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Beyond radiologist-level liver lesion
detection on multi-phase contrast-enhanced
CT images by deep learning

Lei Wu,1,3,8 Haishuai Wang,1,8,9,* Yining Chen,2,8 Xiang Zhang,4,5 Tianyun Zhang,6 Ning Shen,6 Guangyu Tao,7

Zhongquan Sun,2 Yuan Ding,2,* Weilin Wang,2,* and Jiajun Bu1,*
SUMMARY

Accurate detection of liver lesions from multi-phase contrast-enhanced CT (CECT) scans is a fundamental
step for precise liver diagnosis and treatment. However, the analysis of multi-phase contexts is heavily
challenged by the misalignment caused by respiration coupled with the movement of organs. Here, we
proposed an AI system for multi-phase liver lesion segmentation (named MULLET) for precise and fully
automatic segmentation of real-patient CECT images. MULLET enables effectively embedding the impor-
tant ROIs of CECT images and exploring multi-phase contexts by introducing a transformer-based atten-
tion mechanism. Evaluated on 1,229 CECT scans from 1,197 patients, MULLET demonstrated significant
performance gains in terms of Dice, Recall, and F2 score, which are 5.80%, 6.57%, and 5.87% higher than
state of the arts, respectively. MULLET has been successfully deployed in real-world settings. The de-
ployed AI web server provides a powerful system to boost clinical workflows of liver lesion diagnosis
and could be straightforwardly extended to general CECT analyses.

INTRODUCTION

The precision diagnosis and prediction of liver cancer are fundamental to clinical practice in diagnosing and treating liver tumors.1–3 For liver

lesion screening, contrast-enhanced computed tomography (CECT) has been clinically proven effective to assist diagnosis and surgery.4–6

Yet, it is time-consuming when manually performed on numerous CECTs.7–9 With the advent of the artificial intelligence (AI) era, cutting-

edge computer technology (e.g., semantic segmentation9–11) has shown an exciting potential to segment and identify liver lesions from

CECT images.12–18 Hence, segmenting and classifying liver lesions from CECT images by leveraging an efficient AI model is crucial to assist

doctors in liver lesion diagnosis.

Multi-phase textures (i.e., the hepatic arterial phase (phase-A) and the venous phase (phase-V) of CECT) are essential to detect and diag-

nose liver lesions.4–6,19,20 The abundant multi-phase contextual information is also conducive to training AI models for liver lesion segmen-

tation.12,14,21 However, there are still two main challenges to exploring the multi-phase contexts in liver lesion segmentation tasks. First, the

respiration and the movement of abdominal organs cause considerable liver movements and deformation during multiple scans, resulting in

pixel-wise misalignment between different phases. Thus, the misalignment increases the challenge of leveraging multi-phase contexts for

misaligned regions,22,23 especially for small lesions. Second, previous efforts suffer from poor performance as well as limited generalizability

because they are typically trained on small datasets (i.e., 30–400 scans).13,14,24–26 However, fully automatic liver lesion segmentation usually

requires a large quantity of CECT images (e.g., more than 1,000 scans) for training in an end-to-end fashion.27

In the past decade, several pioneer methodologies, e.g., intensity threshold28 and region growing,22,29 were explored for medical image

segmentation. Nevertheless, these methods highly rely on handcrafted or low-level features, which are sensitive to complicated abdominal

CECT images and have limited feature representation capability.12,16,17,30 The emerging deep neural networks have recently demonstrated

promising performance in the precise diagnosis and treatment of various diseases automatically via CT images,15–17,21,27,31,32 thanks to the

strong ability to learn high-level feature representations.7,17,18,33,34 For multi-phase CECT images, a majority of the existing deep-learning-

based methods either ignore multi-phase contexts15,16,27,35 or linearly transform (e.g., simply concatenation or pixel-wise feature filtering)
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Table 1. Description and characteristics of the AIELDI dataset

Demographics

# of CECT 1,229

# of patient 1,197

Female 454 (37.93%)

Male 743 (62.07%)

Age 58.96 (3–90)

Image protocols

Resolution (mm) 0.472–0.890

Manufacturer SIEMENS (1,184); GE MEDICAL SYSTEMS (24);

TOSHIBA (21)

Manufacturer’s model SOMATOM Definition AS; SOMATOM

Definition AS+; SOMATOM Definition Flash;

Optima CT540; Aquilion ONE; Sensation 16;

SOMATOM Force

Thickness 3.0–5.0

Slice range 32–116

There are 1,229 multi-phase CECTs that contain 4,660 lesions and 155,766 CT slices. Each CECT scan contains an artery phase and a venous phase, and each

phase consists of a sequence of CT slices. The age variable is presented as average (range). The resolution variable is presented as a range, and themanufacturer

is presented as name (count).
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multi-phase CT images to explore multi-phase contextual information.25,26,31,36 Assuming liver lesions are well aligned between different

phases, the linear transform strategies can effectively capture the cross-phase contexts of a feature point in one phase from the corresponding

feature point in the other phase. However, they fail to explore and utilize the multi-phase contexts, which are crucial in misaligned liver lesion

regions, especially for small lesions. Hereby, we developed an end-to-end AI system namedmulti-phase liver lesion segmentation (MULLET)

to automatically and accurately segment liver lesions directly frommulti-phase CECT images. Specifically, MULLET first utilized a specific pre-

trained convolutional neural network (CNN) to extract features of each slice in themulti-phase CECT images. Afterward, a multi-phase region

of interest (ROI) embedding module leveraged both global and local features to produce a range of ROIs for each CT slice. Each generated

ROI was then embedded to a fixed-dimensional embedding. Our multi-phase ROI encoder aims to emphasize prominent regions of the

CECT images and reduce the computational complexity of various operations. To this end, we employed twomulti-head attention37 modules

to aggregate multi-phase contexts by computing the latent relationship between ROI embeddings of different phases. Finally, MULLET re-

verted multi-phase contexts to the original size of ROI features and produced final segmentation by a decoder.34

MULLET achieved promising performance in segmenting liver lesions from multi-phase CECT images. To validate that our AI system is

clinically stable and precise, we evaluated it on a private dataset that contains 1,229 multi-phase CECT scans, to the best of our knowledge,

which is the largest multi-phase CECT dataset for liver lesion segmentation. To further demonstrate the generalization capability of our AI

system, we applied it to two external benchmarking datasets (i.e., BRATS and CHAOS) and also achieved superior performance compared

with state-of-the-art studies. Importantly, we deployed the proposed system at The Second Affiliated Hospital Zhejiang University School of

Medicine in March 2021. Our system can analyze 79,949 CT images annually and is expected to save 13,324 h of healthcare professionals in

lesion scan segmentation each year. Our MULLET suggests an excellent potential for advanced clinically applicable AI systems to tackle the

limitations and segment liver lesions from CECT images.

