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Systematic pan-cancer analysis identifies cGAS as an
immunological and prognostic biomarker
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Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus causes novel
coronavirus disease 2019 (COVID-19), which is characterized by pneumonia, cytokine storms, and
lymphopenia. Due to immunosuppression, cancer patients may be more susceptible to SARS-CoV-2 and
have more serious complications. According to recent research, cyclic GMP-AMP synthase (cGAS) could
be a potential SARS-CoV-2 sensor. However, at present, no studies have been conducted on ¢GAS gene
alterations in pan-cancer. This study aimed to discover therapeutic implications for COVID-19-infected
tumor patients by performing a comprehensive analysis of ¢GAS in malignant tumors.

Methods: ¢GAS expression matrices were obtained from The Cancer Genome Atlas (TCGA),
Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE) databases, which
were used to evaluate cGAS expression in various tumors, its prognostic value, and its relationship to
the immune microenvironment, microsatellite instability (MSI), immune neoantigens, gene mutations,
immune checkpoints, MSI, tumor mutational burden (TMB), mismatch repair (MMR) genes, and DNA
methyltransferases (DNMT). We also used the cBioPortal, Human Protein Atlas (HPA), and GeneMANIA
databases to explore the types of changes, gene networks and immunofluorescence localization, and protein
expression of these genes.

Results: Compared to normal tissues, cGAS was highly expressed in 13 types of cancer (e.g., lung cancer)
and lowly expressed in other cancers (e.g., pancreatic cancer). cGAS expression was associated with prognosis
in nine cancers, such as renal clear cell carcinoma (P<0.05). Furthermore, deep deletion was the most
common type of ¢GAS genomic mutation. DNMT, immune infiltration levels, TMB, MSI, MMR genes,
neoantigens, and immune checkpoints were all correlated with cGAS expression. Moreover, we used the
GSE30589 dataset to investigate the post-SARS-CoV infection changes in ¢GAS expression iz vitro. Finally,
mithramycin, MI219, AFP464, aminoflavone, kahalide F, AT'13387, doxorubicin, and other drugs increased
the sensitivity of ¢GAS expression. According to the evidence presented above, cGAS may become an

important target for cancer therapy.
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Conclusions: This study discovered that SARS-CoV-2-infected cancer patients might experience changes

in their tumor environment as a result of cGAS, making patients with tumors expressing high ¢GAS more

susceptible to COVID-19 and possibly a worsening prognosis. Furthermore, cGAS may be a novel biomarker

for diagnosing and treating COVID-19-infected tumor patients.
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic
was triggered by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) virus, which had caused
475 million infections and 6.1 million deaths as of March
2022. SARS-CoV-2 infection can present with various
manifestations, including asymptomatic, mild, or fatal (1).
As with other pathogenic coronaviruses, such as Middle East
respiratory syndrome (MERS) and severe acute respiratory
syndrome (SARS), SARS-CoV-2 has been linked to human-
bat cross-species transmission (2). The high transmission
rate of SARS-CoV-2 in the human population is attributed
to the increased affinity of the SARS-CoV-2 spike protein
for the cyclic GMP-AMP synthase (¢GAS) cellular receptor

in humans (3-5).

Highlight box

Key findings
® ¢GAS may be a novel biomarker for diagnosing and treating
COVID-19-infected tumor patients.

What is known and what is new?

* Cancer patients are more susceptible to SARS-CoV-2. ¢GAS could
be a potential SARS-CoV-2 sensor.

® This study discovered that SARS-CoV-2 infected cancer patients
might experience changes in their tumor environment due to
¢GAS, increasing the susceptibility of patients with high ¢GAS-
expressing tumors to COVID-19 and possibly worsening their
prognosis. Furthermore, cGAS may be a novel biomarker for
diagnosing and treating COVID-19-infected tumor patients.

What is the implication, and what should change now?

® The results of this study would be more convincing if combined
with experimental validation, such as IHC or large prospective
clinical studies. According to our findings, cGAS was both
a protective and a risk factor in some tumors, and thus, its

mechanisms of action need to be investigated further.
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In the early stages of RNA virus infection, viral genomic
RNA is known to activate the RLR pathway when exposed
to the cytoplasm of infected cells (6-10). Furthermore,
there is growing evidence that RNA virus infection can
activate cGAS/stimulator of interferon genes (STING)
pathway via virus-cell membrane fusion and virus-induced
mitochondrial damage (11,12). The virion-associated
accessory proteins and viral structural proteins of SARS-
CoV-2 are more likely to be involved in inhibiting the
innate immune response of the host during the early stages
of viral infection. The SARS-CoV-2 spike protein induces
cell fusion and nuclear rupture, resulting in the leakage of
DNA into the cytoplasm, and activates the DNA sensor
protein cytoplasmic ¢GAS and its downstream effector
STING, which stimulates the expression of interferon-f
(IFN-B), revealing a previously unknown mechanism of
IFN response to SARS-CoV-2 infection (1).

