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Abstract: Limb-girdle muscular dystrophy R12 (LGMD-R12) is caused by two mutations in anoctamin-
5 (ANO5). Our aim was to identify genes and pathways that underlie LGMD-R12 and explain
differences in the molecular predisposition and susceptibility between three thigh muscles that are
severely (semimembranosus), moderately (vastus lateralis) or mildly (rectus femoris) affected in this
disease. We performed transcriptomics on these three muscles in 16 male LGMD-R12 patients and
15 age-matched male controls. Our results showed that LGMD-R12 dystrophic muscle is associated
with the expression of genes indicative of fibroblast and adipocyte replacement, such as fibroadi-
pogenic progenitors and immune cell infiltration, while muscle protein synthesis and metabolism
were downregulated. Muscle degeneration was associated with an increase in genes involved in
muscle injury and inflammation, and muscle repair/regeneration. Baseline differences between
muscles in healthy individuals indicated that muscles that are the most affected by LGMD-R12 have
the lowest expression of transcription factor networks involved in muscle (re)generation and satellite
stem cell activation. Instead, they show relative high levels of fetal/embryonic myosins, all together
indicating that muscles differ in their baseline regenerative potential. To conclude, we profiled the
gene expression landscape in LGMD-R12, identified baseline differences in expression levels between
differently affected muscles and characterized disease-associated changes.

Keywords: anoctamin-5; ANO5; LGMD2L; muscle dystrophy; RNA-seq; transcriptomics; gene
signatures; selective muscle involvement; muscle biopsy; fibroadipogenic progenitors

1. Introduction

The limb-girdle muscular dystrophies (LGMDs) constitute a group of rare, progressive
and genetic muscle disorders, with weakness and atrophy of mainly pelvic and shoul-
der girdle muscles [1]. LGMDs are inherited mostly in an autosomal recessive manner
(LGMD-R), more frequent than autosomal dominant (LGMD-D). Autosomal recessive
pathogenic variants in the anoctamin-5 encoding gene (ANO5) cause LGMD-R12 anoc-
tamin5 related (LGMD-R12) and distal Miyoshi muscular dystrophy type 3 (MMD3) [2–4].
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In ANO5-related muscular dystrophies, a male predominance and women often showing
a less severe phenotype have been reported [4]. Dominant ANO5 mutations cause the
bone disorder gnathodiaphyseal dysplasia 1 (GDD1) [5,6]. To date, pathophysiology of
ANO5-related muscular dystrophies is largely unknown and disease-specific treatments do
not exist.

The ANO5-gene is highly expressed in skeletal and cardiac muscles and in bones [6].
ANO5 or transmembrane 16E protein (ANO5/TMEM16E) belongs to a family of ten
transmembrane proteins that have a role either as calcium-activated ion channels, lipid
scramblases, or both [7,8]. ANO5 is the only member of this protein family associated with
muscular dystrophy. Its lipid scramblase and ion channel activities have been shown to
play a role in sarcolemmal repair and myoblast fusion during muscle regeneration [9–13].

Similar to other muscular dystrophies, the muscle biopsy in LGMD-R12 reveals dys-
trophic changes consisting of necrotic and regenerating muscle fibers, and replacement
of muscle cells by connective and fatty tissue as disease progresses [3,14]. In addition,
muscle biopsy in LGMD-R12 often reveals inflammatory infiltrates [15–17]. Although
pathomechanisms of the dystrophic process in LGMD-R12 and other muscular dystrophies
are largely unknown, several pathways that might contribute to progressive muscle cell
death have been suggested, such as oxidative stress [18], mitochondrial dysfunction [19],
defective membrane repair [9], inflammation [20], compromised regeneration [13] and
impaired satellite cell activation [21].

Interestingly, although the genetic defect is the same in all muscles in LGMD-R12,
specific muscles are selectively involved, which can be seen on muscle Magnetic Resonance
Imaging (MRI). LGMD-R12 patients show a predominant affection of the posterior thigh
muscles, starting at the semimembranosus, whereas vastus lateralis is affected later in
the disease course, and rectus femoris, gracilis, sartorius and biceps femoris short head
show fatty infiltration only at more advanced stages of the disease [4,22,23]. A selective
muscle involvement also occurs in other muscular dystrophies, but the patterns of affected
muscles differ depending on the mutated gene [23]. It is highly relevant from a therapeutic
perspective to understand the reasons why some muscles escape the dystrophic effects of
disease-causing mutations.

The degree of muscle involvement can be determined semiquantitatively on muscle
MRI using various scales, such as the 4-point Mercuri score, which has been shown to
correlate with histopathological findings and disease progress [24,25].

The objectives of this study were to identify genes and pathways that underlie
LGMD-R12, resulting in new molecular insights into the dystrophic process, and explain
differences in the molecular predisposition and susceptibility between different muscles.
We used RNA-seq and studied the gene expression profiles in three differentially affected
muscles of the thigh (severely affected semimembranosus, intermediately affected vastus
lateralis, mildly affected to preserved rectus femoris) in 16 male LGMD-R12 patients and
in the same three muscles in 15 healthy male age-matched control individuals. We identi-
fied marker genes and pathways for the different muscles in patients and in controls and
applied single cell integration and deconvolution analysis to estimate how disease affects
different cell types that compose human skeletal muscle tissue.

2. Patients and Methods
2.1. Patients and Controls

We included 16 symptomatic, ambulatory, adult, male patients with genetically proven
LGMD-R12, i.e., carrying two pathogenic variants in the anoctamin-5 gene (ANO5) (Table 1),
and 15 age-matched healthy male control individuals. Patients were followed at the Neurol-
ogy Department, Neuromuscular Reference Center, at the University Hospitals Leuven and
Gent, Belgium. Wheelchair-bound patients and/or patients with complete fatty infiltration
of the three target muscles (semimembranosus, vastus lateralis, rectus femoris) on muscle
MRI were excluded, as well as patients with a predominantly distal Miyoshi muscular dys-
trophy type 3 (MMD3) phenotype or with asymptomatic hyperCKemia. Further exclusion
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criteria were: presence of a contra-indication for MRI (e.g., MRI non-compatible pacemaker
or claustrophobia), a blood coagulation disorder, use of anticoagulation medication or
potentially toxic medication on muscles such as steroids or statins at the time of muscle
biopsy and active alcohol abuse.

In all participants, the 6-min walk distance (6MWD) and 10-m walk test (10MWT)
were performed (Table 1) and a whole-body muscle MRI (1.5 Tesla, Philips Ingenia, Philips
Medical Systems, Best, The Netherlands) with axial and coronal T1-weighted scans was
carried out, prior to muscle biopsy sampling. The target muscles were scored on the MR
images using the Mercuri score, which is a 4-point grading system to categorize disease
severity in individual muscles based on visual inspection of fatty tissue infiltration on
MRI: normal appearance (score 1/normal), less than 30% affected (score 2/mild), between
30–60% affected (score 3/moderate), between 60–100% affected (score 4/severe) [24].

The study was approved by the Ethics Committee Research UZ/KU Leuven (S-59867).
Written informed consent was obtained from all participants.