RESULTS

The AIELDI dataset

We launched an AI-Empowered Liver Diagnostic Initiative (AIELDI) that collected a total of 1,229 multi-phase CECT scans (1,197 patients;

454 females and 743 males; age 58.96 G 11.7; Table 1) at The Second Affiliated Hospital Zhejiang University School of Medicine. To our

knowledge, this is the largest multi-phase CECT dataset for liver lesion segmentation. All the multi-phase CECT scans were exported from

the picture archiving and communication system38 of the hospital and stored in a Digital Imaging and Communications in Medicine

(DICOM) format.39 For annotation, two experts with five years of experience labeled the biopsied or CECT images first, and then

two experts with 10+ years of experience reexamined the results. The expert with 23 years of experience will make the final annotation

decision (a.k.a., gold standard or ground truth) if there are discrepancies between the two experts with 10+ years of experience. The an-

notated liver CECT images were randomly divided into a training set of 1,029 multi-phase CECT images and a test set of the remaining 200

samples to develop our AI system. This dataset consists of 1,983 malignant tumors, 418 hemangiomas, and 2,259 cysts by the category

range, 3,133 small lesions (% 1 cm), 537 medium lesions (% 1.5 cm), and 990 large lesions (> 1.5 cm) by maximum diameter range, as

shown in Table S1.
2 iScience 26, 108183, November 17, 2023
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Figure 1. The pipeline of our proposed AI system for segmenting liver lesions from CECT images

(A) The system consists of four major steps, including feature extraction, ROIs encoding, multi-phase contexts exploration, and decoding.

(B) The detailed architecture of each component. In the first step, a CNN-based network (e.g., ResNet-34) was used to extract features from amulti-phase CECT.

In the second step, a multi-phase region of interest (ROI) encoder extracted both global and local features via attention mechanisms, followed by a spatial

attention module to produce several ROIs for each CECT slice. The information from all ROIs was encoded in a set of low-dimensional feature

representations (vectors). In the third step, we adopted a transformer-based multi-phase context exploration module to explore the inter-phase and intra-

phase relationship between the ROIs of different phases. Finally, a simple decoder was applied to produce the liver lesion segmentation.
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MULLET enabled effective multi-phase information exploration and integration in misaligned regions

The developed model aims to effectively and accurately segment liver lesions using multi-phase CECT scans. To this end, the premise of

improving performance by MULLET follows two propositions: (i) the model learned comprehensive features by incorporating cross-phase

global and local information from multi-phase CECT images; and (ii) the model alleviated the effect of misalignment between phases by

adopting a better exploration of multi-phase contexts at misaligned regions of liver lesions.

Given the intrinsic nature of multi-phase abdominal CECT, the model workflow consists of four steps (Figure 1). First, we extracted distinct

features of all slices in all phases through a CNN-based feature extraction module.40,41 Second, we proposed a multi-phase ROI encoder

(Figure 2) that extracts cross-phase global and local features (Figure 3) via attention mechanisms. The cross-phase features were then utilized

to guide a spatial attention module to produce several ROIs for each CECT slice.42 Subsequently, we adopted a transformer37 to explore the

inter-phase and intra-phase relationship between the ROIs. In the final step, we employed a simple yet effective decoder34 to segment the

lesion images.

MULLET achieved accurate segmentation of multi-phase CECTs for liver lesions

To assess the performance of liver lesion segmentation, multi-phase CECT scans with gold-standard expert annotation were chosen as the

benchmarks. Taking amulti-phase CECT scan that contains phase-A and phase-V as the input, our framework utilized cross-phase features for

liver lesion segmentation (see Model implementation, STAR Methods section). We adopted the commonly used metrics, i.e., Dice per case

(DPC), volumetric overlap error (VOE), recall, precision, and F2-score, to comprehensively evaluate the segmentation performance (see Eval-

uation metrics in STAR Methods). The VOE metric is the lower, the better, while other metrics are the higher and the better. We further con-

ducted experiments for the evaluation in terms of different lesion sizes and categories. Large lesions tend to yieldmore simple and convincing

segmentation, while small lesions are typically difficult and imprecise. However, the segmentation of small lesions is more urgent in clinical

diagnosis because diagnosing small lesions is more time-consuming for physicians. The ability to deal with small lesions is thus particularly

important for liver lesion segmentation. Therefore, we systematically evaluated the proposed MULLET from three aspects: (1) the general

performance with respect to the overall distribution of the dataset, (2) the performance with respect to various lesion sizes, especially small

lesions, and (3) the performance with respect to various lesion categories.

First, we evaluated the proposed model over all CECTs in the AIELDI dataset regardless of lesion sizes or categories. Our AI system

achieved a DPC score of 78.47%, a VOE value of 32.23%, a recall of 89.90%, a precision of 80.48%, and an F2 score of 87.83% in terms of
iScience 26, 108183, November 17, 2023 3
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Figure 2. The architecture of the multi-phase ROI encoder

In the cross-phase global inter-slice attention module, we squeezed the features by spatial pooling and extracted the cross-phase features along the z axis.

Similarly, the cross-phase global spatial attention module pooled the features along the axial plane and computed cross-phase spatial features. In the cross-

phase local attention module, a Conv3D was used to aggregate the corresponding neighboring information for each pixel. A filtering map was then

computed by an element-wise multiplication and a sigmoid function to filter the neighboring information.
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segmenting liver lesions, as shown in Figure 4A.Our AI system significantly outperformed existing approaches and expert radiologists for liver

lesion segmentation from complex misaligned multi-phase CECT images (Tables 2 and 3; Figure 5). Next, we evaluated the proposedmodel

within each category of liver lesions. Figure 4B demonstrates the performance of MULLET in the categories of malignant, hemangioma, and

cyst. It can be observed that MULLET achieved an F2 score of 90.88% and 90.63% in the malignant tumor and hemangioma, respectively. The

F2 score in the cyst category is 81.45%, which is lower than in other categories. This is because most cysts are very small and misaligned be-

tween phases, resulting in difficulty in detecting cysts.