The protein-coding gene ¢GAS serves as a key DNA
sensor; it binds directly to double-stranded DNA
(dsDNA), causing liquid droplets to form where ¢cGAS
is activated, inducing the synthesis of 2',3"-cyclic GMP-
AMP (2',3'-cGAMP), a second messenger that binds to and
activates STINGI, resulting in the production of type I
IFN (13-18). In the cytoplasm, the presence of dsDNA is a
key exogenous DNA sensor as a danger signal that induces
an immune response (14). Antiviral activity is detected via
dsDNA from DNA viruses in the cytoplasm (14).

Cancer patients who are immunocompromised are
thought to be especially susceptible to the COVID-19
epidemic (19). According to recent clinical research (20),
tumor patients infected with COVID-19 are more likely
to have clinical complications and death than non-
tumor patients. This mechanism may be that COVID-19
activates cGAS/STING and then activates its downstream
noncanonical nuclear factor-kB (NF-«B) signal pathway to
promote cancer cell metastasis (21). Although it has been
reported that in pan carcinoma, the expression level of c<GAS
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is related to methylation and infiltration of single types of
immune cells (CD4, CD8 T cells and dendritic cell) (22).
However, the relationship between ¢GAS gene and tumor
immunotherapy related biomarkers and drug sensitivity has
not been reported, and the abnormal expression of ¢GAS
gene in human cancer has not been fully studied. Therefore,
we applied a bioinformatics approach in this study to assess
the relationship between ¢GAS expression, prognosis,
tumor mutational burden (TMB), immune infiltration,
immune neoantigens, microsatellite instability (MSI),
and drug sensitivity in pan-cancer data. We present the
following article in accordance with the MDAR reporting
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-6318/rc).

Methods

cGAS sample information and pan-cancer expression
analysis

The Cancer Genome Atlas (TCGA) (https://portal.gdc.
cancer.gov/) and Genotype-Tissue Expression (GTEx)
database (https://gtexportal.org/) databases were used to
obtain the gene expression matrix and clinical data for
both normal and tumor samples. Also, data on tumor cell
line expression was downloaded from the Cancer Cell
Line Encyclopedia (CCLE) database (https://portals.
broadinstitute.org/). The study was conducted in accordance
with the Declaration of Helsinki (as revised in 2013).

Pan-cancer prognostic analysis of cGAS expression

Kaplan-Meier (KM) forest plots (https://kmplot.com/
analysis/) were constructed to illustrate the associations
between ¢GAS expression and patient outcomes, including
overall survival (OS). The log-rank P values, hazard ratios
(HRs), and 95% confidence intervals (Cls) were calculated
using univariate survival analysis.

cGAS genomic alterations in pan-cancer

TMB refers to the total number of non-synonymous
mutations found in a tumor genome’s coding regions (23).
In patients with higher TMB, immunotherapy [immune
checkpoint inhibitors (ICIs)] is more effective (24,25).

The data were downloaded from the University of
California, Santa Cruz (UCSC) Xena, and the relationship
between ¢GAS expression and the TMB was investigated
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using Spearman’s correlation. The cBioPortal database
(https://www.cbioportal.org/) was used to analyze gene
changes in ¢GAS in the pan-cancer dataset. The “oncoprint”,
“cancer type summary”, and “mutations” modules provided
the ¢GAS gene alteration and mutation site information.

Analysis of mismatch vepair (MMR) and MSI in cancer

The process of repairing mismatches within cells is
known as MMR. When key genes are rendered inactive
due to this process, errors in DNA replication cannot be
corrected, which leads to numerous somatic mutations. We
investigated the relationship between ¢GAS expression and
several essential MMR genes, including MutL. homologs
(MLHI) and MutS homologs (MSH2, MSH6), as well
as increased post-meiotic segregation (PMS2) and the
epithelial cell adhesion molecule (EPCAM). MSI, another
immunotherapy biomarker, is an inherited hypermutation
state caused by MMR gene inactivation (26,27). Tumor
data were obtained from UCSC Xena, and the relationship
between ¢GAS expression and MSI was examined using
Spearman’s correlation.

