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A B S T R A C T   

Background and purpose: Existing methods for quality assurance of the radiotherapy auto-segmentations focus on 
the correlation between the average model entropy and the Dice Similarity Coefficient (DSC) only. We identified 
a metric directly derived from the output of the network and correlated it with clinically relevant metrics for 
contour accuracy. 
Materials and Methods: Magnetic Resonance Imaging auto-segmentations were available for the gross tumor 
volume for cervical cancer brachytherapy (106 segmentations) and for the clinical target volume for rectal 
cancer external-beam radiotherapy (77 segmentations). The nnU-Net’s output before binarization was taken as a 
score map. We defined a metric as the mean of the voxels in the score map above a threshold (λ). Comparisons 
were made with the mean and standard deviation over the score map and with the mean over the entropy map. 
The DSC, the 95th Hausdorff distance, the mean surface distance (MSD) and the surface DSC were computed for 
segmentation quality. Correlations between the studied metrics and model quality were assessed with the 
Pearson correlation coefficient (r). The area under the curve (AUC) was determined for detecting segmentations 
that require reviewing. 
Results: For both tasks, our metric (λ = 0.30) correlated more strongly with the segmentation quality than the 
mean over the entropy map (for surface DSC, r > 0.65 vs. r < 0.60). The AUC was above 0.84 for detecting MSD 
values above 2 mm. 
Conclusions: Our metric correlated strongly with clinically relevant segmentation metrics and detected seg-
mentations that required reviewing, indicating its potential for automatic quality assurance of radiotherapy 
target auto-segmentations.   

1. Introduction 

Target segmentation is a crucial part of the radiotherapy (RT) 
workflow. In clinical practice, this step is typically done manually by 
radiation oncologists, which is time consuming and suffers from inter- 
and intra- observer variability. In particular in online adaptive treatment 
settings, the time pressure is high because both the patient and the staff 
involved in the RT treatment are waiting while the segmentations are 
performed. With the aim of saving time in the clinic, automatic seg-
mentation algorithms based on convolutional neural networks have 
been investigated for gross tumor volumes (GTVs) in a variety of tumor 
sites, such as brain [1,2], head and neck [3–5], rectum [6] and cervix 
[7,8]; and clinical target volumes (CTVs) such as cervical cancer CTV [9] 
and prostate cancer CTV [10,11]. 

Although segmentation algorithms are reaching a reasonable per-
formance [12–14], they still produce faulty segmentations in some 
cases. To identify whether automatically generated segmentations are 
acceptable for clinical use, it is necessary for a clinician to verify them. 
This limits the time gains of automatic segmentation methods. There-
fore, there is a need to recognize automatically in which cases the 
automatic segmentations need correction. In the context of RT, auto-
matic quality assurance (QA) of the automatic segmentations is a topic 
of interest nowadays, as showcased in recent reviews [15,16]. 

Deep learning networks for auto-segmentation typically predict a 
score that correlates with the probability that a voxel belongs to the 
structure to be segmented. Only at the last step, voxel scores are 
thresholded into a binary segmentation mask. These score maps are 
often converted into uncertainty maps by applying the entropy operator 
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[17–19]. It has been shown qualitatively that incorrect areas of the 
automatic segmentations cover areas of high network entropy [20–22]. 
Once an entropy map is computed, the mean over all the voxels [17–19] 
is often used as a metric for QA of auto-segmentations. Alternatively, a 
common approach for QA of auto-segmentations consists of developing 
machine learning models that directly predict segmentation quality 
[23,24]. 

Up to now, the QA metrics are typically correlated only with the Dice 
Similarity Coefficient (DSC) [17,18,20,25,26]. Although DSC is a com-
mon metric of segmentation performance, it presents several drawbacks. 
By construction, it is volume-dependent since it overestimates the per-
formance for large structures. Additionally, it has been shown to 
correlate poorly with clinically relevant endpoints in RT planning, such 
as dose/volume metrics [27] and the expected editing time [28]. 
Distance-based metrics, such as the 95th Hausdorff distance (95th HD), 
the mean surface distance (MSD) and the surface DSC, suffer less from 
these drawbacks and are recommended to be reported together with the 
DSC [28,29]. 

We hypothesize that the commonly used entropy operator may 
overshadow relevant information that is contained in the score maps. 
The aim of this study was to identify a quality metric that can be 
generated directly from the output of the network, and which correlates 
with clinically relevant distance-based metrics. We additionally assessed 
the capability of the proposed metric to identify automatic segmenta-
tions that would need review. 