Further, liver lesions were divided into small, medium, and large groups according to the maximum diameter of lesions, i.e., small group

(% 1 cm), medium group (% 1.5 cm), and large group (> 1.5 cm). As shown in Figure 4C, our proposed MULLET achieved excellent perfor-

mance on large lesions, i.e., a recall of 98.53%, a precision of 96.92%, and an F2 score of 98.20%. For medium lesions, MULLET still achieved a

recall of 91.62%, precision of 92.91%, and F2 score of 91.86%. The performance in the small group is obviously lower than in other groups (F2

score of 82.41%) because small lesions are more difficult to segment and tend to be ignored in clinical settings. In addition, small lesions are

more sensitive to the misaligned regions. Despite the practical challenges, the performance of our AI system for small lesions still achieved

acceptable performance and outperformed other existing competitive methods (Section Systematic benchmarking demonstrates superior

performance compared to existing tools), suggesting the great ability of our model in dealing with various styles of liver lesions. This is

extremely important for liver lesion segmentation in real-world clinical practice.

Interestingly, we observed that the performance varied in different gender and age groups, though the distribution of different groups is

identical, see also in Table S2. From Figure 4D, we can see that our AI system performed better in the female group, with gaps of 2.85% and

4.61% in terms of DPC and F2 score. As shown in Figure 4E, our AI system achieved a better performance in the age group under 65, with gaps

of 2.08% and 5.11% in terms of DPC and F2 score.

In addition to quantitative evaluation, Figure 4F also presents a qualitative evaluation, illustrating the representative segmentation pro-

duced by MULLET for small cysts, large malignant tumors, and large hemangioma. As shown in the first case, our MULLET was able to

segment all small cysts accurately. MULLET also yielded accurate boundaries for a large malignant tumor in the second case, even though

it hangs out of the liver. In the third case, MULLET segmented accurate boundaries for the large hemangioma. As expected, we found
4 iScience 26, 108183, November 17, 2023



Table 2. Quantitative comparison between our method and state of the arts on AIELDI

Methods DPC (%) VOE (%) Recall (%) Precision (%) F2 Score

MC-FCN 71:60G0:51 40:00G0:48 78:84G1:11 83:93G1:18 79:81G0:33

MMNet 63:74G5:96 48:31G6:35 73:49G6:27 87:12G4:13 75:82G2:09

HRNet 69:07G0:95 42:56G0:90 79:35G1:21 64:37G4:02 75:80G0:51

M3Net 70:62G0:35 40:81G0:34 77:94G1:53 80:72G0:87 78:48G0:55

nnFormer 70:08G0:81 40:76G0:78 78:52G2:28 84:59G3:52 79:65G1:42

nn-UNet 70:93G0:75 41:47G0:88 86:91G4:22 57:97G10:1 78:83G1:42

SAM 72:17G1:29 39:04G1:50 80:83G2:01 86:88G1:13 81:96G0:81

PA-ResSeg 72:67G0:73 38:80G0:39 83:87G0:65 71:89G1:96 81:16G0:92

MULLET 78:47G0:51 32:23G0:88 89:90G1:40 80:48G3:00 87:83G1:20

Our model significantly outperformed all the competing methods for the segmentation of liver lesion boundaries, i.e., an improvement of 5.80% (p value =

2.37e-8) and 6.57% (p value = 9.5e-10) in terms of DPC and VOE comparing to PA-ResSeg, respectively. In addition, our model achieved a comprehensive

improvement for liver lesion classification, e.g., an improvement of 5.87% (p value = 1.9e-10) in terms of F2 score compared to SAM.
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that, although the lesion styles and sizes vary highly across different categories and groups, our MULLET still accurately and robustly

segmented various liver lesions (comprehensive qualitative results are detailed in Figures S2–S4).

To interpretMULLET’s segmentation results, we highlighted regions of high importance according to theweightmaps of ROIs in themulti-

phase ROI encoder, which are visualized in Figure 6D.We can observe thatmost ROI weightmaps highlighted suspicious lesion regions in the

multi-phaseCECT images, indicating that our AI systemenabled the identification of discriminative features driving liver lesion segmentation.

Remarkably, it is consistent with clinical diagnoses by doctors that only distinct concern regions correlate with specific disease categories,

suggesting the trustworthy interpretability of our AI system.

Systematic benchmarking demonstrates superior performance compared to existing tools

To evaluate the superior performance compared with existing methods, we further benchmarked MULLET against multiple state-of-the-

art deep-learning-based methods for liver lesion segmentation, including MC-FCN,25 M3 Net,23 MMNet,21 nn-UNet,18 nnFormer,43

HRNet,44 SAM,14 and PA-ResSeg13 (see detailed results in the STAR Methods section). Note that MC-FCN incorporates multiphase con-

texts for liver lesion segmentation by stacking single-phase 2D images in the input layer or merging high-level features produced by 2D

networks independently for each phase. M3 Net adopts a 3D residual network that compresses the 3D input tensor into 2D features and

a Cross-phase Non-local Attention module to relieve the misalignment between phases. Other approaches (i.e., MMNet, SAM, and PA-

ResSeg) propose a powerful cross-phase fusion mechanism to fulfill the interaction between the features extracted from multiple

phases. We also provided p values (two-sided t test) to validate the statistical significance of the improvements. The statistical signif-

icance is defined as 0.05.

As shown in Table 2, we have two important observations with respect to the comparison results on the AIELDI dataset: (i) ourmodel signif-

icantly outperformed all the competing methods with respect to the segmentation of liver lesion boundaries, i.e., an improvement of 5.8% (p

value = 2.37e-8) and 6.57% (p value = 9.5e-10) in terms of DPC and VOE comparing to PA-ResSeg (the best baseline), respectively; and (ii) our

model achieved a comprehensive improvement for liver lesion classification, e.g., an improvement of 5.87% in terms of F2 score compared to

SAM (p value = 1.9e-10). Although MF-FCN and MMNet performed better in terms of precision, the inferior performance on recall limits the

value of their clinical application.

Additionally, it can be seen from Figure 5 that, compared with baseline methods, our AI system has the most improved comprehensive per-

formance with respect to different groups divided by the lesion categories or lesion sizes. Specifically, compared to the best performance in

competitive methods, the lesion segmentation performance (Figure 5A) was improved by 3.60%, 12.45%, and 2.22% on F2 score in the group

of malignant tumor, hemangioma, and cyst, respectively. For the three categories, the paired p values of F2 score were 4.1e-5, 1.6e-6, and

2.4e-2. Although the segmentation performance for large lesions was not improved significantly, MULLET achieved remarkable enhancement

of the performance for small lesions, with improvements of 1.52% (compared with nn-UNet) and 6.92% (compared with SAM) in terms of recall

and F2 score as shown in Figure 5B. In addition, compared with PA-ResSeg, MULLET also achieved improvements of 4.22% for medium lesions

in termsof F2score. For small andmedium lesions, thepairedpvaluesofF2 scorewere9.6e-6 and0.007. The results turnedout tobe theadvance-

ment of various strategies we proposed. For example, instead of information filters or inductive bias used in existing methods, MULLET learned

several ROIs for each CT slice and adopted transformer to explore multi-phase contexts without any inductive biases. Consequently, MULLET

enabledmoreeffectivehandlingof complexscenarios (e.g., severelymisalignedsmall tumors).Moreexperimentsand resultsonpublicly available

datasets are reported in Figure S1 to investigate the effects of different misalignment levels for the AI models.