2.2. Muscle Biopsies

In all patients and controls, three muscle biopsies were taken, one in the semimem-
branosus (SM), one in the vastus lateralis (VL) and one in the rectus femoris (RF) muscle.
We performed vacuum-assisted needle biopsies using the EnCor Enspire (breast) biopsy
system with 10G EnCor needles (Bard Benelux, Olen, Belgium). For every muscle biopsy a
separate needle was used. Muscle biopsies were taken under ultrasound guidance after
injecting local anesthesia (lidocaine 2.0%) in the skin, subcutaneous fat and fascia but not
in the muscle itself. Prior to the muscle biopsy procedure, a whole-body muscle MRI
including the thigh muscles was carried out to determine the level for biopsy sampling, in
order to avoid completely fatty replaced tissue. Since the muscle transcriptome is known to
be altered by several variables, the following measures were taken, as well as matching for
age and sex, to eliminate possible confounding factors: biopsies were taken in the morning,
to avoid differences in circadian rhythm between participants [26], and participants were
instructed not to perform intensive physical activities for at least one week before the
muscle sampling, in order to avoid bias from differences in exercise or work load [27,28].

Immediately after sampling, the biopsies from each of the three muscles were mounted
on a separate cork and snap frozen in isopentane that was cooled with liquid nitrogen.
All biopsies were stored at −80 ◦C. For RNA extraction, 200 slices of 5 µm thickness from
each biopsy were cut with a microtome-cryostat and collected in two RNase-free tubes of
2.0 mL (100 slices in each tube), which were kept frozen at −80 ◦C until RNA extraction
was performed.

2.3. RNA Procedures
2.3.1. RNA Extraction

We used the same protocol for RNA extraction from muscle tissue as the one described
by Cummings et al. [29]. RNA was extracted from the 93 muscle biopsies using the
Direct-zol RNA Miniprep Plus kit ZY-R2073 (Zymo Research, Irvine, CA, USA) according
to the manufacturer’s instructions. In order to avoid technical variability, all samples
were extracted with the same kit on two consecutive days in the same lab by the same
lab technician.

2.3.2. RNA Quality Control

The 93 extracted RNA samples were treated with DNase prior to their submission to
the VIB Nucleomics Core (Leuven, Belgium, www.nucleomics.be, accessed on 15 July 2019).
The Nanodrop ND-1000 (Nanodrop Technologies, Wilmington, DE, USA) was used to mea-
sure RNA concentration and purity spectrophotometrically. A Bioanalyzer 2100 (Agilent,
Santa Clara, CA, USA) was applied to assess RNA integrity. The RNA Integrity Number
(RIN) scores mostly varied from 6.3 (partially degraded) to 8.4, except for a few samples
that were highly degraded.

www.nucleomics.be
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Table 1. Clinical and genetic features of the LGMD-R12 patients and MRI Mercuri scores of their biopsied muscles.

Patient
Number Gender

Age at
Symptom
Onset (y)

Age at
Study

Inclusion (y)

Disease
Duration at

Inclusion (y)
6MWD

(m)
10MWT

(s)
Mercuri

Score SM
Mercuri
Score VL

Mercuri
Score RF

ANO5
Mutations

1 M 30 63 33 366 7.8 4 4 2 c.191dupA (p.Asn64Lysfs*15);
c.2317A>G (p.Met773Val)

2 M 31 33 2 785 3.5 2 1 1 c.191dupA (p.Asn64Lysfs*15);
c.191dupA (p.Asn64Lysfs*15)

3 M 34 37 3 689 4.5 2 2 1 c.191dupA (p.Asn64Lysfs*15);
c.191dupA (p.Asn64Lysfs*15)

4 M 30 38 8 632 4.8 1 1 1 c.191dupA (p.Asn64Lysfs*15);
c.1961G>A (p.Arg654Gln) and c.155A>G (p.Asn52Ser)

5 M 47 59 12 369 8.1 4 4 1 c.172C>T (p.Arg58Trp);
c.172C>T (p.Arg58Trp)

6 M 30 48 18 479 7.1 4 3 1 c.191dupA (p.Asn64Lysfs*15);
c.692G>T (p.Gly231Val)

7 M 38 55 17 792 3.3 2 1 1 c.1213C>T (p.Gln405X);
c.1733T>C (p.Phe578Ser)

8 M 39 64 25 362 8.1 4 4 2 c.191dupA (p.Asn64Lysfs*15);
c.191dupA (p.Asn64Lysfs*15)

9 M 35 43 8 452 7.5 2 1 1 c.1210C>T (p.Arg404X);
c.2387C>T (p.Ser796Leu)

10 M 33 46 13 516 7.8 4 3 2 c.191dupA (p.Asn64Lysfs*15);
c.294+1G>A (p.?)

11 M 15 48 33 630 5.0 2 1 1 c.649-2A>G (p.?);
c.679-2A>G (p.?)

12 M 33 64 31 288 9.8 4 4 4 c.41-1G>A (p.?);
c.752C>T (p.Pro251Leu)

13 M 13 26 13 570 5.0 2 1 1 c.191dupA (p.Asn64Lysfs*15);
c.191dupA (p.Asn64Lysfs*15)

14 M 34 36 2 692 4.9 2 1 1 c.191dupA (p.Asn64Lysfs*15);
c.242A>G (p.Asp81Gly)

15 M 28 40 12 433 8.2 4 2 1 c.191dupA (p.Asn64Lysfs*15);
c.1213C>T (p.Gln405X)

16(#) M 25 31 6 687 3.1 2 1 1 c.2411G>C (p.Cys804Ser);
c.1627dupA (p.Met543Asnfs*11)

y, years; 6MWD, six-minute walk distance; m, meter; 10MWT, 10-m walk test; s, seconds; SM, semimembranosus muscle; VL, vastus lateralis muscle; RF, rectus femoris muscle; ANO5,
anoctamin-5 gene; M, male; 16(#), patient 16 was not included for RNA-seq because there was no RNA yield in the three muscle biopsies of this patient. The reference sequence to which
the reported variants are referred is NM_213599.2.
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2.3.3. Library Preparation

Per sample, an amount of 5 ng of total RNA (or 7 µL RNA when 5 ng was not available)
was used as input for the SMART-Seq Stranded Kit (Cat. No. 634444; protocol version
“022819”; low input option; Takara Bio USA, San Jose, CA, USA). This kit can deal with
degraded as well as high-integrity input RNA. Positive and negative controls were included
in the experimental design using 5 ng control RNA (included in the kit) and 7 µL RNase-free
water, respectively.