2. Materials and methods 

2.1. Data 

Two cohorts were retrospectively collected and used in this study. 
One cohort consisted of a total of 195 histologically proven cervical 
cancer patients treated in our institution between August 2012 and 
December 2021. Further details on patient characteristics and their 
treatment are described in Table S1. The institutional review board 
approved the study (IRBd20276). Informed consent was waived 
considering the retrospective design of the study. 

A total of 524 separate MRI images of the patients with the 
brachytherapy applicator in place were included in this work. These 
images were acquired using a 1.5 T (104 scans) or 3 T (442 scans) Philips 
MRI scanner. Axial T2-weighted (T2w) turbo spin-echo images were 
used (TR = [3500–13300 ms], TE = [100–120 ms]) with a pixel spacing 
of 0.39 mm × 0.39 mm (442 scans) or 0.63 mm × 0.63 mm (104 scans) 
and a slice thickness of 3 mm. The GTV, as segmented for treatment 
planning by a radiation oncologist on each available MRI, was available 
as ground truth. 

The other cohort used in this study consisted of a total of 30 patients 
with intermediate risk or locally advanced rectal cancer treated in our 
institution. Further details on patient characteristics are described in 
Table S2. All patients in the study were enrolled in the Momentum 
prospective registration study (NCT04075305) and gave written 
informed consent for the retrospective use of their data. 

For this cohort, a total of 483 EBRT images were considered. All the 
fractions were carried out on the Unity MR-Linac (Elekta AB, Stock-
holm). Axial T2-weighted (T2w) turbo spin-echo images were used (TR 
= 1300 ms, TE = 128 ms) with a pixel spacing of 0.57 mm × 0.57 mm 
(349 images) or 0.87 mm × 0.87 mm (134 images) and a slice thickness 
of 1.20 mm (155 images), 1.8 mm (134 images) or 2.4 mm (194 images). 
In our institution, the radiation therapists (RTTs) have been trained and 
certified to segment the CTV for the MRI-guided online adaptive RT 
workflow of the rectal cancer treatment. Therefore, the CTV used as 
ground truth was segmented by a RTT on each available MRI for clinical 
practice. The CTV segmentations were also verified by a radiation 
oncologist with over 10 years of experience. 

2.2. Segmentation framework and training scheme. 

In previous studies, we used the nnU-Net framework [30] to segment 
the cervical cancer GTV [8] and the rectal cancer mesorectum CTV [31]. 
In the current work, we used a 5-fold cross validation scheme to retrain 
the networks and assess the robustness of the quality metrics to changes 
in the training set composition. The training sets were the same as those 
described in previous articles [8,31], with 156 patients (418 images) for 
the cervical cancer cohort and 25 patients (406 images) for the rectal 
cancer cohort. For both cohorts, the 3D variant of the nnU-Net was used. 

2.3. Score map definition 

The score map was defined as the voxelwise softmax scores of the last 
layer of the network of the target segmentation channel before binar-
ization (as depicted in Fig. 1). This strategy was chosen because it can be 
applied to any trained network without requiring changes to the ar-
chitecture or training procedure. 

The score maps were created for the test sets described in previous 
studies [8,31], which included 39 patients (106 images) for the cervical 
cancer cohort and five patients (77 images) for the rectal cancer cohort. 
We further subdivided these sets at the scan level into a validation set for 
parameter optimization and a final test set for evaluating the quality 
metrics. For the cervical cancer GTV segmentation task, the final vali-
dation and test sets each included 53 images. The analyses were done for 
52 out of the 53 cases of the test set. The remaining case corresponded to 
a patient who had her uterus removed which resulted in a variation in 
anatomy unseen by the trained network. The final validation and test 
sets for the rectal cancer CTV segmentation task included 39 and 38 
images, respectively. Note that the term “score maps” is referred to as 
“attention maps” in our previous work [8]. 

2.4. Score-based metrics 

We defined a metric (High Score or HiS metric) as the mean of the 
score map values that were higher than a threshold λ. By thresholding 
the score map and retaining only the high score voxels, we aimed to 
remove information that is unimportant for the flagging of potentially 
incorrect segmentations, as very low values on the score map are ex-
pected both in correct and incorrect segmentations. 

The mean and the standard deviation (STD) were computed over the 
non-zero values of the score map to represent the overall score and its 
variability, respectively. Additionally, the mean over the entropy map 
was computed for direct comparison with other studies [17–19,26]. 

For each value of λ, the difference in correlation with respect to the 
performance of the mean over all values of the score map (i.e. λ = 0) was 
determined. The optimal value of λ was determined empirically as the 
value at which the HiS correlated best with the MSD in the validation 
set, in the range (0,0.45) with steps of 0.05. The MSD was chosen to 
determine the optimal threshold because it is a distance-based metric 
and therefore more suitable for RT applications (unlike the DSC), it 
evaluates the whole contour (unlike the 95th HD, which focuses on the 
gross errors) and it has no hyperparameters (unlike the surface DSC). 