The comparisons of DCP in different groups (i.e., lesion category, lesion size, and age) are shown in Figure 5C. MULLET outperformed

nnFormer and SAM in terms of the segmentation of malignant tumors and hemangiomas, with improvements of 6.16% and 1.80%, respec-

tively. However, PA-ResSeg and SAMperformed slightly better thanMULLET. For the other two groups (i.e., lesion size and age), ourMULLET

consistently performed better than other baseline methods.
iScience 26, 108183, November 17, 2023 5



Table 3. Quantitative comparison between our AI system and two expert radiologists

Metrics Expert-1 Expert-2 AI

Malignant DPC 53.13 74.64 85.17

Recall 76.22 83.06 92.18

Precision 95.51 91.07 82.99

F2 Scores 79.43 84.55 90.18

Hemangioma DPC 71.05 79.86 82.31

Recall 61.90 64.29 76.19

Precision 68.42 79.41 69.57

F2 Scores 63.11 66.83 74.77

Cyst DPC 73.07 73.69 75.29

Recall 70.21 71.63 90.78

Precision 80.49 80.80 64.97

F2 Scores 72.05 73.29 84.10

Small DPC 48.62 60.69 63.01

Recall 67.41 73.42 87.66

Precision 86.59 85.61 68.23

F2 Scores 70.53 75.57 82.93

Medium DPC 82.46 85.74 87.24

Recall 81.67 88.33 90.00

Precision 90.74 89.83 85.71

F2 Scores 83.33 88.63 89.11

Large DPC 81.66 82.39 84.30

Recall 85.09 85.96 98.23

Precision 91.51 89.91 97.39

F2 Scores 86.30 86.73 98.07

Overall performance DPC (L65) 73.20 74.09 79.07

DPC (G65) 76.34 76.95 79.78

DPC 73.79 74.70 78.89

VOE 37.52 36.68 32.12

Recall 73.27 78.16 90.40

Precision 88.42 87.24 75.86

F2 Score 75.87 79.82 87.07

Time (min) 15.00 14.80 0.34

Time (min) (with Al assistance) 4.8 5.0 –

We tested on 100 CECT scans randomly selected from the AIELDI test dataset for liver lesion segmentation. – means the value is not applicable.
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As a qualitative evaluation, we show the representative segmentation produced by different methods on the testing CECT images in

Figure 6A, where different colors mark the malignant tumors, hemangiomas, and cysts. Compared with other deep-learning-based models,

we observed that our AI system yielded more accurate segmentation boundaries of liver lesions and was more robust on small tumors.

Compared to the best baseline (PA-ResSeg), our AI system stably found the small lesions (i.e., small cysts and smallmalignant tumors in Figure

6A) and achieved perfect boundaries of large lesions (i.e., large malignant tumor and large hemangiomas in Figure 6A).
Comparison with human experts

In addition, to compare with advanced deep learningmethods, we further compared the performance of our AI systemwith expert radiologists.

Two radiologistswith5and10yearsof clinical experience independently segmented100multi-phaseCECTscans randomly selected fromour test

dataset of liver lesions. Note that they did not participate in ground-truth label annotation.

Table 3 shows our AI systemperformed significantly better thanboth expert radiologists, with improvements of 5.1% (radiologist 1) and 4.19%

(radiologist 2) in termsofDPC, the improvementsof5.4% (radiologist 1) and4.56% (radiologist 2) in termsofVOE,and the improvementsof11.20%
6 iScience 26, 108183, November 17, 2023
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a spatial pooling and computed intra-slice relationship between different phases. In CLA, we applied Conv3D to gather neighboring information for each pixel

and computed a gate map to filter cross-phase local information.
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(radiologist 1) and 7.25% (radiologist 2) in terms of F2 score.Although the two radiologists performedbetter than ourAI systemonprecision, their

recall was significantly worse than ours. Specifically, in terms of recall, our AI system achieved the improvements of 20.25% (radiologist 1) and

14.24% (radiologist 2) for small lesions, the improvements of 8.33% (radiologist 1) and 1.67% (radiologist 2) for medium lesions, and the improve-

ments of 13.14% (radiologist 1) and 12.27% (radiologist 2) for large lesions. For different types of lesions, our AI system also significantly outper-

formed two radiologists in terms of F2 score, with improvements of 10.75% (radiologist 1) and 5.63% (radiologist 2) for malignant tumors, the im-

provements of 11.66% (radiologist 1) and 7.94% (radiologist 2) for hemangiomas, and the improvements of 12.05% (radiologist 1) and 10.81%

(radiologist 2) for cysts. Furthermore, it isworthnoting that expert radiologists’ segmentationefficiencywas significantlyworse thanourAI system.

Forexample, two radiologists spent15.0and14.8min (onaverage)annotatingoneCECTscan, as shown inTable3. Incontrast,ourAI systemcould

segment one CECT scan in only 20.59 s, which is 43.4 times faster than domain experts on average.

Since our AI system experimentally achieved superior performance in terms of efficiency and accuracy, we were also interested in inves-

tigating whether our system can facilitate clinical workflow and improve the efficiency of clinical diagnosis. Therefore, we applied the de-

ployed AI system to assist radiologists with liver lesion segmentation rather than fully manual segmenting from scratch. Specifically, we adop-

ted our system to generate initial segmentation, and radiologists were only required to check and amend the results produced by the AI

system. As shown in Table 3, with assistance from our AI system, the annotation time was reduced from 14.9 min to about 4.9 min on average,

a 67.1% reduction in segmentation time.
External evaluation on public datasets

We applied our AI system to two public datasets with 5-fold cross-validation for external testing to investigate our model’s robustness and

generalization ability. The two open datasets are BraTS202045 andCHAOS.46Weonly considered the task ofMRI segmentation for abdominal

organs in CHAOS. Since the phases in BraTs are well aligned, we introduced noise (i.e., scaling and shifting) on T1CE and T2 to simulate the

misalignment. Table 4 shows that our AI system achieved theDice scores of 73.44%, 80.70%, and 77.10% for enhanced tumor, tumor core, and

whole tumor, respectively. Compared with the best baseline nn-UNet, the average DPC improvement is 1.29% (p values = 2.9e-4).