Association analysis of cGAS and methyltransferases

DNA methylation describes a chemical modification of DNA
that can alter genetic properties without changing the DNA
sequence. The relationship between ¢GAS levels and the
expression of the four methyltransferases was investigated
using the ggplot data visualization tool. The correlations
were considered significant at P<0.05 and R>0.20.

Relationship between cGAS expression and immune cell
infiltration

We also used the expression data (ESTIMATE) to estimate
stromal and immune cells in malignant tissue, generating
three scores—stromal score, immune score, and estimated
score—representing the level of immune cell infiltration in
the tumor, stromal cells, and tumor purity tissue (28). Next,

we explored the relationship between ¢GAS expression and
the ESTIMATE score.

Association analysis of cGAS with immune neoantigens
and immune checkpoint genes

Neoantigen is a new antigen encoded by tumor cell
mutation gene. It is a new abnormal protein produced by
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gene point mutation, deletion mutation and gene fusion
that is different from the protein expressed by normal cells.
Neoantigens were ranked according to their antigenicity
index value, variant allele frequency, and docking affinity
score, and the number of neoantigens present in each tumor
sample was determined independently using a tool similar
to ScanNeo (29). Additionally, we extracted the immune
checkpoint genes to examine the relationship between their
levels of expression and ¢GAS expression to analyze the
relationship between immune checkpoint genes and ¢GAS
expression. A significant positive correlation was shown by
P<0.05 and R>0.20.

Subcellular localization and protein expression of cGAS

Retrieve the microarray data set from GEO under the
number of accesses of GSE30589. These microarray data
are generated by the Affymetrix GPL570 platform.

Furthermore, the distribution and subcellular localization
of ¢cGAS protein expression were identified using
immunofluorescence staining based on the Human Protein
Atlas (HPA) (https://www.proteinatlas.org/) database.
Meanwhile, the Clinical Proteome Tumor Analysis
Consortium and the HPA databases were used to analyze
the protein-level expression of ¢GAS in various tumors.

Genes, disease network, enrvichment analysis

GeneMANIA (http://www.genemania.org) was an online
research tool, which imported the ¢GAS gene and presented
the protein expression and inheritance in the network (30).
The OpenTarget platform was used to conduct genetic
association-based ¢cGAS gene-disease network analysis.
To investigate the potential biological functions of cGAS-
interacting proteins and co-expressed genes in pan-cancer,
Gene Ontology (GO) enrichment analysis, including
molecular functions (MFs), cellular components (CCs), and
biological processes (BPs), was employed to determine the
enriched genes. The “ClusterProfiler” package was used to
perform both the GO and Kyoto Encyclopedia of Genes
and Genomes (KEGQ) analyses.

Toll-like receptor (TLR) gene drug sensitivity analysis

Gene and drug susceptibility studies in the NCI-60 cell
line were available via the Cell Miner Resource Collection
(https://discover.nci.nih.gov/cellminer/) (31,32). Cell
sensitivity to a drug was indicated by the z-score in the
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compound activity profile; the drug’s anticancer activity
increased as the z-score value increased. The relationship
between the cGAS gene expression levels and the z-score
for each chemical was ascertained using Pearson correlation
analysis. It must be emphasized that only Food and Drug
Administration (FDA)-approved medications and substances
that have undergone clinical validation were included in the
correlation analysis. The identified molecular structures
of drugs were determined using the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/).

Statistical analyses

Use R for all statistical analyses (https://www.rproject.org/).
Univariate Cox regression analysis was used to examine the
relationship between ¢cGAS expression and cancer prognosis.
KM survival analysis was conducted using survival and
survminer packages. Spearman correlation test was used to
infer the correlation between the two parameters. Student’s
t-test and Wilcoxon test were used for comparison between
the two groups, and one-way analysis of variance (ANOVA)
and Kruskal-Wallis test were used for comparison between
three or more groups. Bilateral P value <0.05 is statistically
significant.

Results

Differential expression analysis of cGAS in pan-cancer and
normal tissues

In this investigation, we used the GTEx database to
identify the human ¢GAS expression in various tissues and
conducted a systematic analysis of cGAS expression in pan-
cancer (Figure 1A4). Next, cGAS expression levels were
measured in 21 different human cancer cell lines based on
the CCLE repository (Figure 1B). The specificity of cGAS
expression was later demonstrated by findings from TCGA
database, which showed variations in ¢GAS expression
levels in tumors and nearby normal tissues within a single
tumor sample (Figure 1C). We then combined the normal
and tumor tissue data from TCGA and GTEx databases
to assess the differential expression of ¢GAS in 33 cancer
types, avoiding errors caused by TCGA’s small sample
size of normal tissues (Figure 1D). With the exception of
adrenocortical carcinoma (ACC), kidney chromophobe
(KICH), prostate adenocarcinoma (PRAD), and thymoma
(THYM), this analysis revealed that cGAS was abnormally
overexpressed in cancer tissues compared to normal tissues.
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Pan-cancer analysis of the prognostic value of cGAS
expression