2.5. Statistics 

The correlation between the metrics and the segmentation perfor-
mance was assessed with the Pearson correlation coefficient (r) and with 
the Spearman correlation coefficient. To check the assumption of line-
arity for Pearson, residual plots were computed. To study the robustness 
of each metric to the training set composition, the correlations were 
computed separately for the score maps resulting from each of the five 
training folds. The mean and the standard deviation of the r were 
computed over all folds. 

To assess the capability of the metrics to distinguish between seg-
mentations that require reviewing and those that can be left unchecked, 
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the area under the curve (AUC) was determined for detecting segmen-
tations that exceeded a specified MSD or 95th HD threshold. The code 
and additional training details are available in: github.com/RoqueRout 
eiral/his_qa. 

3. Results 

For both segmentation tasks and for the four segmentation metrics, 
the largest improvement of the proposed HiS metric with respect to the 
mean (Δr) occurred for λ < 0.10, as depicted in Fig. 2. Moreover, for λ >
0.10, Δr remained fairly stable. For the case of the MSD, the largest 
correlations were found for λ = 0.35 and λ = 0.25 for the cervical and 
rectal cancer target segmentation tasks, respectively. We took the 
average between these two values, λ = 0.30, in the subsequent analyses. 
The computed residual plots (Fig. S1) show that the points were 
randomly scattered around the horizontal axis, confirming the 
assumption of linearity between the performance metrics and the HiS. 

Table 1 shows the correlation between the studied metrics and the 
segmentation quality metrics for the test sets of both cohorts. For the 
segmentations of the cervical cancer GTV, the HiS achieved a mean r of 
0.79 with DSC, − 0.60 with 95th HD, − 0.66 with MSD and 0.67 with 
surface DSC. For the segmentations of the rectal cancer CTV, the HiS 
yielded a mean r of 0.76 with DSC, − 0.53 with 95th HD, − 0.74 with 
MSD and 0.62 with surface DSC. For both tasks, the HiS correlated more 
strongly with the segmentation quality metrics than the rest of the score- 

Fig. 1. Workflow of the study design.  

Fig. 2. Difference in Pearson correlation coefficient (Δr) with the segmentation metrics between the HiS metric and the mean over the score map as a function of the 
parameter λ. The bold line is the average Δr among the five folds. The dashed lines represent the Δr for each of the five folds. 

Table 1 
Pearson correlation coefficients (mean ± standard deviation among folds) be-
tween the metrics and the segmentation performance metrics. Bold letters 
indicate the highest correlation among the different metrics.   

DSC 95th HD MSD Surface 
DSC 

Cervical cancer 
cohort    

Mean 0.72 ±
0.10 

− 0.53 ±
0.16 

− 0.57 ±
0.13 

0.60 ± 0.1 

STD 0.68 ±
0.06 

− 0.53 ±
0.14 

− 0.64 ±
0.13 

0.70 ± 0.1 

Mean (over entropy 
map) 

0.43 ±
0.14 

− 0.38 ±
0.09 

− 0.43 ±
0.11 

0.43 ± 0.15 

HiS (λ ¼ 0.30) 0.79 ± 
0.05 

¡0.60 ± 
0.13 

¡0.66 ± 
0.10 

0.67 ± 0.06 

Rectal cancer 
cohort    

Mean 0.60 ±
0.03 

− 0.42 ±
0.10 

− 0.61 ±
0.06 

0.50 ± 0.08 

STD − 0.32 ±
0.11 

0.22 ± 0.18 0.35 ± 0.15 − 0.27 ±
0.17 

Mean (over entropy 
map) 

− 0.74 ±
0.06 

0.47 ± 0.08 0.69 ± 0.07 − 0.58 ±
0.09 

HiS (λ ¼ 0.30) 0.76 ± 
0.08 

¡0.53 ± 
0.07 

¡0.73 ± 
0.09 

0.62 ±
0.10  
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based metrics. The only exception was the STD in the case of the cervical 
cancer task, which correlated as strongly as the HiS and the surface DSC. 
The HiS also correlated more strongly with all the segmentation metrics 
for both tasks with the Spearman correlation coefficient (Table S3). 