Table 5 shows our AI system significantly improved the segmentation of the right kidney, left kidney, and spleen, i.e., an improvement of

6.48%, 7.64%, and 7.98%, respectively. Specifically, for the other three categories, the paired p values are 2.3e-5, 6.8e-4, and 3.2e-4, respec-

tively. Overall, all the results demonstrated the superior performance of our system on the public datasets, suggesting the high robustness

and generalization ability of MULLET.
Webserver

Due to the privacy and security of the data, we deployed the off-the-shelf system offline at The Second Affiliated Hospital Zhejiang University

School of Medicine for further retrospective studies on March 1st, 2021. We provide a guest account (account: 13611112222; password:
iScience 26, 108183, November 17, 2023 7
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Figure 4. Quantitative and qualitative evaluations of our AI system with respect to various types of liver lesions

Data are represented as meanG SEM. The statistical information of liver lesions is presented in Table S1. The ranges of box and whisker are standard deviations.

(A) Overall performance of our AI system for liver lesion segmentation. The coefficients of the box and whisker are 5 and 10 for better visualization. Our AI system

achieved a DPC score of 78.47%, a VOE value of 32.23%, a recall of 89.90%, a precision of 80.48%, and an F2 score of 87.83% in segmenting liver lesions. Our AI

system significantly outperformed existing approaches and expert radiologists for liver lesion segmentation from complex misaligned multi-phase CECT images

(Tables 2 and 3; Figure 5).

(B) The performance with respect to various categories of liver lesions. The coefficients of the box and whisker are 1 and 1.5 for better visualization. It can be

observed that MULLET achieved F2 scores of 90.88% and 90.63% for segmenting the malignant tumor and hemangioma, respectively. The F2 score in the

cyst category is 81.45%, which is lower than in other categories. This is because most cysts are typically very small and highly misaligned between phases,

causing difficulty in detecting cysts.

(C) The performance with respect to various sizes (i.e., maximum diameter) of liver lesions. The coefficients of the box and whisker are 2 and 4 for better display,

respectively. Our proposed MULLET achieved excellent performance on large lesions, i.e., recall of 98.53%, precision of 96.92%, and F2 score of 98.20%. For

medium lesions, MULLET still achieved a recall of 91.62%, precision of 92.91%, and F2 score of 91.86%. The performance in the small lesion group decreased

dramatically (i.e., F2 score of 82.41%) because small lesions are more difficult to segment and tend to be ignored in clinical settings.

(D) Performance by gender. Our AI system performed better in women than in men, with gaps of 2.85% and 4.61% in terms of DPC and F2 scores. The inter-

gender disparity is not biased by the data distribution, evidenced by the predominant role of males in the dataset (64.07% patients are male; Table 1).

(E)Performancebyage.OurAI systemachievedhigherperformanceamongadults (<65) thanelders (R 65)withgapsof 2.08%and5.11% in termsofDPCandF2score.

(F) The segmentation produced by our AI system. We visualized the adjacent three CT slices in phase-V of three cases. Our MULLET could locate small cysts and

segment them accurately in the first case. As shown in the second case, MULLET could circle boundaries accurately for the large malignant tumor, even though it

is out of the liver. In the third case, MULLET also segmented accurate boundaries for large hemangioma. See also Figure S1.
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Pj123456) to the online system (http://liver.uiiai.com). Fourteen de-identified patients (8 females and 6males) are provided as examples. As of

June 30th, 2022, ourMULLET system has analyzed 126,587 CT images, most containing no focal liver lesions. According to the observer study,

our system can analyze 79,949 CT images annually and is expected to save 13,324 h of healthcare professionals in lesion scan segmentation

each year. The system requires users to submit a zip file that all files are in .dicom format to be fed into the proposed MULLET model. The AI

system will automatically launch the inference task after receiving the input file. Users can check the analytic results yielded from the trained

model through the web interface.

DISCUSSION

AI-empowered liver lesion segmentation is essential in helping develop an automatic and accurate approach for clinical diagnosis in digital

medicine. It is still a fundamental challenge to exploit multi-phase CECT images for liver lesion diagnosis, where the misalignment between

phases and the fuzzy edge of small lesions is still not well explored and addressed. In this work, we introduced a fully automatic and clinically
8 iScience 26, 108183, November 17, 2023
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Figure 5. Our AI system outperformed existing approaches for liver lesion segmentation

Data are represented as mean G SEM. We repeated the experiments five times, and the rhombus dots represent the scores of the test data.

(A) Comparison by various lesion categories. Compared to the best performance of competitive methods, our segmentation performance of liver lesions

improved by 3.60%, 12.45%, and 5.86% on F2 score in the groups of malignant tumor, hemangioma, and cyst, respectively. This indicated that the

comprehensive performance of our AI system in the three categories was superior to that of the baseline methods (** p< 0.001, two-sided t test; error bars

are standard deviation).

(B) Comparison by various lesion sizes. According to the maximum diameter of lesions, we divided them into three levels: small, medium, and large, as shown in

Table S1. MULLET showed remarkable enhancement of the performance in the group of small lesions, with improvements of 8.46% (compared with PA-ResSeg)

and 6.92% (compared with SAM) in terms of recall and F2 score. In addition, compared with PA-ResSeg, MULLET also achieved improvements of 4.22% in the

group of medium lesions. The ranges of all whiskers are standard deviations, and the coefficients are 1.5.

(C) Comparison of DPC score in terms of various lesion categories.

ll
OPEN ACCESS

iScience
Article
applicableAI-empowered system,MULLET, toassist radiologists indiagnosing liver lesions frommulti-phaseCECTscans. Extensive experiments

on a large real-world clinical dataset that contains 1,229 CECT scans demonstrated the superior performance ofMULLET. A further comparative

study with experienced radiologists for liver lesion segmentation showed that MULLET analyzed multi-phase CECTs more efficiently and accu-

rately. Without loss of generality, we also evaluated MULLET on two public datasets (details are provided in the STAR Methods section), which

also achieved a promising performance compared with the state-of-the-art deep learning approaches for medical imaging segmentation.

