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Angiogenesis, a hallmark of cancer, is related to prognosis, tumor progression,

and treatment response. Nevertheless, the correlation of angiogenesis-based

molecular signature with clinical outcome and immune cell infiltration has not

been thoroughly studied in pancreatic cancer. In this study, multiple

bioinformatics methods were combined to evaluate prognosis, immune cell

infiltration, and the alterations of angiogenesis-related genes (ARGs) in PC

samples, and further establish a novel angiogenesis-related gene signature.

Moreover, the protein and mRNA expression levels of four angiogenesis risk

genes were determined by Human Protein Atlas (HPA) database and qPCR

analysis, respectively. Here, we recognized two distinct angiogenesis subtypes

and two gene subtypes, and revealed the critical roles of ARGs in the tumor

immune microenvironment (TIME), clinical features, and prognosis.

Consequently, we established an ARGs score to predict prognosis and

therapeutic response of PC patients, and validated its robust predictive

ability. Additionally, the ARGs score was markedly associated with clinical

outcomes, tumor mutation burden (TMB), and chemotherapeutic drug

sensitivity. In brief, our findings imply that the ARGs score is a robust

prognostic indicator and may contribute to the development of effective

individualized therapies for PC.
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1 Introduction

Pancreatic cancer (PC) is among the most lethal malignancies worldwide (Siegel

et al., 2021), and is characterized by high invasiveness, recurrence, and therapy

resistance (Kamisawa et al., 2016). For the majority of patients with advanced PC,

treatment options are limited. In recent years, despite varied targeted drugs and

chemotherapeutic regimens having been developed, therapy effects remain
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unsatisfactory, with a 5-year overall survival rate slightly more

than 10% (Mizrahi et al., 2020) and a median survival time of

7 months (Luo et al., 2020; Stornello et al., 2020; Khalaf et al.,

2021). In previous studies, the traditional histological

classification of PC was proved to be limited due to its

highly heterogeneous and complex characteristics (Whatcott

et al., 2015). As a result, study of molecular subtypes has become

increasingly important for guiding therapy. In addition, there is

now evidence that immunotherapy combination with

chemotherapy, such as PD-1 checkpoint blockade

combination with gemcitabine, provides additional treatment

opportunities for PC patients, and that certain types of patients

may benefit from them (Wainberg et al., 2019; Schizas et al.,

2020). Thus, valuable biomarkers are essential for classifying

patients with distinct features into different groups and

predicting the impact of immunotherapy.

Angiogenesis, namely, the formation of newly formed

blood vessels from pre-existing ones, is one of the critical

factors supporting tumorigenesis and metastasis of multiple

cancers, including PC(Baeriswyl and Christofori, 2009; Zhang

et al., 2018). PC presents abundant deposition of fibrotic

stroma and easily invades lymphovascular system

(Whatcott et al., 2015; Kamisawa et al., 2016). There is also

evidence that tumor immune microenvironment (TIME) and

angiogenesis appear to interact cross-talk, for example,

angiogenic cytokines mediate immunosuppression by

activating suppressing immune cells (such as Tregs and

tumor-associated macrophages) (Griesmann et al., 2017;

Ren et al., 2018; Saito et al., 2018; Rahma and Hodi, 2019).

There are several proven therapeutic strategies for inhibiting

angiogenesis in solid tumors. Nevertheless, PC patients who

receive anti-angiogenic therapies do not experience

satisfactory outcomes (El-Kenawi and El-Remessy, 2013;

Ramjiawan et al., 2017; Viallard and Larrivée, 2017; Yu

et al., 2019).

Therefore, a thorough understanding of properties of ARGs

mediated immune cell infiltration in PC tumor microenvironment

(TME) may shed light on guiding targeted therapy and

immunotherapy. This study comprehensively estimated the

expression profiles of ARGs and their influence on

clinicopathological features, prognosis, TIME, and therapeutic

response of PC patients in two independent cohorts. Firstly, we

identified two distinct angiogenesis subtypes in PC. Subsequently,

we evaluated the molecular features, prognosis, and immune cell

infiltration of the identified angiogenesis subtypes and two gene

subtypes. Furthermore, we established an ARGs score to predict

clinical outcome of PC patients and chemotherapeutic effects.

Finally, we validated the protein and mRNA expression level of

four angiogenesis risk genes. These findings indicate that ARGs

score is a robust prognostic indicator, and we hope our study will

contribute to exploring more effective therapeutic strategies

for PC.