First, RNA is converted to cDNA using random priming (scN6 Primer) and SMART
(Switching Mechanism At 5′ end of RNA Template) technology (Takara Bio USA, San Jose,
CA, USA) and then full-length adapters for Illumina sequencing (including specific bar-
codes for dual-indexing libraries) are added through PCR using a limited number of cycles
(5 cycles). The PCR products are purified and then ribosomal cDNA is selectively depleted
by cleaving the ribosomal cDNAs by scZapR in the presence of mammalian-specific scR-
Probes, which target nuclear and mitochondrial rRNA sequences. The library fragments
derived from non-rRNA molecules remain untouched by this process. The remaining
cDNA fragments are further amplified with primers universal to all libraries (14 cycles).
Lastly, the PCR products are purified once more to yield the final cDNA library. All libraries
were finally quantified using Qubit dsDNA HS kit (Thermo Fisher Scientific, Waltham,
MA, USA) and their size distribution was checked using a Bioanalyzer 2100 (Agilent, Santa
Clara, CA, USA). Nine of the 93 libraries were excluded from downstream sequencing as
there was no yield: control C6 (VL), control C8 (SM), patient 6 (SM), patient 7 (SM), patient 8
(VL), patient 12 (RF) and patient 16 (SM, VL, RF) (Supplementary Tables S1 and S2).

2.3.4. Sequencing (RNA-Seq)

Sequence-libraries of each of the 84 remaining samples were equimolarly pooled
and sequenced on two Illumina NovaSeq 6000 S1 100 flow-cells (Xp workflow, Paired
Read 51-8-8-51, 1% PhiX v3) (Illumina, San Diego, CA, USA) at the VIB Nucleomics Core
(Leuven, Belgium, www.nucleomics.be, accessed on 12 September 2019). RNA-seq was
performed twice, in two runs. In the first run, data from 84 samples were analyzed (i.e.,
93 samples minus 9 excluded samples because of too low RNA amount). The first run
was successful with high quality (~95% of the bases ≥30) and output according to the
expectations (~2000 M Passed Filter clusters). With 25M PF reads on average per sample,
the output per sample was quite variable, ranging from 9.4M to 47.4M PF reads. We also
observed a high percentage of duplicates in some samples and a high percentage of adapters
in the sequences, corresponding to samples with very low input material. The mapping of
the reads is relatively correct (90%), but the filtering based on the mapping quality has a
huge impact (~50% loss of reads for many samples), which should be due to duplicated
reads as the filtering discards similar reads. Out of 84 samples, we selected the 38 best
samples (<22% No Features, Number of final counts > 12M), whereas 46 samples were
pooled for a second sequencing run in order to reach 20M final counts (=assigned reads)
for each sample.

2.4. Data Analysis
2.4.1. Preprocessing

Using FastX 0.0.14 and Cutadapt 1.15 (http://hannonlab.cshl.edu/fastx_toolkit/index.
html, accessed on 20 September 2019), low quality ends and adapter sequences were
trimmed off from the Illumina reads. Next, the following were filtered using FastX 0.0.14
and ShortRead 1.36.1 [30]: small reads (length < 35 bp), polyA-reads (more than 90% of the
bases equal A), ambiguous reads (containing N), low-quality reads (more than 50% of the
bases < Q25) and artifact reads (all but three bases in the read equal one base type). We then
identified and removed reads that align to phix_illumina applying Bowtie2 2.3.3.1 [31].

www.nucleomics.be
http://hannonlab.cshl.edu/fastx_toolkit/index.html
http://hannonlab.cshl.edu/fastx_toolkit/index.html
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2.4.2. Mapping

We aligned the preprocessed reads to the reference genome of Homo sapiens (GRCh38)
with STAR aligner v2.5.2b [32]. Default STAR aligner parameter settings were used, ex-
cept for “—outSAMprimaryFlag OneBestScore—twopassMode Basic—alignIntronMin
50–alignIntronMax 500,000—outSAMtype BAM SortedByCoordinate”. Reads with a map-
ping quality smaller than 20 were removed from the alignments using Samtools 1.5 [33].

2.4.3. Counting

We counted the number of reads in the alignments that overlap with gene features
using featureCounts 1.5.3 [34]. We chose the following parameters: -Q 0 -s 2 -t exon -g
gene_id, and removed genes for which all samples had less than 1 count per million. We
further corrected raw counts within samples for GC-content and between samples using
full quantile normalization, with the EDASeq package from Bioconductor [35].

2.5. RNA-Seq Analysis

Raw count matrices were uploaded to the online R-based UniApp data analysis
platform (Unicle Biomedical Data Science, Leuven, Belgium) for analysis. We used the R
packages plotly and ggplot to generate bar, pie, line and scatter plots.

2.5.1. Quality Control and Data Normalization

Genes expressed at a level of at least 1 count per million reads in at least 10% of
samples were filtered and normalized using the EdgeR package. Samples with less than
1 Million reads were filtered out from the final analysis.

2.5.2. Principal Component Analysis (PCA)

We first normalized the raw count RNA-seq data from 84 patients for total read
depth. Next, we performed quality filtering for read mapping and the number of detected
genes and excluded 5 samples: patient 3 (SM), patient 5 (SM, VL), patient 12 (SM, VL)
(Supplementary Table S1). The normalized data were auto-scaled and PCA was performed
on the top 2000 most highly variable genes (with the Seurat R package [36]) to build a
2-dimensional representation of the data.

2.5.3. Pair-Wise Differential Analysis

We used limma [37] for differential expression analysis between two specific clusters
and visualized using a volcano plot.

2.5.4. Gene Set Enrichment Analysis (GSEA)

We applied gene set enrichment analysis (clusterProfiler R package) to compare gene
expression profiles between two groups [38]. We performed GSEA using a subset of
gene sets selected from the Molecular Signatures Database (MSigDB version 7.41; http:
//bioinf.wehi.edu.au/software/MSigDB/, accessed on 23 September 2021), which is a
collection of annotated gene sets. GSEA scores were calculated for sets with at least five
detected genes, all other parameters were considered default.

2.5.5. Heatmap Analysis

Gene expression heatmaps are based on averaged auto-scaled data. We produced
heatmaps by the heatmaply R package.

2.5.6. Deconvolution Analysis

Bulk RNA-seq count data were deconvoluted into cell composition matrices with
the MUSIC algorithm [39] on a reference single cell RNA-seq dataset derived from the
mononuclear cells of the human vastus lateralis [40] with default parameters.

http://bioinf.wehi.edu.au/software/MSigDB/
http://bioinf.wehi.edu.au/software/MSigDB/
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2.6. Single Cell scRNA-Seq Analysis

We used a publicly available single cell dataset of human muscle to obtain markers
for different stromal cell populations. The raw count matrix of human muscle cells as
described in the study “Single cell transcriptional profiles in human skeletal muscle” was
downloaded from the GEO repository under the accession code GSE130646 [40].

2.6.1. Quality Control and Data Normalization

We applied the following quality control steps for the human freshly-isolated mus-
cle cells: (i) genes expressed by <3 cells were not considered; (ii) cells that had over
2000 expressed genes (possible doublets), or over 4% of unique molecular identifiers (UMIs)
derived from the mitochondrial genome were deleted. The data of the remaining cells were
natural-log transformed using log1 p and normalized using the Seurat package [36].

2.6.2. Dimension Reduction

After auto-scaling, genes with high variability were identified using the Seurat Find-
VariableGenes function. The top 2000 most highly variable genes were included in the
analysis. Subsequently, the normalized data were first summarized by PCA, and the first
20 PCAs were visualized using t-Distributed Stochastic Neighbor Embedding (t-SNE, Rtsne
package) with a perplexity value of 100 and a learning rate of 100. This representation was
only used to visualize the data.