Next, we performed a univariate Cox regression analysis
to examine the relationship between ¢GAS expression and
cancer prognosis. The ¢cGAS expression levels were used
to divide each type of cancer case into two subgroups.
According to the forest plots of 33 tumors, cGAS expression
had a significant impact on OS in patients with ACC, kidney
renal clear cell carcinoma (KIRC), kidney renal papillary
cell carcinoma (KIRP), brain lower grade glioma (LGG),
liver hepatocellular carcinoma (LIHC), mesothelioma
(MESO), pancreatic adenocarcinoma (PAAD), skin
cutaneous melanoma (SKCM), and uveal melanoma (UVM).
The findings also revealed that, with the exception of
SKCM, the ¢GAS expressions of most tumor types were
primarily correlated with a poor prognosis (Figure 24).

Using the KM plotter portal and the log-rank method
(Figure 2B), we further evaluated the relationship between
¢GAS expression levels and patient outcomes. These results
indicated that significantly worse OS was associated with a
high expression of ¢GAS in patients with ACC (HR =1.15,
P<0.0001), KIRC (HR =1.06, P=0.0044), KIRP (HR =1.19,
P=0.0089), LGG (HR =1.27, P<0.0001), LIHC (HR =1.11,
P=0.00022), PAAD (HR =1.07, P=0.0065), and UVM (HR
=1.69, P<0.0001). However, higher ¢GAS levels suggested
that SKCM had a better prognosis (HR =0.97, P=0.00042).
According to the aforementioned data, a worse prognosis
in various tumors is predicted by higher ¢cGAS expression
levels in addition to SKCM. Overall, these findings implied
that ¢cGAS may be a prognostic biomarker linked to OS in
cancer patients.

Genetic variation analysis of cGAS in pan-cancer

We also investigated the correlation between the TMB and
¢GAS expression in cancer. Although the c<GAS messenger
RNA (mRNA) expression was negatively correlated with
the TMB in LIHC, PRAD, thyroid carcinoma (THCA),
and UVM, it was positively correlated with the TMB
in bladder urothelial carcinoma (BLCA), breast invasive
carcinoma (BRCA), colon adenocarcinoma (COAD),
LGG, lung adenocarcinoma (LUAD), ovarian serous
cystadenocarcinoma (OV), PAAD, sarcoma (SARC),
stomach adenocarcinoma (STAD), THYM, and uterine
carcinosarcoma (UCS) (Figure 34). Gene mutations were
then analyzed using the cBioPortal database. It was found
that among pan-cancer patients, the gene alteration rates

© Annals of Translational Medicine. All rights reserved.

Chen et al. cGAS reveals the therapeutic implications of SARS-CoV-2

of ¢GAS were the highest among malignancies including
UVM, prostate adenocarcinoma, LIHC, and uterine corpus
endometrial, with deep deletion being the main alteration
type (Figure 3B).

Additionally, we also determined the kind, location, and
quantity of ¢cGAS gene modifications (Figure 3C). cGAS
missense was the predominant type of alteration. The
most common putative copy number alterations in ¢cGAS
were diploid, gain, and shallow deletion (Figure 3D). Gene
alterations were more frequent in the altered group than in
the unaltered group in the following areas: FOXD2-AS1,
SKINTI1L, TRABD2B, FOXD2, LINC00853, EFCAB14-
AS1, MKNKI1-AS1, FAAHPI1, TTC9-DT, and SYNJ2BP-
COX16 (Figure 3E). We detected changes in R339H in
6 patients and obtained three-dimensional structural map of
¢GAS at the 339 mutation site (Figure 3F).