2 Materials and methods

2.1 PC data sets and preprocessing

The normalized transcriptome data of normal pancreatic

tissue in GTEx (n = 167) cohort, tumor tissue in TCGA-PAAD

program (n = 160) and ICGC-PAAD repository (n = 101) and

corresponding clinicopathological information of PC were

downloaded from the UCSC Xena data portal (https://

xenabrowser.net/datapages/), which integrates all the data

from The Cancer Genome Atlas (TCGA), Genotype-Tissue

Expression (GTEx) and International Cancer Genome

Consortium (ICGC) in June 2021) Somatic mutation data

from TCGA data portal (https://portal.gdc.cancer.gov/) sorted

in the form of Mutation Annotation Format (Saito et al., 2018)

were analyzed. We excluded samples from patients with a

deficiency of important survival or clinicopathological

information. Then, the normalized gene expression data

(FPKM values) of all cohorts were performed to subsequent

analysis, the R (version 3.6.3) and R Bioconductor packages were

used for all data analysis.

2.2 Consensus clustering analysis for
prognostic ARGs

Initially, the univariate Cox regression analysis was employed

to assess the prognostic values of 36 ARGs obtained from the

MSigDB Team (Hallmark Gene set) in PC patients, then, p <
0.05 was selected as a screening threshold, and 11 prognostic

ARGs were screened out with univariate Cox analysis (p < 0.05).

Based on the expression level of these ARGs, 428 PC cases from

TCGA, ICGC, and GTEx cohorts were divided into two distinct

subtypes by the consensus clustering analysis with

“ConsensusClusterPlus R package” (Seiler et al., 2010; Sabah

et al., 2021).

2.3 Functional and pathway enrichment
analysis

The performances of cancer hallmarks in the TCGA and

GTEx cohorts were evaluated using the single sample gene set

enrichment analysis (ssGSEA) algorithm (R package “gsva”)

based on normalized transcriptome data and hallmark gene

sets of “h.all.v7.5.1. symbols.gmt” from the Molecular

Signatures Database (MSigDB) (Barbie et al., 2009; Liberzon

et al., 2011). The gene sets of “c2. cp.kegg.v7.5″ were also

retrieved from the MSigDB database to perform gene set

variation analysis (GSVA) and gene set enrichment analysis

(GSEA) enrichment analysis. The R package clusterProfiler

was applied for functional annotation of the ARGs. And p <
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0.05 was supposed to be valuable in gene ontology (Yu et al.,

2012).

2.4 Correlations of molecular patterns
with the clinical properties and prognosis
of PC

To assess the clinical significance of the two subtypes

classified by consensus clustering, we compared the

association of molecular patterns with clinical properties and

prognosis. The clinical properties included age

(≥65 and <65 years), gender (male and female), tumor

location (head and tail/body), TNM stage (stage I–IV), KRAS

mutation status (abnormal and normal), and TP53 mutation

status (abnormal and normal). Furthermore, the differences in

overall survival (OS) among two molecular patterns were

estimated by Kaplan-Meier analysis with the “survival” and

“survminer” packages (Rich et al., 2010).

2.5 Associations of molecular subtypes
with TME in PC

The ESTIMATE algorithm (Meng et al., 2020) was applied to

evaluate the immune and stromal scores of each PC patient.

Moreover, the proportions of 22 immune cell subtypes of each

PC sample were assessed with the CIBERSORT algorithm (Chen

et al., 2018). Besides, the infiltrating scores of TME in each PC

were also identified by a single-sample gene set enrichment

analysis (ssGSEA) algorithm (Huang et al., 2021).

2.6 Identification of gene clusters and
functional enrichment analysis based on
two angiogenesis subtypes

The differentially expressed genes (DEGs) and functional

annotation among the angiogenesis subtypes were distinguished

by the empirical Bayesian approach with the “limma” R package

(Ritchie et al., 2015). The DEGs were screened out with the

criteria of |log2-fold change (FC)| ≥0.5 and p-value < 0.05 (Zhang

et al., 2020). Subsequently, the GO and KEGG analysis was

performed to further thoroughly investigate the potential

functions of angiogenesis subtypes-related DEGs with the

“clusterProfiler” package (Yu et al., 2012). Moreover, the

univariate Cox regression analysis based on these DEGs was

conducted to quantify the OS-related DEGs in patients with PC.

Then, based on the expression of prognostic DEGs, all patients

from TCGA cohort were divided into different subtype groups

(gene cluster A and gene cluster B) for further clustering analysis

with a consensus clustering algorithm.

2.7 Construction of the prognostic
angiogenesis signature

Firstly, univariate Cox regression evaluated the prognostic

values of 36-angiogenesis genes from the MSigDB Team in

patients with PC, and p < 0 .05 was selected as the threshold

for filtering, 11 prognostic angiogenesis-related genes (ARGs)

were selected. Next, we further performed a multivariate Cox

regression analysis and the penalized Cox regression model with

least absolute shrinkage and selection operator (LASSO) (Gao

et al., 2010) on 11 prognostic ARGs, four of which (TNFRSF21,

CCND2, JAG1and SPP1) and their corresponding coefficients

were identified as independent predictive factors. Finally, an

angiogenesis gene signature was conducted based on these

hub ARGs, defined as the ARGs score.