2.6.3. Clustering Analysis and Annotation

We performed graph-based clustering to cluster cells according to their gene expression
profiles as implemented in Seurat with the first 20 PCA dimensions, number of neighbors
set to 10 and at a resolution of 0.8. Cell clusters were annotated based on canonical markers.

2.6.4. Pair-Wise Differential Analysis

We performed differential expression analysis between two specific clusters using
limma [37].

2.6.5. Marker Gene Analysis

A two-step approach was used to obtain ranked marker gene lists for each cluster.
Marker genes for a given cluster should have the highest expression in that cluster com-
pared to all other clusters and are therefore uniquely assigned to one cluster. Next, marker
genes were ranked using a product-based meta-analysis [41]. We performed pair-wise
differential analysis of all clusters against all other clusters separately and ranked the
results of each pair-wise comparison by log2 fold change. The most downregulated genes
received the highest rank number and the most upregulated genes received the lowest rank
number (top ranking marker genes). For each cluster, we combined the rank numbers for
all genes in all pair-wise comparisons by calculating their product to obtain a final list of
ranked marker genes for each cluster. Clusters were annotated based on literature-curated
marker genes of canonical muscle cells. Cells that could not be unambiguously assigned to
a biologically meaningful phenotype were excluded from the analysis because they might
represent low quality cells or doublets.

2.6.6. Heatmap Analysis

To account for cell-to-cell transcriptomic stochastics, all heatmaps are based on cluster-
averaged gene expression. For visualization, data were auto-scaled. Using the heatmaply
package, heatmaps were produced.
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3. Results
3.1. Demographic Data

Mean age at inclusion was 45.7 years (range 26 to 64 years) for the patients (Table 1)
and 45.1 years (range 25 to 63 years) for the controls (p > 0.05). Further clinical and genetic
data of the patients are detailed in Table 1.

3.2. Mercuri Score Is Correlated with Functional Outcomes in LGMD-R12 Patients

We used the 4-point Mercuri score to categorize disease severity in the three target
muscles (SM, VL, RF) based on visual inspection of fatty tissue infiltration on muscle MRI
in all patients and controls [24]. Mercuri scores in patients’ muscles varied between 1 and 4
(Table 1, Figure 1A), whereas in controls the Mercuri score for all muscles was equal to 1 (i.e.,
normal) (Figure 1B). The Mercuri score in the patients was lowest for the rectus femoris with
mean 1.2 (95% CI 1.0–1.4) (least affected), intermediate for the vastus lateralis with mean 2.0
(95% CI 1.3–2.7) (intermediately affected) and highest for the semimembranosus with mean
2.8 (95% CI 2.1–3.4) (most affected) (ANOVA, p = 0.001) (Figure 1C), which is consistent
with the literature [4,22,23]. We calculated the Mercuri score with years after disease onset
and showed that the Mercuri score significantly increased over time with increasing disease
duration (Pearson correlation coefficient r = 0.5666, p = 0.0331) (Figure 1D). Two patients
(Table 1, patients 7 and 11) showed a longer disease duration with, however, lower Mercuri
scores (Figure 1D), which might be explained by the different genetic defects in ANO5 of
these patients compared to the others (Table 1). Functionally, the Mercuri score significantly
increased with decreasing 6MWD (r = −0.8387, p < 0.001; Figure 1E) and with increasing
10MWT (r = 0.8543, p < 0.001; Figure 1F), which corresponds to the progressive functional
decline of the disease over time.

3.3. Unbiased Analysis: Gene Expression Profiles Correlate with the Mercuri Score

We performed principal component analysis (PCA) using highly variable genes as
input and correlated gene expression signatures with the Mercuri score (Figure 2). Inter-
estingly, color coding the unbiased PCA plot for the Mercuri score showed that the first
component (the one that explains most variability in the data and hence is the strongest
signature) was highly correlated with the Mercuri score. The second component was
correlated with the mitochondrial read count (Figure 2). To determine whether the gene
signature that correlated with the Mercuri score was based on genes involved in muscle
fiber degradation and connective and fat tissue deposition, we color coded the PCA plot for
expression of a known muscle membrane gene (alpha-sarcoglycan, SGCA) [42], fibroblast
marker (collagen I A1, COL1A1) [43] and adipocyte marker (adiponectin, ADIPOQ) [44].
This analysis showed a gradient of decreasing expression of muscle marker genes and a
gradual increase in the expression of fibroblast, adipocyte and other stromal cells (Figure 2).
Thus, our exploratory PCA analysis was consistent with the replacement of muscle tissue
by connective and fat tissue as disease progresses.

3.4. Quantification of Gene Signatures Associated with LGMD-R12

We next aimed to formally quantify changes in gene expression signatures, by per-
forming a differential gene expression analysis of LGMD-R12 patients versus controls
(irrespective of the Mercuri score, muscle or other stratification criteria) (Figure 3A). This
analysis showed in patients an increase in genes involved in response to muscle injury and
inflammation, such as osteopontin (SPP1) [45,46], immunoglobulin heavy constant gamma
1/2 (IGHG1/2), leukocyte receptor tyrosine kinase (LTK), joining chain of multimeric IgA
and IgM (JCHAIN), serum amyloid A1 (SAA1), as well as embryonic and fetal myosins,
including myosin heavy chain 3 (MYH3) and myosin light chain 4 (MYL4). Embryonic
myosins are normally not expressed in adult muscle but can be upregulated in response
to injury in regenerating muscle fibers [47]. Interestingly, the LGMD-R12 disease-causing
gene ANO5 ranked in the top 0.1% of most downregulated genes, whereas other anoc-
tamin genes showed a trend to being slightly upregulated (ANO3, ANO7, ANO9, ANO7L1)
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(Figure 3A). These findings correspond to recent hypotheses that anoctamin homologs
might compensate for the loss of ANO5 in mice [48].