Correlation between cGAS expression and MMR/MSI in

cancer

Microsatellites are straightforward repeats of nucleotide
bases that cause mistakes in DNA replication, which can
be detected and corrected by MMR genes. Microsatellite
mutations can occur in tumors lacking the MMR system,
resulting in high levels of MSI, which then induce the
accumulation of cancer-related gene mutational burdens and
worsening of the TMB (33). We examined the relationship
between ¢GAS expression and a number of crucial MMR
genes. With the exception of esophageal carcinoma (ESCA),
lung squamous cell carcinoma (LUSC), and UCS, almost
all of the 33 cancers showed that the cGAS expression was
strongly correlated with MMR genes (Figure 4A4). Our study
also evaluated the relationship between MSI and ¢GAS
expression as another biomarker related to ICI response
(Figure 4B). According to our analysis, cGAS expression and
MSI were positively correlated in BRCA, COAD, and UCS
but negatively correlated in cholangiocarcinoma (CHOL),
lymphoid neoplasm diffuse large B-cell lymphoma (DLBC),
PAAD, PRAD, and SKCM.

cGAS influences DNA MMR genes and methyltransferase

expression in pan-cancer

The covalent attachment of methyl groups to DNA is
known as DNA methylation via DNA methyltransferase
(DNMT) to the cytosine 5' carbon site in the CpG
dinucleotide of the genome. We visually analyzed the
correlation between ¢GAS content and the expression of the

Ann Transl Med 2023;11(2):121 | https://dx.doi.org/10.21037/atm-22-6318
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Figure 4 Correlation between ¢GAS expression and MMR/MSI in cancer. (A) The correlation between ¢GAS expression and MMR genes;
(B) correlation between ¢GAS and MSI. The values in black denote the range, and the curves in blue and red represent the correlation
coefficient. *P<0.05; **P<0.01; ***P<0.001. ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive
carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon
adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme;
HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney
renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma;
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma;
PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum
adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors;
THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal
melanoma; MLH, MutL homologs; MSH, MutS homologs; PMS, post-meiotic segregation; EPCAM, epithelial cell adhesion molecule;
¢GAS, cyclic GMP-AMP synthase; MMR, mismatch repair; MSI, microsatellite instability.
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Figure 5 Correlation analysis of the methyltransferase expression levels and ¢GAS. DNMTT is red, DNMT?2 is blue, DNMT3a is green,
and DNMT3Db is purple. ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC,
cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma;
DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head
and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary
cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LTHC, liver hepatocellular carcinoma; LUAD, lung
adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic
adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma;
SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid
carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma; cGAS,

cyclic GMP-AMP synthase; DNM'T, DNA methyltransferases.

four methyltransferases and found that most cancers had a correlation between ¢GAS expression and the estimated
positive relationship with ¢GAS content (Figure 5). These scores for the majority of cancers. These findings implied
findings implied that cGAS may control tumorigenesis by that as cGAS expression increases, stromal or immune cells
altering the epigenetic conditions and the development of become more prevalent and the tumor’s purity declines.

human pan-cancer.

cGAS expression is associated with immune neoantigens

Correlation between cGAS and the level of immune and immune checkpoint genes

infiltration We examined data from more than 40 immune checkpoint
Using the ESTIMATE method, we separately calculated the genes that are frequently found in various malignancies
immune, stroma, and estimated scores. Next, we explored (Figure 74) to examine the connection between ¢GAS
the relationship between pan-cancer ¢GAS expression and content and checkpoint gene expression. According to the
the ESTIMATE score. Figure 6 demonstrated a significant data, there was a positive correlation between ¢GAS content

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2023;11(2):121 | https://dx.doi.org/10.21037/atm-22-6318
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Figure 6 Correlation between ¢GAS expression and the ESTIMATE score in pan-cancer. ACC, adrenocortical carcinoma; BLCA, bladder
urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma;
CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal
carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney
renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma;
LIHG, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV,
ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate
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uterine carcinosarcoma; UVM, uveal melanoma; cGAS, cyclic GMP-AMP synthase.
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in malignant tumors and immune checkpoint genes such as
BRCA, KICH, KIRC, LGG, LIHC, THCA, and UVM.
We also discovered that ¢GAS controls the expression of
a large number of immune checkpoint genes, which are
essential for modifying tumor immunity. To determine
whether ¢GAS content and their abundance are related, the
number of these neoantigens was independently counted
in each tumor: OV (R=0.214, P=0.05), LUAD (R=0.262,
P=0.05), BRCA (R=0.122, P=0.05), and PRAD (R=-0.127,
P=0.05) (Figure 7B).

Intracellular localization and protein expression of cGAS

We then examined the subcellular distribution of cGAS in
A-431, U-2 OS, and U-251 MG cells by immunofluorescence
staining in the endoplasmic reticulum (ER) and nucleus
based on the HPA database to ascertain the intracellular
localization of ¢cGAS. Figure 84 demonstrates that in the
A-431, U-2 OS, and U-251 MG cells, cGAS was co-localized
with 4',6-diamidino-2-phenylindole (DAPI)-labeled nuclei,
indicating that cGAS was primarily found in the nucleoplasm.
Additionally, we obtained the immunohistochemistry (IHC)
results from the HPA database and contrasted them with the
¢GAS gene expression data obtained from TCGA to evaluate
¢GAS expression at the protein level. As seen in Figure 8B, the
data analysis outcomes of the two databases were comparable.
The amount of ¢GAS THC staining in normal breast, liver,
and lung tissue was minimal, whereas the amount in tumor
tissue was more than moderate.