The key innovations and superiority of MULLET over conventional methods benefit from the utilization of multi-phase contextual informa-

tion in the misaligned regions of liver lesions. Intuitively, the input multi-phase images or extracted features by specific backbones from the

multi-phase CECT scans can be simply concatenated.25,26,31,36 However, the straightforward strategy cannot handle complex real-world sce-

narios such as the misalignment problem between phases. Although several deep learning methods13,21,25,47 were designed by leveraging

various feature filter modules to sift the beneficial features from other phases, the filter modules still suffer from losing useful cross-phase

information due to the misalignment, especially for small lesions. Qu et al.23 proposed a cross-phase non-local attention module to build

the local alignment relationship between phases, but it relies heavily on inductive biases. Unlike the previous segmentation applications

in medical image data analysis, which adopted a linear transform strategy (e.g., using concatenation or feature filtering) to fuse multi-phase

contexts,MULLET can effectively utilize and aggregatemulti-phase contextual information between phases. Specifically, we first introduced a
iScience 26, 108183, November 17, 2023 9
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Figure 6. Visualization of liver lesion segmentation and ROIs maps

(A) Representative liver lesion segmentation results frommulti-phaseCECT images in theAIELDI dataset. Data are represented asmeanG SEM. The first and second

rows are the ground-truth CECT segmentation in phase-A andphase-V. The twobottom rows are the segmentations producedby our AI system and PA-ResSeg (the

best baseline), respectively. We present two adjacent CECT slices of each category, where the malignant tumors, hemangiomas, and cysts are marked by different

colors. In the first case, our AI system perfectly detected all small cysts, while PA-ResSeg missed several small lesions (surrounded by green boxes). PA-ResSeg

was able to detect a small lesion but predicted a wrong label (surrounded by blue boxes). In the third case, our AI system segmented five malignant tumors

(surrounded by green boxes), while PA-ResSeg was not able to detect them. In the second and last cases, our AI system achieved more complete boundaries for

large lesions than PA-ResSeg. These results further revealed that the segmentation produced by our AI system produced a much smoother and perfect outline

compared to state-of-the-art methods.

(B) The performance comparison between MULLET and PA-ResSeg. MULLET significantly outperformed the best baseline PA-ResSeg.

(C) The magnified segmentation results of the small malignant tumor.

(D) The visualization of ROI’s weight maps yielded from the multi-phase ROI encoder module. ‘‘Warm’’ filter colors (redder) highlight regions of high importance

according to the ROI weight maps. Most ROI weight maps highlighted suspicious lesion regions, indicating the effectiveness of the proposed method. See also

Figures S2–S4.
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Table 4. Quantitative comparison between our method and state of the arts on the BRATS dataset

Methods ET TC WT AVG

MC-FCN 59:45G4:85 72:51G3:79 69:55G3:63 67:17G3:39

HRNet 63:31G3:61 69:85G4:04 68:40G5:25 67:18G4:13

M3Net 64:99G1:76 68:52G4:77 70:73G3:16 68:08G1:63

MMNet 69:59G4:50 73:54G14:9 69:63G7:34 70:92G7:57

nnFormer 71:50G2:91 72:70G2:59 71:10G3:19 71:77G2:44

SAM 68:88G3:07 76:34G3:41 70:64G4:17 71:95G2:47

PA-ResSeg 70:70G5:46 76:81G5:33 73:95G3:05 73:82G4:13

nn-UNet 73:17G2:32 77:66G2:09 76:55G1:56 75:79G0:95

MULLET 73:44G1:82 80:70G2:58 77:10G1:98 77:08G0:98

Our AI system achieved the DPC of 73.44%, 80.70%, and 77.10% for ET, TC, and WT, respectively. Compared with the best baseline nn-UNet, the average DPC

improvement is 1.29% (p value = 2.9e-4).

ll
OPEN ACCESS

iScience
Article
multi-phase ROI encoder, which produces several important ROIs for each CT slice under the supervision of the cross-phase global and local

features. Then, we applied a transformer to explore the inter-phase and intra-phase relationship between the ROIs of different phases,

respectively. Consequently, compared with conventional methods using feature filtering and inductive biases, our method can better learn

and utilize multi-phase contexts in the misaligned locations. It is worth mentioning that MULLET also enabled efficient dealing with small le-

sions, which is of great importance to radiologists in clinical diagnosis.

Limitations of the study

Although our AI system achieved promising performance for liver lesion segmentation, some limitations are still not well addressed in

MULLET. (i) It is still challenging to yield superb segmentation for very small lesions due to the limited thickness (3.0–5.0mm) of CECT images,

despite our system having achieved promising results compared with state of the arts for very small lesions. Note that MULLET was able to

capture multi-phase contextual information for small lesions better. In contrast, some specific modules dedicated to segmenting very small

lesions (e.g., % 1 cm) need to be designed. (ii) It is valuable to leverage auxiliary modality data along with the multi-phase CECT images to

improve model performance further. It has been proved that other modality data collected with the CECT scans may assist the diagnosis of

liver lesions.13,14,23,31,47

In future work, we will collect some abdominal CECT scans with smaller thicknesses and explore small object detection technologies in our

model, e.g., multi-scale features. This will lead to amore accurate AI system for fine-grained lesion segmentation. In addition, wewill continue

to enhanceMULLET by leveragingmulti-modal data as auxiliary information to improve the segmentation performance further. Furthermore,

we plan to build a more user-friendly diagnostic system based on our MULLET model for more general medical imaging segmentation.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
Table 5. Quantitative comparison between our method and state of the arts in terms of segmentation of abdominal organs on the CHAOS (MRI only)

dataset

Methods liver right kidney left kidney spleen AVG

MC-FCN 84:16G2:70 64:56G8:04 59:27G5:86 57:95G15:55 66:49G4:04

M3Net 80:13G1:76 67:43G4:77 65:23G3:16 61:53G1:63 68:58G1:63

MMNet 87:10G6:57 74:21G12:46 63:54G24:47 55:31G33:16 70:04G13:25

SAM 83:86G5:27 70:83G11:05 67:76G12:12 65:89G13:73 72:09G4:96

PA-ResSeg 89:24G9:37 74:50G10:11 73:98G10:39 67:55G26:19 76:32G7:46

nnFormer 88:82G11:98 75:66G11:99 70:06G12:56 65:68G15:78 74:96G10:06

HRNet 88:74G12:49 78:58G12:18 71:00G15:26 69:27G18:04 76:90G8:37

nn-Unet 92:53G2:64 78:23G9:90 76:04G15:68 71:25G14:69 79:51G7:15

MULLET 91:37G1:69 85:06G4:72 83:68G9:97 79:23G7:4 84:84G5:02

Our AI system significantly improved the segmentation of the right kidney, left kidney, and spleen, i.e., an improvement of 6.48%, 7.64%, and 7.98%, respectively.

iScience 26, 108183, November 17, 2023 11
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Selected CT images This paper https://github.com/shenhai1895/