Figure 1. Mercuri score is correlated with functional outcomes in LGMD-R12 patients. (A) Axial
MRI section through the left thigh of patient 6, indicating the differential involvement of the target
muscles: rectus femoris (RF) with Mercuri score 1, vastus lateralis (VL) with Mercuri score 3 and
semimembranosus (SM) with Mercuri score 4. (B) A similar axial MRI slice of a control individual is
shown. All muscles in healthy controls are per inclusion criterion normal and thus have a Mercuri
score of 1. (C) Mean Mercuri score for all patients and for all controls is shown for the three target
muscles. The bars indicate the 95% confidence interval. (D) A significant correlation between the
mean Mercuri score per patient (dots) and the disease duration is shown in a scatter diagram, with “r”
indicating the Pearson correlation coefficient, and “p” the p-value. (E,F) Scatter diagrams illustrating a
significant increase in the Mercuri score with decreasing 6MWD (E) and with increasing 10MWT (F).
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Figure 2. Unbiased transcriptome analysis of all genes. (A) PCA of all samples (n = 84), color coded
for Mercuri score. (B) PCA of all samples (n = 84), color coded for read count. Note that samples with
the highest Mercuri score had overall lower sequencing depth, which can be explained by the fact that
the cellularity in high Mercuri score samples is lower due to replacement of muscle cells with fibrotic
and adipose tissue. If there is low cellularity, then we also have lower transcripts and hence fewer reads
that map to those transcripts. (C) PCA of all samples included in the study (n = 84), color coded for
feature (gene) count. Note that samples with the highest Mercuri score had overall highest feature (gene)
count. (D) PCA of all samples included in the study (n = 84), color coded for mitochondrial feature
(gene) count. (E) PCA of all samples included in the study (n = 84), color coded for passing (grey, n = 79)
or failing (red, n = 5) quality control (QC). All samples with 1M or more reads were considered to have
passed QC. (F) PCA of samples that passed QC (n = 79), color coded for read count. (G) PCA of samples
that passed QC (n = 79), color coded for feature (gene) count. (H) PCA of samples that passed QC
(n = 79), color coded for mitochondrial feature (gene) count. (I) PCA of samples that passed QC (n = 79),
color coded for Mercuri score. (J) PCA of samples that passed QC (n = 79), color coded for SGCA gene
expression. Note, SGCA is a protein of the muscle membrane and SGCA gene expression (muscle
membrane marker) was reduced in samples with higher Mercuri scores. (K) PCA of samples that passed
QC (n = 79), color coded for COL1A1 gene expression (fibroblast marker). (L) PCA of samples that
passed QC (n = 79), color coded for ADIPOQ gene expression (adipocyte marker). In the PCA plots each
sample is represented by a dot. The dots are placed on the graph in function of their gene signatures, the
closer the dots are together, the more similar their gene expression profile is.
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Figure 3. Gene signatures in limb-girdle muscular dystrophy R12. (A) Volcano plot of a differential
gene expression analysis of LGMD-R12 patient versus control samples. Genes mentioned in text are
highlighted in red. (B) Bar plot showing top enriched gene sets based on the results of differential gene
expression analysis of LGMD-R12 patient versus control samples. (C) Volcano plot of a differential
gene expression analysis of Mercuri score 1 versus Mercuri score 4 semimembranosus samples. Genes
associated with immune cells, collagen production, ribosomes, cell death, mitochondria and aerobic



Cells 2022, 11, 1508 12 of 23

respiration are color coded. Note that pathways associated with skeletal muscles are downregulated
(red dots), whereas stromal (collagen) (green dots) and immune cell signatures (blue dots) are up-
regulated. (D) Volcano plot of a differential pathway expression analysis of Mercuri score 1 versus
Mercuri score 4 semimembranosus samples. Pathways associated with skeletal muscle, stromal and
immune cells are color coded. Note that genes associated with skeletal muscles are downregulated,
stromal and immune cell signatures are upregulated. (E) Heatmap analysis of pathway activity
associated with Mercuri score. Note that pathways associated with myogenesis and typical muscle
signatures (oxidative phosphorylation, glycolysis and protein metabolism) are progressively down-
regulated, while pathways associated with cell death, inflammation and mesenchymal transition are
upregulated. (F) Heatmap analysis of the proteoglycan 4+ (PRG4+) fibroadipogenic progenitor (FAP)
and lumican+ (LUM+) FAP marker genes’ expression. These are the markers from the single cell
analysis that were used as input for deconvolution analysis in panel (G). (G) Bar plot quantifying the
deconvolution analysis predictions on the relative percentage of the indicated cell types.

To quantify gene signature changes at the gene set level we performed a gene set
enrichment analysis (GSEA) of the hallmark gene sets based on the results of the differential
gene expression analysis of LGMD-R12 patients versus controls (Figure 3B). This analysis
showed that LGMD-R12 patients have upregulated gene sets related to immune response,
phagocytosis and collagen remodeling while having downregulated gene sets relating to
energy metabolism and protein synthesis.

3.5. Pathway Analysis Characterizes Gene Sets for LGMD-R12 Progression

To characterize gene sets for LGMD-R12 progression we performed GSVA analysis to
alter the gene-by-sample matrix to a gene set-by-sample matrix and used the latter matrix
to perform a differential analysis between semimembranosus muscle samples with Mercuri
score 1 versus Mercuri score 4 (Figure 3C,D) [49]. This calculation showed that the cell type
signature of skeletal muscle cells was downregulated in Mercuri score 4 samples, while
stromal and immune cell signatures were upregulated. Consistently, when evaluating
cellular pathways in a similar analysis, we found that pathways associated with skeletal
muscle were downregulated (ribosomes, mitochondria and aerobic respiration), while gene
sets associated with cell death, inflammation and collagen metabolism were upregulated
(Figure 3C,D). To evaluate gradual differences in pathway expression between different
Mercuri scores, we performed marker pathway analysis on the GSVA transformed matrix
and visualized the results as a heatmap. This assessment showed a progressive downregu-
lation of pathways such as myogenesis, protein metabolism and oxidative phosphorylation,
while pathways associated with inflammation and cell death were upregulated (Figure 3E).

3.6. Deconvolution Analysis Shows an Increase in Fibroadipogenic Progenitor (FAP) Cells in
LGMD-R12 Muscles

Our analysis of pathways associated with LGMD-R12 were consistent with a decrease
in muscle and an increase in stromal cell signatures. However, this analysis did not
provide insight into whether these findings reflect an overall change in gene expression
in all cells of the muscle, or if the actual cellular composition of the disease muscle is
changed. To estimate differences in cell type composition we performed a deconvolution
analysis [50]. For this analysis we used marker genes derived from a recently described
skeletal muscle single cell RNA-seq dataset, cell types that together make up human skeletal
muscle tissue (Supplementary Figure S1) [40], and deconvoluted our bulk RNA-seq dataset.
While preliminary, our analysis indicated a progressive increase in FAP lumican+ (LUM+)
cells and their signatures but a decrease in (vascular) smooth muscle signatures (vSMC)
(Figure 3F,G).
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3.7. Distinct Gene Signatures in Different Muscles in Healthy Controls

To investigate the hypothesis that baseline differences in the molecular composition of
different muscles influence susceptibility to muscular dystrophy, we performed a detailed
analysis of gene signatures of the three biopsied muscles in healthy control individuals. We
first performed a PCA analysis, which showed a clear separation of semimembranosus,
vastus lateralis and rectus femoris on the third component (this first component highlighted
a lowly sequenced outlier sample) (Figure 4A). Color coding PCA plots for marker genes
for fast- and slow-twitch muscle showed a clear gradient, with the rectus femoris showing
the highest expression of the fast-twitch muscle myosins (myosin heavy chain 4 (MYH4),
myosin heavy chain 2 (MYH2), myosin heavy chain 1 (MYH1) and myosin light chain 1
(MYL1)) and the semimembranosus presenting the highest expression of the slow-twitch
markers (myosin heavy chain 7 (MYH7), myosin heavy chain 6 (MYH6) and myosin light
chain 3 (MYL3)) (Figure 4B,C) [51,52]. The vastus lateralis expressed intermediate levels of
fast- and slow-twitch myosins. Differential analysis and gene set analysis between the most
affected (semimembranosus) and less affected (rectus femoris) muscles showed differences
in genes that regulated anterior–posterior axis planning, fast- and slow-twitch muscle fibers
and satellite cell marker genes (Figure 4D,E).