The ARGs score was calculated as follows:

ARGs score � ∑(Coef f icient × Expression)

Based on the median risk score, all PC patients were classified

into low- and high-ARGs score groups.

2.8 Cell culture

Human PC cell lines (BXPC-3, CFPAC-1, PANC-1) and one

normal pancreatic duct cell line (HPNE) were obtained from the

Chinese Academy of Science (Shanghai, China) and cultured in

RPMI 1640 medium and DMEM medium (HyClone)

supplemented with 100 U/ml penicillin-streptomycin

(Corning, NY, United States), 10% fetal bovine serum (Gibco,

NY, United States) at 37°C with 5% CO2.

2.9 Protein levels of angiogenesis risk
genes in theHuman Protein Atlas database

The Human Protein Atlas (HPA) database (https://www.

proteinatlas.org/) consists of all the human proteins in cells,

normal and tumor tissues using integration of multiple omics

technologies, such as immunofluorescence and

immunohistochemistry (Uhlén et al., 2015). So, we use HPA

online tool to analyze protein levels of specified genes in normal

and tumor tissues by immunohistochemistry data.

2.10 Association between angiogenesis
risk genes and metastasis

HCMDB (Human Cancer Metastasis Database, http://hcmdb.i-

sanger.com/index) is an integrated database designed to store and

analyze large scale expression data of cancer metastasis. Which is

freely accessible to the research community query cross-platform
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transcriptome data onmetastases. A total of 124 previously published

transcriptome datasets were collected from GEO and TCGA.

HCMDB is developed and maintained as a useful resource for

building the systems-biology understanding of metastasis (Zheng

et al., 2018). In the present study, the HCMDB database was used to

detect the metastatic potential of specific gene. Here, we explored the

significance of angiogenesis risk genes in PC metastasis by HCMDB.

2.11 Quantitative real-time PCR reaction
(qRT-PCR)

Cellular total RNA was extracted with an E.Z.N.A total RNA

Kit I (Omega Bio-Tek, Inc., Norcross, GA, United States). The

RNA purity was detected using NanoDrop 2000 spectrometer

(Thermo Fisher Scientific, Waltham, MA). The cDNA was

synthesized with a PrimerScript RT reagent Kit (Takara, Ostu,

Shiga, Japan) for reverse transcription reactions. qRT-PCR was

performed to detect the expression levels of the four genes using

the SYBR Premix Ex Taq kit (Takara) with Roche

LightCycler480 PCR instrument according to the

manufacturer’s protocol. The primers used in our study were

listed in Supplementary Table S1. β-ACTIN was used as an

internal control. The relative mRNA levels were calculated based

on 2−ΔΔCt method.

2.12 Clinical association and classification
analysis of the prognostic ARGs score

Chi-square tests were applied to search for the associations

between the ARGs score and the clinical properties. In addition,

we performed a classification analysis to explore whether the

ARGs score remains predictive and reliable in distinct subtypes

based on several clinical variables.

2.13 Evaluation of immune status and
tumor mutation burden (TMB) between
the high-and low-ARGs score groups

To assess the fractions of tumor-infiltrating immune cells

(TIICs) and the expression level of immune checkpoint (ICP)

among the different ARGs score subtypes. We explored the

associations between the proportions of 21 TIICs and four

hub ARGs in the different ARGs score groups. Furthermore,

FIGURE 1
Angiogenesis as a cancer hallmark is hyperactivated in PC: (A), GSVA analysis demonstrated that angiogenesis is hyperactivated in PC among
various hallmarks of cancer; (B) PCA analysis demonstrated that PC and normal pancreas samples were evidently separated as two distinct groups
with the 11 prognostic ARGs expression matrix; (C) Expression distributions of 11 ARGs between normal and PC tissues. ***p < 0.001, **p < 0.01, *p <
0.05 and not significant (p > 0.05) by repeated measures with the Wilcoxon test.
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FIGURE 2
Identification of angiogenesis subtypes in PC: (A) A network of Interactions among ARGs in PC, the size of the circle represents the impact of
each angiogenesis gene on the prognosis, the p value calculated by log-rank test. Green dots in the circle represent protective factors and black dots
represent risk factors. Links between genes represent their interactions, blue lines represent positive correlations, red lines represent negative
correlations, and the thickness of the lines represents the strength of the correlation between them; (B) Consensus matrix heatmap defining
two clusters (k = 2) and their correlation area; (C) Kaplan–Meier plot of OS by angiogenesis clusters for PC patients in the TCGA cohort (p = 0.003,
Log-rank test); (D) PCA analysis showing two distinct subtypes of 11 angiogenesis genes in TCGA cohort; (E)Heatmap plot of 11 angiogenesis genes
expression with clinical characteristics in PC from TCGA cohort. (F) Kaplan–Meier plot of OS by angiogenesis clusters for patients in the ICGC cohort.
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based on the median value, all PC patients were classified into

high and low tumor mutation burden (TMB) groups, we further

identified the associations of ARGs score with TMB and survival.