Multi-phase-Liver-Lesion-

Segmentation

CHAOS https://doi.org/10.1016/

j.media.2020.101950

2021

BraTS https://www.med.upenn.edu/

cbica/brats2020/

2020

Software and algorithms

Python https://www.python.org/ Version 3.9

numpy https://numpy.org/ 1.24.3

scikit-image https://scikit-image.org/ 0.19.3

SimpleITK https://simpleitk.org/ 2.2.1

segmentation_models_pytorch https://github.com/qubvel/

segmentation_models.pytorch

0.3.2

pytorch https://pytorch.org/ 2.0.1

torchvision https://github.com/

pytorch/vision

0.15.2

Code for liver lesion segmentation This paper https://github.com/shenhai1895/

Multi-phase-Liver-Lesion-

Segmentation
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Haishuai Wang(haishuai.wang@

zju.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The authors released partial data (i.e., 14 rawmulti-phase CECT scans collected from the SecondAffiliated Hospital, Zhejiang University

School of Medicine) with permission to support the results in this study, which are available at Google Drive. Due to the regulations and

privacy policies, the full datasets remain under custody of hospitals. The BraTS and CHAOS benchmarking datasets that utilized in this

study originated from public data repositories, which are available at https://www.med.upenn.edu/cbica/brats2020/ and https://chaos.

grand-challenge.org/, respectively.
� Our AI system is open source, and the source code to implement MULLET is publicly available on GitHub (https://github.com/

shenhai1895/Multi-phase-Liver-Lesion-Segmentation).
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

The overall architecture of MULLET is illustrated in Figure 1, which consists of four key components: (1) a CNN-based feature extraction mod-

ule to extract features from all slices of all phases; (2) a multi-phase ROI encoder module to generate several ROIs for each CECT slice ac-

cording to its cross-phase features and embed the ROIs into features; (3) a Transformer-based multi-phase context exploration module to

explore the inter-phase and intra-phase relationship between the ROIs of different phases; and (4) a decoder to produce the segmentation

as the output. The detailed model architectures are provided in supplemental information.
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Dataset pre-processing

The AIELDI dataset was used for the AI model development. MULLET takes the multi-phase CECT images in the AIELDI dataset as the input.

We preprocessed the acquired CECTs before feeding an image into the model to improve computational efficiency. Multi-phase CECT data

normalizationwas the first step of imagepreprocessing. Due to the various physical resolution (i.e., ranging from0.472mm to 0.890mm) of the

acquiredmulti-phase CECT images, we normalized all images to an isotropic resolution of 0:730:735:0mm3. For example, if the resolution is

higher than 0.7 mm, down-sampling was employed; otherwise, up-sampling was applied to the multi-phase CECT images. Moreover, to

reduce the effect of extreme values, especially in the area of metal artifacts, we clipped the intensity values of each multi-phase CECT

scan to [-55, 155] before intensity normalization. Additionally, following the standard protocol of image processing in deep learning, the

voxel-wise intensities V were normalized to the interval [-1, 1], such that

Vnorm =
2 � ðV � VminÞ
Vmax � Vmin

� 1: (Equation 1)

Feature extractor

Unlike PA-ResSeg13 and SAM,14 we sampled a sequence of CECT images as the input to explore multi-phase contexts along z-axis. As shown

in Figure 1, ResNet-34 was directly employed to extract distinct features from the CECTs. To reduce the burden of computing resources, we

randomly cropped N slices with a size of 2563256 from the CECT images to be fed into the model and obtained the features with a size of

163 16. In this step, the CECT images fromdifferent phaseswere fed into aCNNbackbone to extract the features of the twophases. LetXa =

fX1
a ;/;XN

a g;Xv = fX1
v ;/;XN

v g be the image sequences in phase-A and phase-V, where Xi
ajNi = 1 ˛RH3W and Xi

v jNi = 1 ˛RH3W . The N denotes

the number of CECT slices in each phase. We setN = 9 following VA-Mask RCNN.15 TheH andW denote the height and width of each CECT

image. A pretrainedCNNnetwork (e.g., ResNet34) was applied to extract high-level featuresFa = fF1
a;/;FN

a g andFv = fF1
v ;/;FN

v g fromXa

and Xv , as follows:

F i
a = CNN

�
Xi
a

�
; (Equation 2)
F i
v = CNN

�
Xi
v

�
; (Equation 3)

where Fa;Fv ˛Rc3N3h3w , h = H
16, w = W

16. c is the number of the channels.
Multi-phase ROI encoder

After extracting the features, we applied our proposed multi-phase ROI encoder to produce several ROIs for each CECT slice, as shown in

Figure 2. The produced ROIs are mainly concentrated in liver lesion regions. We take phase-V as an example to introduce the details of this

module because phase-A was handled in the same way. In this module, we leveraged the cross-phase features extracted from the auxiliary

phase (i.e., phase-A) to produce precise ROIs for the target phase (i.e., phase-V). This module first adopted attention mechanisms to extract

cross-phase global and local features for all phasesmutually (Figure 3), which enabled this module to yieldmore precise ROIs. Then, thanks to

the extracted cross-phase features, we applied a spatial attention module on multi-phase contexts to produce several ROI weight maps and

encoded these maps into features by global pooling. Specifically, cross-phase global features were produced along two different axes. The

global information along the z-axis was extracted by a Cross-phase Global Inter-slice Attention (CGIA) module. The CGIA squeezed the fea-

tures of all phases along the z-axis and derived theweights between each slice in one phase and all slices in the other phase. Similarly, a Cross-

phase Global Spatial Attention (CGSA) module was adopted to squeeze the features along the axial plane and explore the weights of each

feature point between phases. A Cross-phase Local Attention (CLA) module was then used to aggregate the corresponding neighboring in-

formation for each feature point through 3D convolutional layers. Thus, the cross-phase feature representation Fc;v can be represented by

Fc;v = CGIAðFv ;FaÞ+CGSAðFv ;FaÞ+CLAðFv ;FaÞ. The three attentionmechanisms enabled aggregating different cross-phase information

from three aspects (i.e., the global information along the z-axis, the global information along the axial plane, and pixel-wise features from

phase-A). The summation of the cross-phase features Fc;v ˛Rc3N3h3w and the original features (i.e., Fv ) were considered as multi-phase fea-

tures Fm;v = fF1
m;v ;/;FN

m;vg, followed by a batch normalization layer and a convolution layer.