Additionally, it was important to research the
modifications of ¢cGAS in tumors following SARS-CoV-2
infection. Changes in ¢GAS expression following SARS-
CoV infection of cells or animals can be used as a reference
for SARS-CoV-2, as SARS-CoV-2 and SARS-CoV are
highly homologous (2). We then analyzed the ¢cGAS
expression changes in SARS-CoV-infected Vero E6 cells
using the GSE30589 dataset. These findings demonstrated
that Vero E6 cells had higher levels of ¢GAS expression than
the control group (Figure §C). Based on this finding, cGAS
expression may increase following SARS-CoV-2 infection.

Gene, disease network, and functional envichment analysis

To investigate the potential relationship between
¢GAS genes, we built a gene-gene network using the
GeneMANIA database. As shown in Figure 94, the gene of
¢GAS were surrounded by 20 nodes, which shared protein
domains, genetic interactions, colocalization, coexpression,

© Annals of Translational Medicine. All rights reserved.

Page 13 of 21

and coexpression predictions with ¢GAS. The correlations
between STINGI1, PQBPI1, and BLVRA were among the
strongest.

Subsequently, we investigated cGAS gene-related diseases
using the Open'Target database, and the findings revealed
that ¢cGAS was linked to immune system diseases, cancers or
benign tumors, as well as hereditary, familial, or congenital
diseases (Figure 9B). According to the GO and KEGG
enrichment analysis results of cGAS interacting genes
(Figure 9C), the predominant BPs included the regulation
of cellular response to exogenous double-stranded RNA
(dsRNA), the cellular response to dsRINA, the viral defense
response, the response to exogenous dsRNA, and type I
IFN production. Also, MFs were significantly enriched
in nucleotidyltransferase activity, guanyl ribonucleotide
binding, guanyl nucleotide binding, purine ribonucleoside
binding, and purine nucleoside binding. CCs were typically
found in the mitochondrial outer membrane, organelle
outer membrane, and outer membrane. KEGG enrichment
analysis indicated that cGAS mutual genes were significantly
enriched in the DNA-sensing pathway of the cytosol,
Herpes simplex virus 1 infection, ER protein processing,
NOD-like receptor signaling pathway, and human
immunodeficiency virus 1 infection.

Drug sensitivity analysis

The drug sensitivity (z-score) data from the Cell Miner
database and ¢GAS were used for the correlation analysis.
Figure 10 shows the results of the 11 highest correlation
coefficients, sorted according to the P value. A previous
studies has shown that cGAS expression levels alter tumor
cell sensitivity to certain drugs. Patients with high ¢GAS
expression were found to be more sensitive to curcumin,
alectinib, fludarabine, and 6-thioguanine, implying that
patients with high ¢GAS expression may be more likely to
receive antitumor therapy (34). Yet, the cGAS expression
levels were negatively correlated with the sensitivity of
mithramycin, MI-219, AFP464, aminoflavone, kahalide F,
AT-13387, and doxorubicin, indicating that the risk of drug
resistance increases with the elevation of cGAS expression
levels.

Discussion

COVID-19 is a global epidemic with no effective treatment
at present (35). Smokers, obese people, and cancer patients
are more likely to contract SARS-CoV-2 and have a worse

Ann Transl Med 2023;11(2):121 | https://dx.doi.org/10.21037/atm-22-6318
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2.0 1 B SARS-CoV
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Figure 8 Intracellular localization and protein expression of ¢cGAS. (A) Subcellular distribution of ¢GAS expression in cells. A-431 U-2 OS
and U-251 MG cells were grown in 4-chamber slides in serum-free media. After 24 h incubation, cells were fixed with 4% paraformaldehyde
at 4 °C. Cells were washed with PBS containing 0.1% BSA and incubated with the anti-cGAS antibody for 1 h followed by 1 h incubation
with fluorescence-tagged secondary antibody, then counterstained with DAPI for 5 min. Finally, the slides were sealed and pictured under
the inverted confocal fluorescence microscope. The scale bar indicates 50 pm. (pictures available from https://www.proteinatlas.org/
ENSG00000164430-cGAS/subcellular#img); (B) comparison of the ¢cGAS gene expression between normal (immunofluorescence staining,
original magnification x40) (pictures available from https://www.proteinatlas.org/ENSG00000164430-cGAS/tissue) and tumor tissues
(immunofluorescence staining, original magnification x200) (pictures available from https://www.proteinatlas.org/ENSG00000164430-
¢GAS/pathology); (C) changes in ¢cGAS expression after SARS-CoV infection in Vero E6 cells. ¢GAS, cyclic GMP-AMP synthase; ER,