Next, to compare the somatic mutations of PC patients between

high- and low-ARGs score groups, the mutation annotation

format (Saito et al., 2018) from the TCGA database was

analyzed with the “maftools” R package (Mayakonda et al., 2018).

2.14 Drug sensitivity analysis

To investigate differences in the therapeutic impacts of

chemotherapeutic drugs for PC patients of the two groups, we

used the “pRRophetic” package to estimate the half-maximal

inhibitory concentration (IC50) of chemotherapeutic drugs

commonly used in the treatment of tumors, which is based on

drug-sensitive data from Genomics of Drug Sensitivity in Cancer

dataset (GDSC, https://www.cancerrxgene.org/) (Geeleher et al.,

2014).

2.15 Statistical analyses

TheWilcoxon test was applied to analyze the difference between

the groups. The correlation tests were conducted by Spearman

analyses. Kaplan-Meier survival analysis were performed to draw

survival curves by the log-rank tests. And the “ggplot2” R software

package is used for principal component analysis (PCA). The Time-

dependent receiver operating characteristic (ROC) curves for 1-, 2-,

and 3-year survivals were performed to validate predictive capability

FIGURE 3
Correlations of TIME and two PC subtypes: (A) GSVA analyzed the biological pathways of two angiogenesis subtypes in all samples from TCGA
and ICGC cohorts; (B) The relative percentage of 22 subpopulations of immune cells in PC; (C) 29 TIME cells infiltration abundance of two
angiogenesis subtypes; (D)Correlations between the two angiogenesis clusters and TME score. ***p < 0.001, **p < 0.01, *p < 0.05 and not significant
(p > 0.05) by repeated measures with the Wilcoxon test.
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of ARGs score and other clinical variables with the R package

‘survivalROC’. The R 3.6.3 software and its corresponding packages

are applied to process, analyze, and present the data. While

comparing between groups, p < 0.05 was deemed to be

statistically significant.

3 Results

3.1 Angiogenesis as a cancer hallmark is
hyperactivated in PC

Among 50 cancer hallmarks gene sets, GSVA analysis

indicated that compared with normal specimens (GTEx),

34 cancer hallmarks are aberrantly hyperactivated in tumor PC

specimens from TCGA cohort, such as angiogenesis, hypoxia,

epithelial-mesenchymal transition (EMT) and apoptosis

(Figure 1A). Supplementary Table S2 presented detailed

information on the 160 PC patients from TCGA cohort. To

explore the classification of angiogenesis in tumor and normal

samples, the 11 prognostic ARGs (LRPAP1, LPL, FGFR1,

TNFRSF21, CCND2, ITGAV, JAG1, SPP1, S100A4, VTN, and

APOH) were analyzed using consensus clustering analysis, and

the PCA analysis confirmed the excellent intergroup distribution

(Figure 1B). The correlation coefficients of the 11 prognostic ARGs

are provided in Supplementary Table S3. Next, we observed that

the expression of almost ARGs are significantly different between

tumor samples and normal samples, some ARGs (LPL,

FIGURE 4
Construction of angiogenesis signature: (A) Sankey diagram of subtype distributions in groups with different ARGs scores and survival
outcomes; (B) Differences in ARGs score between gene subtypes; (C) Differences in ARGs score between angiogenesis clusters; (D,G) Ranked dot
and scatter plots showing the ARGs score distribution and patient survival status; (E) ARGs score was significantly elevated in dead patients; (F)
Kaplan-Meier curves were used to analyze the survival of patients with high- and low- ARGs score in PC patients; (H) ROC curves were used to
predict the sensitivity and specificity of 1-, 2- and 3-year survival according to the ARGs score; (I) tROC curves of the nomograms compared for 1-, 2-
and 3-year OS in PC, respectively.
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TNFRSF21, ITGAV, JAG1, SPP1, and S100A4) were up-regulated

in the tumor samples (Figure 1C), however, LRPAP1 and FGFR1

were down-regulated in the tumor samples, indicating the

potential role of these ARGs in PC tumor development.