For themulti-phase featuresF i
m;v of the i� th slice, we utilized a spatial attentionmodule4ðF i

m;vÞ to generate S spatial weightedmapswith

the size of h3 w. The spatial attention module 4ðF i
m;vÞ contains multiple Conv2D layers, in which the out channel of the last Conv2D layer is

set to S and the size of its output is S3 h3 w. We first applied a softmax layer for each map to derive the weights. Then, we use the S spatial

weightedmaps to encode F i
m;v to S ROI features by a weighted sum. Therefore, the encoded features of ROIs F i

ROI;v for i� th CECT image in

the input data is given by

F i
ROI;v = r

�
F i

m;v1g
�
4
�
F i

m;v

���
= r

�
F i

m;v1g
�
s
�
Conv2D

�
F i

m;v

����
(Equation 4)

where F i
ROI;v ˛Rc3S 1 represents element-wise multiplication, gð $Þ denotes a broadcasting function, and sð $Þ is a softmax function. Spatial

global sum pooling rð $Þ was applied on top of them to reduce the dimensionality. We applied the same process to generate F i
ROI;a for each

slice in phase A.
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Cross-phase local attention

The Cross-phase Local Attention (CLA) aims at filtering pixel-wise local information from the auxiliary phase. A local representation for Fv was

implemented by a 33333 convolution layer, which aggregated neighboring information of each pixel. We performed an element-wise multi-

plication between Fa and the local representation and then applied a Linear layer to reduce the channel into 1. A sigmoid function was

applied to calculate the filter maps with the dimension of 13 N3 h3 w.

Finally, we can obtain the cross-phase local features for phase-V through the element-wise multiplication between the filter maps and the

local features of phase-A.

Cross-phase Global Inter-slice attention

The Cross-phase Global Inter-slice Attention (CGIA) explored the global contexts along the z� axis from the auxiliary phase. Specifically,

according to the architecture of the standard Transformer, a query representation for Fv was implemented by a 131 convolution layer fol-

lowed by a batch normalization layer. Meanwhile, two 131 convolution layers and batch normalization layers were used to derive a key and

value representations from Fa, respectively. Then, spatial global average pooling was applied on the query and key to reduce the dimension-

ality to c3N. We performed a matrix multiplication between the reduced query and the transpose of the key and applied a softmax layer to

calculate the inter-slice attention map.

After that, we performed a matrix multiplication between the inter-phase attention map and the transpose of the value representation to

yield the cross-phase global features.

Cross-phase Global Spatial Attention

The Cross-phase Global Spatial Attention (CGSA) aims to explore the global spatial contexts from the auxiliary phase. A query representation

forFv was implementedby a 131 convolution layer followedby a batch normalization layer.Meanwhile, two 131 convolution layers and batch

normalization layers were adopted to derive key and value representations fromFa, respectively. In particular, amean functionwas applied on

query and key along z� axis to reduce the dimensionality. We performed a matrix multiplication between the reduced query and the trans-

pose of the reduced key and applied a softmax layer to calculate the inter-phase attention map. We also performed a matrix multiplication

between the inter-phase attention map and the transpose of the value to get the cross-phase global spatial features.
Multi-phase context exploration

We first explored the relationship (i.e., multi-phase contexts) between the ROIs of all phases via a Transformer-based module, aiming to alle-

viate the effects of misalignment acrossmultiple phases without resorting to any inductive biases. The Transformer consists of twomulti-head

attentionmodules. The first multi-head attentionmodule aims at learning the intra-phase contexts, which represent the relationship between

the ROIs of one phase, while the secondmulti-head attentionmodule was used to explore the relationship between the ROIs of other phases

(i.e., inter-phase contexts), donated as

F intra;v = MHAðFROI;v ;FROI;v ;FROI;vÞ+FROI;v ; (Equation 5)
F inter ;v = MHAðF intra;v ;FROI;v ;FROI;vÞ+F intra;v (Equation 6)

Note that the multi-phase contexts were achieved through the residual connection of intra-phase and inter-phase contexts. The ROIs

embedding with multi-phase contextual information (with the shape of c3 S) will be used to generate the final segmentation. However,

the shape (i.e., c3 S) is not matched with the input size of the decoder. Therefore, it is necessary to remap the ROIs embedding with

multi-phase contextual information (with the shape of c3 S) into the original size (of c3 h3 w) through an inverse operation on the ROIs

embedding. We adopted a TokenFuser42 module as the ROIFuser module to fuse the multi-phase contexts and remap it back to its original

spatial resolution of F i
v , donated as

bF i

v = ROIFuser
��

FFN
�
F i

inter ;v + F i
intra;v

��
;F i

v

�
+F i

v : (Equation 7)

where FFN is a feedforward network, and bF i

v ˛Rc3h3w . The ROIFuser module was designed to solve this challenge rather than solving the

misalignment between phases.
Segmentation decoder

In the final step, we applied DeepLabV3 plus34 as the decoder on bF v to produce the segmentation Segi
v of i� th CECT slice in Phase-V:

Segi
v = decoder

�bF i

v

�
(Equation 8)

where Segi
v ˛RC3H3W andC is the number of liver lesion categories. Each pixel was labeled as one of the categories in the segmentation, i.e.,

background, malignant tumor, hemangioma, and cyst. When the pixels of a lesion were labeled as different categories, we took the majority

as the lesion’s label.
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Training details and evaluation metrics

Training details

The framework was implemented via PyTorch library, using the Adam optimizer to minimize the loss functions and to optimize network pa-

rameters by backpropagation. The loss function is the sum of a dice loss and a cross-entropy loss. A learning rate of 0.0001 and a mini-batch

size of 10 were used in the segmentation network. We trained our model for 30 epochs in the liver lesion segmentation task, taking about 10

hours. All deep neural networks were trained with 4 Nvidia GeForce RTX 3090 GPUs.

Evaluation metrics

To evaluate segmentation performance, we adopted Dice Per Case (DPC) and Volumetric Overlap Error (VOE) to measure the accuracy of

semantic segmentation for multi-phase CECT images. In addition, recall, precision, and F2-score were calculated to validate the classification

performance after the segmentation. DPC represents the spatial overlap between ground truth and segmentation, and VOE denotes the er-

ror rate of the segmentation. The F2 score represents a comprehensive measure of recall and precision. The evaluation metrics are formally

defined in Equation 9.

DPC =
2jRXGj
jRj+jGj ; VOE = 1 � RXG

RWG

Recall =
TP

TP+FN
; Precision =

TP

TP+FP

F2 � score =
5 � Recall � Precision
Recall+4 � Precision

; (Equation 9)

where R,G, TP, FP, and FN denote the segmentation result, the ground-truth, true positives, false positives, and false negatives, respectively.

Note that it is the lower the better for VOE, while it is higher the better for other metrics.
QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise stated in the figure legends, data is shown asmeanG SEM. Statistical comparisons between the two groups were evaluated

by a two-tailed t-test using Excel. Performance of the lesion segmentation networks is assessed by DPC, VOE, recall, precision, and F2 score,

as shown in Figure 5 and Tables 2, 3, 4, and 5. TheMULLET was implemented using Pytorch, Torchvision, and Python. See key resources table

for additional details.
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