000 190,000 200,000 210,000 220,000 230,000 240,000 250,000

Similarity

280
240
200
160
120
80

40

Fig. 5 Application on the polymer mixture sample with band excitation scanning probe microscopy. a Spatial mapping of frequency via the simple model of
harmonic oscillator (SHO) fitting. b Mean SPM response curves of three bootstrapped clusters, b_child_O, b_child_1, and b_child_5. c-e Cluster labels
(b_child_0, b_child_1, b_child_5) cumulatively overlaid on SHO fitted frequency map. f-h Similarity loadings of clusters b_child_O, b_child_1, and b_child_5,

respectively
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fitting. Those similarity loadings can verify the accuracy of the
Graph-Bootstrapping method.

In Fig. 5, we present deeper insights obtained via Graph-
Bootstrapping. Figure 5a is the spatial mapping of frequency from
SHO fittings. Such maps are normally transformed using
analytical models into material property maps such as elastic
modulus. The brighter area (higher frequency) in Fig. 5a
corresponds to the PS matrix of higher stiffness. Noticeably, little
structural inhomogeneities are detected within the PS matrix
based on Fig. 5a (or in other SHO fitting parameters as shown in
Fig. 2). Meanwhile Graph-Bootstrapping illustrates at least three
distinguishable clusters (Fig. 5c—e) within the PS matrix with the
corresponding SPM response curves (Fig. 5b). To quantitatively
check the accuracy of clustering, we provide the similarity
loadings in Fig. 5f-h. We do see the similarity loading has higher
similarity values at the spatial positions of the cluster. In Fig. 5b,
we see the nonlinear ring patterns at lower frequency range which
are ignored by definition in the SHO fittings. In this way, our
generalized method can be used to unveil hidden details, without
the need for an a priori model. We further note the mean SPM
curve of cluster b_child_1 has a higher height than the other two
clusters, which SHO fittings failed to reveal. We also attached
Graph-Bootstrapping results of broad-band BE datasets collected
on the same polymer mixture sample in Supplementary Figs. 8, 9,
10, 11.

Application on 3D-AFM Imaging. To further demonstrate the
broad capability of Graph-Bootstrapping, we applied it to the 3D-
AFM dataset that has been recently investigated by Séngen et al.®
to resolve point defects in the hydration structure of calcite (10.4).
For each (x, y) surface position, excitation frequencies extracted at
different z piezodisplacements (corresponding to various hydra-
tion layers) are inputted to the Graph-Bootstrapping.

‘ %

I
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% 4 -
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Figure 6a is the manifold clustering results of the first-order
bootstrapping, and correspondingly Fig. 6b is the surface
distribution of cluster labels revealing the lattice structure. We
performed hierarchical clustering on the second-order boot-
strapped manifolds (Fig. 6d) and overlaid the same set of labels
onto the first-order manifolds (Fig. 6¢) where we can see clusters
still aggregate. Figure 6e shows the atomic structure of the (10.4)
surface unit cell with a scale bar that applies to all surface spatial
mappings. Figure 6f displays the surface positions of the second-
order bootstrapped clusters revealing subtle details between the
Ca site and the carbonate site, which can be further investigated
via the excitation frequency shift profiles of the clusters presented
in Fig. 6g. First, we note that the shift curve of cluster_5
consistently exhibits the largest local maxima and the smallest
local minima in the third, fourth, and fifth hydration layer,
corresponding to the profile of the Ca defect site which has been
verified manually by Songen et al®. Second, Graph-
Bootstrapping also elucidated the irregular flattening of the
cluster_0 curve between the fourth and fifth hydration layer as
well as its large shifts of local maxima and local minima between
the second and fourth hydration layer. We can assure this
irregularity by comparing surface label sites and similarity loading
(Supplementary Fig. 12). We can see that the similarity loading
indeed has higher similarity values at the spatial positions of the
cluster_0.