3.8. Differential Gene Expression between Different Muscles: Identification of Genes Associated
with Different Muscles

To unbiasedly assess genes enriched in the different biopsied muscles (SM, VL, RF)
we performed a marker gene analysis (Figure 4F–H; Tables 2 and 3). In this analysis, each
muscle is compared to the other muscles separately via a differential gene expression
analysis. The results of the different analyses are then combined with a product-based
meta-analysis based on the log-fold changes [53]. We used a heatmap to visualize the top
20 marker genes. Interestingly, several transcription factors were highly differentially ex-
pressed across semimembranosus, such as Heart And Neural Crest Derivatives Expressed
2 (HAND2), HAND2 Antisense RNA 1 (HAND2-AS1), Homeobox D8 (HOXD8) and Home-
obox D9 (HOXD9), vastus lateralis, such as T-Box Transcription Factor 5 (TBX5), Homeobox
A13 (HOXA13), T-Box Transcription Factor 5 Antisense RNA 1 (TBX5-AS1), and rectus
femoris such as Transcription Factor 24 (TCF24) (Figure 4F). In addition, we identified
differential expression of genes involved in the regulation of protein synthesis in muscle
tissue (METTL21C) [54] and glycogen breakdown were highest in the rectus femoris, while
adipogenic and lipid pathways were upregulated in the semimembranosus (Figure 4F–H).
A similar analysis of early stage (Mercuri score 1 and 2) and late stage (Mercuri score 3
and 4) muscles showed that most variation in disease muscle was explained by disease
processes (Supplementary Figure S2; Supplementary Table S3). Together, these findings
may suggest that muscles differ in their baseline regenerative potential.
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Figure 4. Gene signatures across muscles in healthy control muscles. (A) PCA of healthy control
samples color coded for muscle of origin. (B) PCA of healthy control samples color coded for MYH1
gene expression, which is characteristic for fast-twitch muscle fibers. Note the highest expression
of MYH1 in the rectus femoris muscle. (C) PCA of healthy control samples color coded for MYH6
gene expression, which is characteristic for slow-twitch muscle fibers. Note the highest expression of
MYH6 in the semimembranosus muscle. (D) Volcano plot of a differential gene expression analysis of
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rectus femoris versus semimembranosus samples of control individuals. Genes associated with the
indicated biological themes are color coded. (E) Bar plot showing top enriched gene sets based on the
results of differential gene expression analysis of rectus femoris versus semimembranosus control
samples. Note that the epithelial to mesenchymal transition signature is higher expressed in the
semimembranosus muscle, while pathways associated with glucose metabolism, DNA repair and
protein metabolism are higher in the rectus femoris. (F) Heatmap analysis of the top 10 marker genes
of the biopsied muscles of healthy control individuals. (G) Heatmap analysis of the top 20 cell type
pathways associated with each of the three muscles in healthy controls. Several interesting cell type
signatures have been indicated. (H) Heatmap analysis of the top 20 biological processes associated
with each of the three healthy muscles. Several interesting cell type signatures have been indicated.

Table 2. Top 50 of most differentially expressed genes across healthy muscles.

Marker Gene Analysis across Healthy Muscles

Rank Semimembranosus Rectus Femoris Vastus Lateralis
1 HAND2-AS1 TBX5 LINC02107
2 C12orf75 NTNG2 LINC02119
3 HAND2 GCNT2 SBK2
4 HOXD8 TYRP1 RHOXF1-AS1
5 FRMD1 ANKRD36BP2 C1orf158
6 LBP MUC22 CALML6
7 HOXD-AS2 HOXA13 MYH1
8 METTL21C ZNF750 LRRC37A7P
9 SLC1A2 LINC01854 FAM184B
10 HOXD9 WFIKKN1 RNA5-8S5
11 IL31RA TBX5-AS1 LINC01886
12 KIF1A FNDC10 FEZF1-AS1
13 ANGPTL8 IPCEF1 CRNDE
14 CFAP57 JCHAIN CPXM1
15 DNAH3 CD300LB TCF24
16 IL22RA1 SATB2-AS1 CDH22
17 BDNF TUBB1 PAX3
18 LRRC52 DIRAS1 SNORD115-30
19 C10orf67 SPTA1 GGT7
20 CAPN8 LINC01968 MYHAS
21 CROCC2 HMGCS2 RGS10
22 LAD1 TREM1 SLITRK3
23 ANKRD18B CCDC189 PLCH1
24 GLYAT COL9A1 IGFN1
25 SCD P2RX3 ATRNL1
26 IRX6 RRM2 ACTN3
27 PAQR9-AS1 IGHM SHISA2
28 LINC01484 IGHV3-7 GADD45G
29 C6orf132 SPAG17 MIR503HG
30 HOXD3 RPS27AP9 FGF10
31 TMC1 PAX1 GREM2
32 FOS IRX4 GDA
33 SCRT1 CXCR2P1 OPRD1
34 RNY4P10 DNAH11 RN7SL813P
35 SLC26A9 SIM2 UBASH3B
36 CCDC78 TMEM163 SNORD115-23
37 COMP CDH20 GDNF
38 ADRB1 TMEM105 NANOS1
39 PLPPR1 SKA3 LINC01773
40 GPR39 SLC7A11-AS1 HSD52
41 LINC00877 EPB42 NPR3
42 SLC29A4 SLC30A8 NME9
43 RSPO1 HS6ST2 CHAD
44 BARX2 FGD5P1 MKRN3
45 LOXL1-AS1 SEL1L2 SCT
46 GPA33 NLRP12 RN7SL267P
47 SDR42E2 SLC4A10 KHDRBS2
48 CERS3 CD160 MYH4
49 C2CD4B ETF1P2 RN7SL541P
50 TRPM1 RYR3 SH2D1B
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Table 3. Top 50 of most differentially expressed genes across LGMD-R12 patient muscles.