3.2 Identification of angiogenesis subtypes
in PC

The detailed flowchart of this work is shown in

Supplementary Figure S1. To comprehensively understand the

expression profile of ARGs in PC, the systematic genetic pattern

of ARGs interactions, regulator associations, and their clinical

significance in PC patients were displayed in an angiogenesis

network (Figure 2A and Supplementary Table S4). Moreover, the

consensus clustering analysis and PCA display that k =

2 appeared to be an optimal choice for dividing the entire

cohort into angiogenesis cluster A (n = 97) and B (n = 63)

(Figures 2B,D; Supplementary Figure S2). And patients in

angiogenesis cluster B show a better OS than angiogenesis

cluster A (log-rank test, p = 0.003; Figure 2C). Additionally,

angiogenesis cluster A is correlated with “higher mortality”,

“higher KRAS mutations " and " higher TP53 mutations”

compared with angiogenesis cluster B (Figure 2E). Similarly,

the ICGC cohort was applied to verify the reliability of the

clustering, and two different subtypes were clearly identified

again (Supplementary Figure S3). And diverse differences in

survival were also shown in the two clusters (Figure 2F),

further confirming the repeatability of the clustering.

3.3 Characteristics of tumor immune
interactions and biological function in the
angiogenesis subtypes

GSVA enrichment analysis displays that angiogenesis cluster B

was significantly enriched in immune-activated pathways (T and

B cell receptor signaling pathway) (Figure 3A; Supplementary

Table S5). To further investigate the differences in the infiltrating

immune cells among the two subtypes, the enrichment score of the

29 immune cell subsets and the relative percentage of the

22 infiltrating immune cell subsets of the two clusters in each

PC patient were assessed using ssGSEA and CIBERSORT analysis.

As shown in Figures 3B,C, the angiogenesis cluster B was

significantly associated with tumor immune activation due to

more immune cell infiltrations such as CD8+T cells, cytolytic

activity, mast cells, MHC class I, neutrophils, NK cells, T cell co-

inhibition, T cell co-stimulation, T helper cells, TIL, Th2 and type

II IFN response, as well as with higher TME scores (Figure 3D). In

contrast, para-inflammation and type I IFN response showed

higher infiltration in angiogenesis cluster A. Our findings

suggest that the immune cell activation is a feature of the

angiogenesis cluster B.

3.4 Identification of angiogenesis gene
clusters based on DEGs

To thoroughly investigate the potential biological function

of each angiogenesis subtype, we obtained 234 angiogenesis

clusters-associated DEGs with the “limma” package and

conducted functional enrichment analysis. To thoroughly

investigate specific adjustment mechanisms of each

angiogenesis subtype, we obtained 332 angiogenesis

clusters-associated DEGs (Supplementary Table S6) with

the “limma” package and conducted functional enrichment

analysis. Then, a consensus clustering method was utilized to

separate patients into two distinct gene clusters (gene cluster

A and B) with different prognosis and clinical features on the

basis of DEG (Song et al., 2021; Zhang et al., 2021; Qing et al.,

2022; Zhang et al., 2022). Consistent with the expected results

of the angiogenesis subtypes, we observed significant

differences in ARGs expression levels (Supplementary

Figure S4).

3.5 Establishment and validation of the
prognostic ARGs score

The ARGs score was constructed based on four key ARGs

(TNFRSF21, CCND2, JAG1, and SPP1), and the correlations

between the ARGs score and the expression of these

biomarkers are provided in Supplementary Table S7. Among

these biomarkers, TNFRSF21, JAG, and SPP1 are biomarkers

with high ARGs score coefficient, while CCND2 served as a

protective biomarker in this model.

Eventually, the ARGs score was accessed as described:

ARGs score � (1.98 × expression of TNFRSF21)
+ ( − 0.59 × expression of CCND2)
+ (1.69 × expression of JAG1)
+ (0.55 × expression of SPP1)

Figure 4A displays the distribution of patients in the two

angiogenesis clusters, two gene clusters, and two ARGs score

groups. In addition, we observed a significant difference in

ARGs score between the two angiogenesis subtypes and also

between the two gene subtypes (Figures 4B,C). More

importantly, compared to angiogenesis cluster B and gene

cluster B, angiogenesis cluster A and gene cluster A had a

significantly higher ARGs score, implying that a low ARGs

score may be closely linked to immune cell activation. The risk

distribution of ARGs score revealed that with the increase of

ARGs score, survival time decreased and mortality rose

(Figure 4D). And a heatmap of four hub ARGs was

presented in Supplementary Figure S5. Figure 4E reveals

that ARGs scores were apparently elevated in dead patients

compared with living patients during follow-up. Based on the
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survival analysis mentioned above, we found that higher