Discussion

Over the past 10 years, several groups have made significant
contributions towards the quantification of viscoelastic properties
by CR SPM’%72, However, even CR-SPM still incessantly
undergoes developments to this day, in both modeling and
hardware. This is because there is still a lack in knowledge of how
the cantilever precisely behaves on certain materials in the
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Fig. 6 Application on hydration structure of calcite with 3D-AFM. a First-order bootstrapping manifold colored by clustering labels, that is, the manifold
derived from the reconstructed graph based on LargeVis manifold and b the spatial mapping of the corresponding labels. ¢, d Comparison of manifold
patterns (first- and second-order bootstrapping) colored by the same set of clustering labels where hierarchical clustering was performed on the second-
order bootstrapping manifold. Second-order bootstrapping manifold is derived from the reconstructed graph based on the first-order manifold. e Atomic
structure of the calcite (10.4) surface unit cell, reproduced from Ref.%%. (Copyright [2018], APS). f Surface positions and g excitation frequency shift

profiles of second-order bootstrapping clusters
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presence of background forces. We proposed a generalized
method to spatially map the local inhomogeneities on the high-
dimensional datasets captured in these modes, and to do so
without requiring an a priori model or placing any constraints on
the data. As we highlight in Fig. 5, even at this stage, we can
pinpoint deviations from expected cantilever behavior that are
not described by a simple model adopted as the gold standard.
This information, in turn, can be used to evaluate the effective-
ness of existing approaches. After extracting patterns revealed by
Graph-Bootstrapping, further efforts can be made on deeper
theoretical and experimental study on correlations between the
whole shape of SPM curves and material properties.

To further illustrate the broad capability of Graph-Boot-
strapping, we applied it to 3D-AFM and demonstrated its suc-
cesses on resolving irregular hydration structure of calcite at
atomic resolution. In summary, we develop a universal algorithm
for representation of high-dimensional SPM data. Based on the
combination of network analysis and search for low-dimensional
manifold, this approach reveals and hierarchically represents
salient material features with rich local details, further enabling
denoising, classification, and high-resolution functional imaging.
While demonstrated for BE-SPM and 3D-AFM, this approach
can be universally applicable to other data-rich imaging methods.
We further pose that learning of low-dimensional manifold
representing the data will open the pathway for extraction of the
relevant physics coupled between material and imaging systems.

Methods

Band-excitation scanning probe microscopy. Mechanical measurements were
performed on thin-film polymer blend samples consisting of PCL inclusions
embedded in a PS matrix. Samples were prepared by spin coating in 2:1 ratio as
described in previous work by Kocun et al.*%. Film thickness was >300 nm.
Mechanical properties of the sample were previously measured using bimodal
tapping mode® 73 where Young’s modulus of the PS was assumed to be 3.0 GPa
and used as a reference to determine the stiffness of PCL (~0.85 GPa).

All measurements on polymer sample were performed using a commercial
AFM system (Cypher, Asylum Research and Oxford Instruments Company),
which was equipped with a laser for photothermal excitation (Bluedrive module)
and used for mechanical perturbation of the AFM tip-sample interaction. CR-
AFM measurements were performed in contact mode where the tip was held in
constant force (~65 nN) with the surface using static deflection feedback. BE-AFM
imaging was operated at normal AFM imaging speeds (1 Hz), and the AFM system
was coupled with data acquisition and arbitrary waveform generators (National
Instruments, NI5122 and NI5412), which were controlled using custom Matlab
code (MathWorks). Measurements used a gold-coated NSC36 (Micromasch)
cantilever with a calibrated spring constant of 0.89 N/m and free air resonance
frequency of 44.7 kHz. The BE excitation center frequency, which was used to
excite the photothermal laser position on the AFM cantilever, was chosen to
approximately match the CR frequency (wo = ~210 kHz) and a bandwidth ~100
kHz using a sampling rate of 4 MHz leading to a data capture of ~20 bins per band.
In addition, broadband excitation/detection was implemented, using a center
frequency of ~500 kHz and bandwidth of ~490 kHz allowing a larger number of
resonance peaks to be captured simultaneously.

Three-dimensional atomic force microscopy (3D-AFM). 3D-AFM measure-
ments on calcite were performed by Séngen et al.%” and we refer the reader to this
text for additional details.

Code availability. The Graph-Bootstrapping codes used in this study can be made
available from the corresponding authors upon request.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.
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