endoplasmic reticulum; SARS-CoV, severe acute respiratory syndrome coronavirus.
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Figure 9 ¢GAS-related genes, disease networks, and functional enrichment analysis. (A) ¢GAS-associated gene network mapped using
GeneMANIA; (B) OpenTarget platform for gene-disease network analysis of cGAS; (C) GO and KEGG ¢GAS gene enrichment analysis in
pan-cancer. BP, biological process; CC, cellular component; ME, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes;
dsRINA, double-stranded RNA; cGAS, cyclic GMP-AMP synthase; GO, Gene Ontology.

prognosis (20,36-40). Understanding other potential SARS-
CoV-2 sensors/receptors may help to offer new insights
and identify potential therapeutic targets to develop better
treatment options for COVID-19 (41-43). ¢GAS is a key
DNA sensor that activates STING1 to cause type I IFN
production (13-18), and the varicella-zoster virus ORF9
exerts an antagonistic effect on the cGAS DNA sensor (44).
As a result, cGAS is a key factor in COVID-19 infection
and progression, and it may be a potential new target for
effective COVID-19 treatment.

At present, the study of ¢GAS gene in pancarcinoma

© Annals of Translational Medicine. All rights reserved.

is not sufficient.. Our analyses of the GTEx, CCLE, and
TCGA databases confirmed that cGAS was overexpressed
in most cancers compared to the adjacent normal tissues,
and we demonstrated that cGAS played a significant role
as a biomarker in various cancers, which was consistent
with the findings of previous studies (45,46). Yet, the
upstream factors regulating ¢GAS expression, as well as
the reasons for ¢cGAS’s persistent upregulation in various
types of cancer, remain unknown and require further
investigation. We discovered that cGAS was overexpressed
in various cancers and confirmed this finding at the protein

Ann Transl Med 2023;11(2):121 | https://dx.doi.org/10.21037/atm-22-6318
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Figure 10 Related drug sensitivity analysis of ¢cGAS expression. (A) Drug sensitivity analysis of mithramycin, MI-219, curcumin, AFP464,
aminoflavone, alectinib, fludarabine, 6-thioguanine, kahalide F, AT-13387, doxorubicin; (B-E) PubChem database predicted the molecular
structures of four targeted drugs: curcumin, alectinib, fludarabine, and 6-thioguanine. cGAS, cyclic GMP-AMP synthase.

level. Furthermore, cGAS expression was associated with

UVM, higher ¢GAS was linked to a poor prognosis. This

the prognosis of certain tumor types. In patients with discovery had never been reported before, highlighting the

ACC, KIRC, KIRP, LGG, LIHC, MESO, PAAD, and uniqueness of our study, which showed that the prognostic
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and discriminative value of ¢GAS expression in cancer was
significant.

We also examined the correlation between ¢GAS and the
TMB, MSI, MMR gene, and DNMT5s to further explore
the potential mechanism of the relationship between cGAS
and cancer. MSI is a molecular fingerprint that develops as
a result of MMR gene mutation (47,48). According to new
evidence, most tumors with MSI-high (MSI-H)/deficiency in
MMR (dMMR) status have a high TMB (23,49). The TMB
status is becoming more widely recognized as a promising
pan-cancer biomarker for predicting the efficacy of immune
checkpoint blockade (ICB) therapy (50). MMR has received
considerable attention as an important factor in genome
stability and integrity (51,52). Furthermore, the TMB and
MSI are new immunotherapy susceptibility predictors
(33,53,54). These characteristics are associated with increased
neoantigens, which affect tumor-infiltrating lymphocytes
and the response to ICB, and thus, independently predict
the immunotherapy response (55-57). At the pan-cancer
level, our findings showed more correlations between cGAS
expression and MSI/TMB in a variety of other cancer types.

However, in some cancers, cGAS expression was found
to be inconsistently correlated with MSI and TMB. The
association between MSI and TMB is complicated by
other characteristics, which may explain why studies have
shown a higher TMB in tumors with MSI-H status. MSI
and 'TMB status must be integrated to predict the response
to ICB reports. Secondly, the use of different datasets and
the uniqueness of each data collection method might have
resulted in disparities between the associations of cGAS
with MSI and TMB in the same cancer type. In addition
to genetic mutations, epigenetic changes have a significant
impact on tumor growth, proliferation, metastasis, and
immunosuppression.