ARGs scores were associated with worse survival (Figures

4F,G). The AUCs of 1-, 2-, and 3-year OS were 0.732,

0.721, and 0.758, respectively (Figure 4H). Moreover, we

assessed the AUC values of these clinical variables (age,

gender, TNM stage, KRAS mutation status, and

TP53 mutation status) and ARGs score for predicting OS at

1-, 2-, and 3-year. The AUC values are in line with expectation

(Figure 4I), suggesting our nomogram had a robust prognostic

predictive ability. In addition, we also compared the predictive

sensitivity of angiogenesis subtype A/B, angiogenesis gene

cluster A/B, and ARG score high/low to prognosis, and the

FIGURE 5
Validation of angiogenesis-associated risk genes in PC: (A–D) Survival analyses of four signature genes; (F–H) The histological expression of
four signature genes from HPA database. The top of the figure indicates the category of tissue specimen. The name of angiogenesis gene, the
antibody type used in immunohistochemistry, and the patient ID of tissue specimens are shown at the bottom of each image; (I–L) qRT-PCR
analyses of the mRNA expression levels of angiogenesis-associated risk genes in PC cell lines (BXPC-3, CFPAC-1, and PANC-1) and normal
pancreas cells (HPNE). (M–P) Correlation of angiogenesis-associated risk genes with tumor metastasis in PC. ****p < 0.0001 by repeated measures
with two-tailed unpaired Student’s t-test.
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results showed that ARGs score is the most sensitive to predict

the prognosis of patients (Supplementary Figure S6).

3.6 The histological expression and mRNA
expression of angiogenesis-associated
risk genes

The survival analysis indicated that the high expression of

angiogenesis-related risk genes (TNFRSF21 and JAG1) was

associated with poor prognosis and high expression of

CCND2 was related to favorable survival (Figures 5A–D). In

addition, significant difference of these genes in protein levels

between pancreatic normal and cancer tissues was observed.

Among that, the protein expression of TNFRSF21, JAG1, and

SPP1 were evidently up-regulated in tumor than normal tissues.

However, discernable expressive difference was not found in

CCND2 (Figures 5E–H). Moreover, the mRNA expression of

TNFRSF21, JAG1and SPP1 was markedly elevated but CCND2

was substantially declined in PC cells compared with normal

pancreas cells (Figure 5I–L).

3.7 Correlation of angiogenesis-
associated risk genes with tumor
metastasis in PC

Metastasis is a critical factor for therapeutic resistance and

poor patient survival. THCMDB tool was used to predict genes

having metastatic potential. The results of HCMDB showed

significantly higher expression level of TNFRSF21,

CCND2, JAG1, and SPP1 for patients with PC

(Figures 5M–P), implying that these genes may promote PC

metastasis.

FIGURE 6
Evaluation of the TIME and checkpoints between the two groups: (A)Correlations between ARGs score and immune cell types; (B)Correlations
between the abundance of immune cells and four genes in the proposedmodel; (C)Correlations between ARGs score and both immune and stromal
scores; (D) Expression of immune checkpoints in the high and low-risk groups. ***p < 0.001, **p < 0.01, *p < 0.05 and not significant (p > 0.05) by
repeated measures with the Wilcoxon test.
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3.8 Evaluation of TIME and ICPs between
the high- and low-ARGs score groups

The infiltration of 22 immune cell subsets into the TME was

further identified in the high- and low- ARGs score groups. Our

results show that patients with low ARGs score are with higher

immune score andmore infiltrations of immune cells (CD8+T cells,

activated memory CD4+T cells, plasma cells, naïve B cells,

monocytes, and eosinophils) (Figures 6A,C). We also observed

that most immune cells were significantly associated with the

FIGURE 7
Association of ARGs score with TMB score in PC: (A) TMB in different ARGs score groups; (B) Spearman correlation analysis of the ARGs score
and TMB; (C) Kaplan-Meier analysis of the OS between the low- and high-TMB groups; (D) Survival analysis among four patient groups stratified by
both TMB and ARGs score; (E,F) The waterfall plot of somatic mutation features established with low and high ARGs score.
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four hub biomarkers and ARGs score (Figure 6B). In addition, some

ICPs (CD200, CD40LG, CD70, CD44, TNFRSF18, CD276, CD160,

TNFSF4, and VTCN1) were differentially expressed in the two

subgroups (Figure 6D).

3.9 Association of ARGs score with TMB
and somatic mutations

PC is a genetic disease. Somatic alterations in themost common

driver genes (KRAS, CDKN2A, TP53, and SMAD4) play a pivotal

role in PC biology and progression (Hayashi et al., 2021). To

investigate the relationship of the ARGs score with somatic

mutations, we compared the differences in TMB score and

somatic mutations between the two groups. Our results indicated

that low-TMB patients had a superior prognosis than high-TMB

patients (Figure 7C), and the ARGs score was positively related to

TMB score (Figures 7A,B). Additionally, the prognostic benefit of

low TMB group was eliminated by high ARGs score (Figure 7D).