Marker Gene Analysis across Patient Muscles

Rank Semimembranosus Rectus Femoris Vastus Lateralis

1 COMP LINC02107 SIM2
2 HAND2 MYH1 P2RX3
3 HAND2-AS1 LRRC37A7P HMGCS2
4 COL20A1 AQP4 CHAC1
5 AQP6 LINC01773 LINC01854
6 ADIPOQ LINC02119 KCTD8
7 PLEKHG4B C1orf158 TBX5-AS1
8 FRMD1 PVALB ZNF750
9 CIDEC ACTN3 IGLV3-21
10 TNMD CALML6 IGLC3
11 HYDIN MYLK4 HOXA13
12 SCD FBP2 IGHD
13 SALL1 HCN1 ADAMTS19-AS1
14 LRRC74A UNC13C LAMC3
15 LEP B3GALT1 MAPT-AS1
16 SLC1A6 ERBB4 FBP2
17 PLA2G2A GREM2 HAND2-AS1
18 KCNQ2 ATP2A1 NEU4
19 LGALS12 RHOXF1-AS1 SNCB
20 CHI3L1 LINC01886 IL20RA
21 GRM5 NANOS1 AQP4
22 SLC5A10 SHISA2 HOXC12
23 CCL18 UGT3A1 DIRAS1
24 CUX2 MLF1 SLC16A3
25 KLB NRG4 TSHR
26 MUC16 SH2D1B GDNF
27 GRIN2B PLCH1 KLHDC7B
28 PIEZO2 LRRC3B LINC01018
29 SAA1 MYHAS SLC51A
30 MKX MYLK2 GHRL
31 GRM4 FEZF1-AS1 TBX1
32 TSPEAR FAM166B IGHV1-3
33 TNC SNORD23 TYRP1
34 MYEOV ENO3 CRYM
35 PCK1 ENSAP2 PIANP
36 PLIN1 IRX3 IGKV1-5
37 CACNA1I CDH22 TMEM26
38 USH2A ATRNL1 MTND4P24
39 MUC6 LANCL1-AS1 RN7SKP276
40 COL22A1 NEK10 FAM166B
41 SCUBE1 PDE4DIPP1 HPN
42 SCRG1 TMEM266 OSCAR
43 S100A3 FABP7 HES7
44 KRT7 KLHL38 PAX1
45 OPRM1 AGMAT ASB12
46 DUX4L19 SMCO1 DDX11L2
47 MYBL2 ASB14 ANKRD20A21P
48 AMZ1 NPSR1-AS1 SPAG17
49 RASAL1 PITX1 TNNI3
50 MROH4P DDIT4L C1orf105

4. Discussion

The main objective of this study was to identify genes and pathways that underlie
LGMD-R12 and explain differences in the molecular predisposition and susceptibility be-
tween three different thigh muscles that are severely (SM), moderately (VL), or mildly (RF)
affected in this disease. We performed an unbiased analysis of 84 muscle biopsies (79 after
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quality checks) of these three differently affected muscles in 16 LGMD-R12 patients and 15
age-matched controls (all males). Our results indicated that, at the cellular and molecular
level, LGMD-R12 muscular dystrophy is characterized by the expression of genes indicative
of fibroblast and adipocyte replacement, such as fibroadipogenic progenitor (FAP) cells and
immune cell infiltration, while gene signatures associated with striated muscle (protein
synthesis, OXPHOS, glycogen-, glucose- and amino acid metabolism) are downregulated
in dystrophic muscle. Furthermore, muscle degeneration as quantified by the radiological
Mercuri score is associated with an increase in genes associated with muscle injury and
inflammation, as well as genes involved in muscle repair/regeneration (including embry-
onic and fetal myosins). We also identified interesting differential expression patterns in
other anoctamin genes that are upregulated in response to ANO5 loss. Analysis of baseline
differences in between muscles in healthy individuals indicated that muscles that are the
most affected by LGMD-R12 have the lowest expression of transcription factor networks
involved in muscle (re)generation and satellite (stem) cell activation. Instead, they show
relatively high levels of fetal/embryonic myosins. This is the first study on transcriptomics
in LGMD-R12 and the first study overall in which three different muscles were biopsied
in patients and in healthy controls, enabling us to conclude to these important and highly
relevant findings.

4.1. Genes Involved in Inflammation Are Upregulated in Dystrophic LGMD-R12 Muscles

Our study showed an increase in genes involved in muscle injury and inflammation in
dystrophic muscles of LGMD-R12 patients. The number of different immune cells is largely
increased compared with healthy muscle. This has been reported in muscles in Duchenne
muscular dystrophy (DMD) patients and mdx-mice, including T-lymphocytes (CD4, CD8
and regulatory T-cells or TRegs), natural killer (NK) cells, neutrophils, eosinophils and
macrophages [20,55,56]. Furthermore, histological analyses of muscle biopsies from LGMD-
R12 patients often show inflammatory changes, characterized by CD45 and CD8 positive
leukocytes as well as CD68 and CD206 positive macrophages accumulating within my-
ofibers showing myophagocytosis [16,17]. Inflammatory changes have been reported in
the muscle biopsies of patients with other muscular dystrophies as well, such as DMD [57],
facioscapulohumeral dystrophy (FSHD) [58], LGMD-R2 [59], LGMD R3 and LGMD R5 [60].
Moreover, on muscle MRI, there are indications that inflammation plays a role in muscular
dystrophies, such as LGMD-R12 [16,17] and FSHD [61,62]. Further evidence comes from
animal models such as the ANO5-knock-out rabbit model, where scattered necrotic muscle
fibers with inflammatory infiltrates are observed in muscle tissue [48].

The precise role of inflammation in the pathomechanism of muscular dystrophies is
not well understood. Moreover, it is unclear if the inflammation is rather a primary feature
or secondary to muscle degeneration. In contrast to acute muscle injury, the continuing
injuries in dystrophic muscle result in the permanent recruitment of pro-inflammatory
monocytes and the presence of pro-inflammatory macrophages in the muscle, leading to
chronic inflammation [63]. Because of the asynchronicity of the injuries and of the regenera-
tive cues, macrophages adopt a mixed phenotype making them less efficient in myogenesis,
while they stimulate fibroadipogenic (FAP) cells (see below) and fibroblastic cells to pro-
duce extracellular matrix, leading to fat infiltrates and fibrosis. Chronic inflammation
further worsens the disease, and can thus be considered as a secondary event in muscular
dystrophies [55,56,64]. Therapeutic strategies inducing a change in macrophages that are
present in the dystrophic muscle towards an anti-inflammatory profile could be beneficial,
as has been shown in mdx-mice [64]. Another example of therapeutic intervention could
be the depletion of osteopontin, which is an immunomodulator that is highly expressed
in dystrophic muscles, as was shown in LGMD-R12 muscular dystrophy in our study. A
recent study showed that osteopontin ablation ameliorated muscular dystrophy by shifting
macrophages to a pro-regenerative phenotype in DMD [45].

In addition, our results showed an increased expression of serum amyloid A1 (SAA1)
in dystrophic muscles in LGMD-R12 patients. Serum amyloid A protein (SAA) is an acute-
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phase protein, which is normally soluble and shows the highest concentration in plasma
during inflammation, but which can be abnormally deposited in AA amyloidosis, secondary
to chronic inflammatory processes, as fibers of insoluble protein in the extracellular space
of various organs and tissues. Interestingly, muscle biopsies of some LGMD-R12 patients
showed amyloid depositions around muscle fibers and within blood vessel walls [65,66].
Amyloid subtyping showed the presence of apoliprotein E, apoliprotein A1, apoliprotein
A4, serum Amyloid P component and gelsolin in the deposits, whereas SAA was not typed
in the depositions by Liewluck et al. [66]. Perhaps the technology was not sensitive enough
to detect SAA in the amyloid deposits, or its absence could be explained by molecular
interactions between amyloid precursors and associated conformational changes [67].