One type of epigenetic regulation is DNA methylation.
Abnormal DNA methylation levels have been linked to
tumorigenesis and immune evasion in cancer (58-60). Our
study discovered some positive and negative correlations
between the expressions of DNMTs and ¢GAS in various
cancer types, implying that DNA methylation might also
play a role in ¢GAS regulation. This mechanism reduced
tumor suppression by hypermethylating immune genes,
leading to tumorigenesis and immunosuppression due
to DNA hypomethylation (61,62). Possible strategies for
targeting these checkpoints with methylation modulators
or combining methylation modulators with ICBs have
been proposed to improve the response rates. In summary,
different methylation patterns regulate different types of

© Annals of Translational Medicine. All rights reserved.
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tumors and their immune status, which is highly complex
and would require more in-depth research in the future.

SARS-CoV-2 is highly homologous to SARS-CoV (2).
As a result, we used the GSE30589 dataset to investigate
the ¢cGAS changes in Vero E6 cells infected with SARS-
CoV. The findings revealed that cGAS expression increased
following SARS-CoV infection, which suggested that cGAS
levels might be elevated in tumor tissue following SARS-
CoV-2 infection.

¢GAS expression was linked to MMR genes in almost
all of the cancers examined in this study. Furthermore,
¢GAS was also linked to TMB and MSI in certain types of
cancer. We then compared the association between ¢GAS
expression with multiple checkpoint markers in different
cancer types. cGAS was found to be highly positively
correlated with almost all checkpoint genes in the majority
of cancers, implying that ¢GAS might play an important
role in tumor immunity and might be a promising candidate
for immune-targeted therapy. These findings could help
researchers better understand the potential role of ¢GAS in
tumor immunology.

Immune cell function continuously promoted the
body’s antiviral and antitumor BPs. Lymphopenia was
identified by previous research as an indicator in patients
with COVID-19 and other cancers (63,64). Moreover,
immunosuppression and a weakened immune system were
major contributors to the severe disease course and high
mortality rate of COVID-19 among cancer patients (65).

By binding to PD-1, PD-L1 inhibits T-cell proliferation
and cytokine secretion at a given T-cell receptor attack
threshold, resulting in immune tolerance and impaired
T-cell immune function (66,67). LAG3 is a T-cell negative
regulator; previous research has shown that blocking LAG3
can increase cytotoxic T-lymphocyte activity. Also, cGAS
expression was found to be significantly correlated with PD-
L1 function, and ¢GAS is associated with PDCD]1, which
encodes the PD-1 protein. LAG3 inhibition combined with
PD-1 inhibition slows tumor progression and increases
regression (68,69). We discovered that cGAS levels were
significantly related to LAG3 expression in various cancers.
Similar expression patterns of ¢cGAS, PD-L1, and LAG3
in tumors suggested that these proteins promote tumor
aggressiveness via a common cascade.

"To our knowledge, this was the first pan-cancer analysis
of ¢GAS combined with subcellular localization, protein
expression and drug sensitivity, which showed that c<GAS
played a significant role in tumorigenesis and progression
and is a promising potential marker for specific cancers.
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Moreover, this study not only settled the debate regarding
whether ¢GAS was overexpressed or underexpressed in
cancer but also revealed that ¢GAS plays a non-negligible
role in tumor immunity, paving the way forward for tumor
research. Nevertheless, a few limitations were present in
this study that should be noted. Firstly, since we did not
collect samples from patients with COVID-19 and cancer,
we could not directly determine whether these cGAS
patients had a poor prognosis. Secondly, more research is
needed to confirm the underlying mechanisms of ¢GAS in
various cancers. Our results would be more convincing if
combined with experimental validation, such as IHC or
large prospective clinical studies. Finally, according to our
findings, cGAS was both a protective and risk factor in some
tumors, and thus, the mechanism of action still needs to be
investigated further.

Conclusions

This study demonstrated that cGAS was associated with
COVID-19 and was a marker of multiple cancers. We also
found that it was differentially expressed in different human
cancers, and was strongly associated with poor prognosis
in various malignancies. Additionally, we observed that
the expression of ¢cGAS in pan-cancer was dysregulated by
TMB, MSI, MMR, and DNA methylation. In conclusion,
¢GAS might represent a novel approach for the detection
and treatment of cancer.
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