Subsequently, we analyzed the distribution variations of the somatic

mutations between two ARGs score groups in the TCGA-PAAD

cohort. The top tenmutated genes in the high- and low-ARGs score

groups were TP53, KRAS, CDKN2, SMAD4, TTN, RNF43, MUC16,

RYR1, PCDH15, and ARID1A. Compared with patients with low

ARGs scores, patients with high ARGs scores had dramatically

higher frequencies of TP53, KRAS, CDKN2, SMAD4, and TTN

mutations (Figures 7E,F).

3.10 Clinical outcomes and drug sensitivity
of different ARGs score groups

The GSEA enrichment analysis shows that the high ARGs

score group was mainly enriched in some pathways of

FIGURE 8
Relationships between ARGs score and therapeutic sensitivity: (A) GSEA analyzed the biological pathways of two ARGs score groups in the PC
cohort; (B) The ratio of worse outcomes after surgery is greatly elevated in the high ARGs score group; (C) The proportion of clinical outcomes in PC
patients with high and low ARGs score after surgery; (D) Venn diagram for summarizing included compounds from GDSC datasets; (E–H) The top
4 chemotherapeutic drugs PC patients with low ARGs score group are more susceptible to; (I–L) The top 4 chemotherapeutic drugs PC
patients with high ARGs score group are more susceptible to. H, High ARGs score; L, Low ARGs score; D, differentiated.
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tumorigenesis, such as the MTORC1, P53, and TGF-BETA

signaling pathways (Figure 8A), implying that ARGs may play

a crucial role in modulating tumor progression. Furthermore,

patients with the low ARGs score had a higher CR/PR rate and a

lower SD/PD rate after surgical therapy (Figures 8B,C).

For patients with advanced PC, chemotherapy and targeted

therapy are the main treatments (Vincent et al., 2011). To

confirm the efficacy of ARGs score as a biomarker to predict

chemotherapy response in PC patients, we assessed the

IC50 values of 138 chemotherapeutic drugs from GDSC

dataset in TCGA-PAAD patients (Figure 8D). We found that

there are 45 drugs patients with low ARGs score are more

sensitive to (p < 0.05; Supplementary Table S8), including the

top 2 chemotherapeutic drugs (Axitinib, EHT. 1864) and several

targeted therapeutic drugs (Nutlin.3a and PD.173074, etc.)

(Figures 8E–H). While there were 43 drugs that patients with

high ARGs score may respond better to (p < 0.05; Supplementary

Table S9), including the top 4 chemotherapeutic drugs

(RDEA119, A.443,654, BI.2536, and Bicalutamide)

(Figure 8I–L). In conclusion, these findings imply that

patients with different ARGs score have distinct differences in

sensitivity to chemotherapeutic drug therapy, and drugs of

personalized therapy can be selected according to ARGs score.

4 Discussion

Due to high heterogeneity of PC, PC patients’ resistance to

chemotherapy was common and their treatment outcome was

extremely poor (Sipos et al., 2014; Ilic and Ilic, 2016). Despite

progress in chemotherapy in recent years, guide of traditional

histopathological classification to anti-tumor therapy may lead to

difficulty in developing more specific and less resistant therapy

(Springfeld et al., 2019). Several molecular classifications of PC

were explored in previous studies, including classification based

on single genetic markers including BRCA1/BRCA2, KRAS,

TP53, ERBB2, and BRAF mutation, genomic aberrations

patterns, or transcriptome profiling (Collisson et al., 2019).

However, considerable heterogeneity has not been fully

detected yet (Biankin et al., 2009; Hudson Chairperson et al.,

2010; Collisson et al., 2019). A more accurate and clinically useful

molecular classification of PC is urgently required to guide

clinical practice.

Angiogenesis, a hallmark of cancer vital for growth and

metastasis of multiple solid tumors, including PC (Baeriswyl

and Christofori, 2009; Sajib et al., 2018; Annese et al., 2020), was

found indispensable in regulating TIME in PC(Rivera and

Bergers, 2015; Zhang et al., 2018; Rahma and Hodi, 2019).

TIME is regarded as an important factor in tumor progression

and immunotherapy response (Hinshaw and Shevde, 2019;

Kuwahara et al., 2019; Sunami and Kleeff, 2019; Schizas et al.,

2020), where higher lymphocyte infiltration indicated a more

favorable prognosis (Governa et al., 2017; Kuwahara et al., 2019;

Ma et al., 2020). Therefore, it can be surmised that anti-

angiogenesis may boost immunotherapy (Rivera and Bergers,

2015; Trenti et al., 2018).

Thus, we explored the comprehensive role of ARGs in PC

phenotype and TIME, and identified two angiogenesis clusters

based on the prognostic 11 ARGs. Significant differences lie in

clinical outcomes and TIME between the two clusters.