4.2. Fibroadipogenic Progenitor (FAP) Cells Are Upregulated in LGMD-R12 Muscles

Our data showed that fibroadipogenic progenitor cells (FAPs) are most highly ex-
pressed in the more severely affected muscles of LGMD-R12 patients. FAPs are muscle
interstitial mesenchymal cells that interact with myogenic stem cells (satellite cells) to
support myogenesis and muscle regeneration [68–70]. FAPs also have a role in muscle
fibrosis and fatty tissue replacement, as is seen in muscular dystrophies [21,69,71,72]. FAPs
undergo a large expansion, followed by their macrophage-mediated clearance and the
reestablishment of their steady-state pool, during the first days following muscle injury.
During this exact time window, FAPs establish a dynamic network of interactions via
chemokine and interleukin signaling that culminate in muscle repair, together with the
other cellular components of the muscle stem cell niche [73]. In muscular dystrophies,
where dystrophic myofibers undergo repeated rounds of injury, the autocrine/paracrine
constraints controlling FAP adipogenesis are released, which leads to fat infiltrates [74].
Duchenne muscular dystrophy (DMD) patients and mdx-mouse models show increased
expression of platelet-derived growth factor receptor alpha (PDGFRα), which is an FAP
marker. Furthermore, FAP accumulation correlates with increased fibro-fatty degener-
ation and disease severity [70,75]. High transforming growth factor beta (TGF-β) is an
inflammatory factor produced in the dystrophic muscle that contributes to increased FAP
accumulation and differentiation into fibrogenic and adipogenic fates [72,75]. Similar
FAP involvement has also been shown in other muscular dystrophies, such as limb-girdle
muscular dystrophy R2 (LGMD-R2) [76] and facioscapulohumeral muscular dystrophy
(FSHD) [62,77]. Several clinical trials evaluating the effects of different drugs that alter
FAP fate are being/were performed in DMD and LGMD-R2 [21]. Our deconvolution
analysis suggested that, specifically, the recently described FAP lumican-positive (LUM+)
subpopulation might be involved in the pathogenesis of LGMD-R12 [40]. Thus, our study
indicates that targeting the FAP cell population may be therapeutically explored in LGMD-
R12 patients. However, while these findings are interesting and can provide direction for
future therapeutic interventions in LGMD-R12 patients, deconvolution analysis should be
interpreted carefully and further single cell analyses should be performed to quantitatively
assess differences in cell type composition.

4.3. Different Muscles Express Different Gene Profiles in Healthy Controls

Our study demonstrated that three different muscles from the thigh in healthy control
individuals show different gene expression profiles. Furthermore, the dystrophic process
in LGMD-R12 patients resulted in different pathological effects on these three muscles.
These basic molecular differences between muscles might at least partially explain the
selective involvement of distinct muscles and the absent involvement of others in muscular
dystrophies, such as LGMD-R12. The variation in gene expression profiles is far beyond
the differences in the proportion of conventional fiber types I (slow-twitch) and IIA/B
(fast-twitch), and occurs even in muscles with similar compositions of fiber types, such
as the rectus femoris, vastus lateralis and semimembranosus muscles used in our study,
which are all muscles with fiber type II predominance [78,79]. More recent studies showed
that although skeletal muscle in humans consists of three distinct fiber types (I, IIa, IIx),
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muscle contains many more isoforms of myosin heavy and light chains, which are coded by
a large number of different genes [51,52]. Stuart and coworkers demonstrated that specific
human skeletal muscle fiber types contain different mixtures of myosin heavy and light
chains, with fast-twitch (type IIx) fibers consistently containing myosin heavy chains 1
(MYH1), 2 (MYH2) and 4 (MYH4) and myosin light chain 1 (MYL1), and slow-twitch
(type I) fibers always containing myosin heavy chains 6 (MYH6) and 7 (MYH7) and myosin
light chain 3 (MYL3) [51]. In our study, we showed a clear gradient of fast- and slow-twitch
muscle genes across the healthy muscles, with the rectus femoris showing the highest
expression of the fast-twitch muscle myosins MYH1, MYH2, MYH4 and MYL1 and the
semimembranosus presenting the highest expression of the slow-twitch markers MYH6,
MYH7 and MYL3. The vastus lateralis expressed intermediate levels of fast- and slow-
twitch myosins. These differences in muscle fiber type isoforms might be one explanation
of the differential involvement of muscles in muscular dystrophies, such as LGMD-R12.

Transcriptomic studies on different skeletal muscles in healthy animals also showed
differential gene expressions between muscles. Terry et al. applied RNA-seq to profile
RNA expression in 13 different skeletal muscles from mice and rats and showed extensive
transcriptional diversity, with more than 50% of transcripts differentially expressed among
skeletal muscles, an observation that cannot be explained by developmental history or fiber
type composition alone [80]. The authors suggested a differential role of different tran-
scription factors in distinct muscles to further explain their findings. Transcription factors
recognize specific DNA sequences and control transcription by regulating the expression
of genes in certain cells, at a certain time and in the right amount. Our study in humans
demonstrated that several transcription factors were highly differentially expressed across
the three healthy muscles, which may add to the explanation of the distinct susceptibility
of different muscles in muscle diseases, such as LGMD-R12.

4.4. Conclusions and Future Perspectives

Overall, this study profiled the gene expression landscape in LGMD-R12. We iden-
tified baseline differences in expression levels between differently affected muscles and
characterized the disease-associated changes. Our analysis showed differences in the cell
composition of LGMD-R12 diseased and healthy muscle and suggested that transcription
factor networks in specific cell populations underlie the differential predisposition of differ-
ent muscles to degeneration. Because bulk RNA-sequencing only provides information on
the average gene expression levels in muscle, we did not have the resolution to characterize
these findings in more detail. Current single cell RNA-seq methodology would require
a larger amount of muscle tissue per sample point, and was therefore not performed in
this study. For further characterization at the cellular level, future studies using novel
technologies such as single cell RNA-sequencing and possibly spatial RNA-sequencing
need to be undertaken. Furthermore, this dataset can be used as a rich source for further
exploration and referencing by the research community.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11091508/s1, Supplementary Table S1: Overview of included
samples and quality control in patients; Supplementary Table S2: Overview of included samples
and quality control in control individuals; Supplementary Table S3: Top 50 of most differentially
expressed genes across early stage patient muscles; Supplementary Figure S1: Re-analysis of scRNA-
seq data. (A) Pie chart showing the cell type composition of the re-analyzed muscle single cell
scRNA-seq data. (B) t-SNE analysis of the re-analyzed muscle scRNA-seq data, color coded for
cell type. (C) Dendrogram visualization of hierarchical clustering and heatmap analysis on gene
signature correlations between cell types. (D) Heatmap analysis of the top 10 marker genes of all
cell types in the re-analyzed muscle scRNA-seq data. Abbreviations: vascular smooth muscle cells
(vSMC), natural killer cells (NK). Supplementary Figure S2: Analysis of patient samples. (A) PCA
plot of disease samples color coded for muscle of origin. Note that in contrast to healthy samples
(see Figure 4A), disease samples do not group according to muscle. (B) PCA plot of disease samples
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color coded for Mercuri score. Note that disease samples group according to disease stage rather than
muscle. (C) Heatmap analysis of the top 10 marker genes of all disease muscles.
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