Additionally, ARGs score, an angiogenesis-related gene

signature was constructed to recognize the angiogenesis

molecule classification for predicting TIME and prognosis in

PC. Patients with low and high ARGs scores displayed diverse

prognosis, TMB, TIME, ICPs, and drug sensibility. Moreover, by

combining ARGs score with other clinical variables, we

established a quantitative nomogram to further improve

application of ARGs score.

In our study, angiogenesis subtype A characterized by

immunosuppression was linked to a higher ARGs score.

Angiogenesis cluster B featured by immune cell activation was

linked to a lower ARGs score. More interestingly, higher

enrichment of B cells, plasma cells, CD8+T cells, and

monocytes were observed in low ARGs score group,

promoting anti-cancer immunity. Whereas, higher enrichment

of CD4+memory resting T cells and macrophage M0 cells were

observed in high ARGs score group. CD4+T cells and

macrophages were found negative and complex in tumor

immunity (Ribatti and Crivellato, 2009; Saito et al., 2016;

Dehne et al., 2017), respectively. These findings further

support that high ARGs scores should be linked to

immunosuppression and poor prognosis. Therefore, ARGs

might play a crucial role in TIME and progression in PC. As

revealed in several studies, angiogenesis factors might operate as

immune modulators, causing pathological vascularization and

thereby contributing to tumorigenesis (Ribatti and Crivellato,

2009; Minton, 2019).

Immune checkpoint inhibitors (ICIs) have become an anti-

tumor treatment trend (Bagchi et al., 2021; Lentz et al., 2021). We

observed that expression of various ICPs, including CD200,

CD40LG, CD44, TNFRSF18, CD160, TNFSF4, and VTCN1, are

up-regulated in lowARGs score group, implying that patients in this

group might benefit from these ICIs. Thus, targeting ARGs may be

beneficial for PC immunotherapy. Accordingly, we further

recognized the latent susceptible chemotherapeutic and targeted

drugs in patients with different ARGs scores. Some drugs, including

Axitinib, EHT.1864, Nutlin.3a, and PD.173074, and some other

drugs, including RDEA119, A.443654, BI.2536, and Bicalutamide

were identified for low- and high-ARGs score PC patients,

respectively. Combination of these drugs with anti-angiogenesis

may help alleviate drug resistance and improve survival in PC

patients. Axitinib is vascular endothelial growth factor receptor

tyrosine kinase inhibitor, efficacy of which was evaluated in

phase II/III studies of patients in many tumor types including

pancreatic cancer (Kelly and Rixe, 2010; Grünwald et al., 2020).

RDEA119, an allosteric MEK inhibitor, has been selected for clinical
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development because of its potency and favorable pharmacokinetic

profile (Iverson et al., 2009). Moreover, RDEA119 combined with

rapamycin showed significant anti-tumor activity in human

orthotopic primary PC xenografts (Chang et al., 2010).

Overall, this study not only sheds light on personalized

prediction approaches, but also provides clues for precision

therapy in PC. ARGs score model has significant clinical

significance in both low- and high-ARGs score patients. For

patients with high ARGs scores, we offered the potential drugs to

effectively improve their prognosis. For patients with low ARGs

scores, clinicians could adopt ICIs immunotherapy and some

targeted drugs in our study to improve prognosis of PC patients.

Some limitations to our study should be acknowledged. First,

data from public databases are obtained retrospectively, so the

prognostic robustness and clinical usefulness of the angiogenesis-

related gene signature need further validation in larger prospective

trials. Second, further vivo and in vitro experimental studies are

necessary to gain insight into the relationship between ARGs

scores and TME, thus confirming our findings in PC.
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Glossary

ARGs angiogenesis-related genes

CR Complete Response

DEGs differentially expressed genes

EMT epithelial-mesenchymal transition

FC fold change

GDSC Genomics of Drug Sensitivity in Cancer

GSEA gene set enrichment analysis

GSVA gene set variation analysis

GTEx Genotype-Tissue Expression

HPA Human Protein Atlas

IC50 half-maximal inhibitory concentration

ICGC International Cancer Genome Consortium

ICIs immune checkpoint inhibitors

ICP immune checkpoint

LASSO least absolute shrinkage and selection operator

MAF mutation annotation format

MSigDB Molecular Signatures Database

OS overall survival

PC pancreatic cancer

PCA principal component analysis

PD Progressive Disease

PR Partial Response;

SD Stable Disease

qRT-PCR quantitative real-time PCR reaction.

ROC receiver operating characteristic

ssGSEA single sample gene set enrichment analysis

TCGA The Cancer Genome Atlas

TIIC tumor-infiltrating immune cells

TIME tumor immune microenvironment

TMB tumor mutation burden

TME tumor microenvironment

tROC time-dependent receiver operating characteristic
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