As an illustration, Fig. 3 shows the scatter plots between the HiS 
metric and the segmentation metrics obtained in one of the five folds of 
the trained auto-segmentation networks. Note that the range of HiS 
values is task-dependent and the values are therefore not directly com-
parable between the two tasks. Fig. 4 illustrates the segmentations and 
score maps with one example from each auto-segmentation task. For the 
cervical cancer case (Fig. 4, left), the HiS metric was relatively high for 
this cohort (HiS = 0.76). Indeed, the segmentation performance was 
high (MSD = 0.78 mm), with the main error at the location of the 
applicator channel. For the rectal cancer example (Fig. 4, right), the HiS 
value was relatively low for this cohort (HiS = 0.89). This case corre-
sponded to a target that was oversegmented by the network, resulting in 
poor performance (MSD = 3.6 mm), as expected. 

The capability of the studied metrics to detect segmentations that 
require reviewing is illustrated in Fig. 5, which shows the AUC for 
detecting segmentations that exceed varying MSD and 95th HD 
threshold values. The proposed HiS metric achieved higher AUC values 
than the other baselines metrics for most MSD and 95th HD values, for 
both auto-segmentation tasks. In particular, for the cervical cancer 
cohort, the AUC varied between 0.82 and 0.94 for detecting cases for 
MSD values above 1 mm. For the rectal cancer cohort, the AUC varied 
between 0.84 and 0.99 for detecting cases with an MSD above 2 mm. 

For each task, the AUC was reported between the minimum and 
maximum values of the obtained MSD and 95th HD over all folds, 
because the sensitivity and specificity are only defined in these ranges. 
For the cervical cancer task, these ranges were 0.4 mm to 7.0 mm for the 
MSD and 2.6 mm to 22.5 mm for the 95th HD. For the rectal cancer task, 
the ranges were 1.2 to 3.0 mm for the MSD and 4.8 mm to 17.8 mm for 
the 95th HD. 

4. Discussion 

In this work we proposed a simple metric based on the network 
output for automatic QA of auto-segmentations of RT target volumes. 

This metric averages all score values above a threshold of 0.3. We 
showed that it correlated strongly with the segmentation performance 
metrics for two different auto-segmentation tasks. The correlations were 
strong not only for the DSC but also for the more clinically relevant 
distance-based metrics. Our proposed metric outperformed the often 
used mean value of the entire entropy map in the distinction between 
segmentations that require reviewing and those that can be used without 
an extra manual check. 

The strongest correlations between the proposed metric and the 
segmentation performance occurred for λ values above 0.1, suggesting 
that the lowest score values are not very representative of the segmen-
tation performance. Furthermore, it was observed that the choice of λ 
was not critical for values above 0.2. 

Despite the high correlations between the proposed metric and the 
segmentation quality, similar HiS values corresponded to a large range 
of values on the segmentation quality metrics, suggesting that the HiS 
might not always be an accurate surrogate of the segmentation perfor-
mance. Other works have shown similar behavior in their correlation 
plots [18,23]. The aim of this metric, however, is to flag cases that need 
reviewing, not to predict the segmentation performance. This was 
demonstrated with the high AUC values achieved by the metric. 

Previous studies have qualitatively related the uncertain areas with 
the segmentation errors [20,22]. Metrics that show qualitatively where 
the local edits should be performed could aid clinicians during editing 
and should therefore be investigated in future work. We speculate that 
the proposed metric could also be used to select the voxels that are more 
likely wrong in the segmentation. From our results, we can infer that 
voxels from the score map that are below the λ = 0.10 threshold did not 
contribute to the correlation with the segmentation performance. This 
suggests that those voxels are not relevant for a potential correction. 
Clinicians could then use this information as an aid to edit the 
segmentation. 

Pearson’s correlation coefficient has been used in previous works to 
study the correlation between the segmentation performance and QA 
metrics [25,26]. Its application assumes linearity between the two var-
iables. Furthermore, outliers can skew its evaluation. To confirm the 
validity of our results, we computed the Spearman correlation coeffi-
cient, which does not assume linearity and is more robust to outliers. 

Fig. 3. Scatter plots between the segmentation metrics and the HiS metric for the cervical cancer cohort (top) and the rectal cancer cohort (bottom). The translucent 
band corresponds to the 95 % confidence interval for the estimated regression, computed via bootstrap. 
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The HiS metric still correlated more strongly than the other score-based 
metrics. 

The STD showed strong correlations with the MSD, but only for the 
cervical cancer GTV segmentation task. For rectal cancer, the correla-
tion was much lower and importantly also changed sign. A similar 
behavior was observed for the mean over the entropy map, commonly 
used in literature. This metric showed strong correlations for the rectal 
cancer segmentation task, but for the cervical cancer GTV the correla-
tions were poor for the segmentation metrics and also changed sign. 
Therefore, these metrics appear to be less robust for QA. Tumors (like 
the cervical cancer GTV) are more heterogeneous in size, shape and 
texture than anatomical structures (like the rectal cancer CTV, or mes-
orectum). Uncertainties in tumor auto-segmentation networks are likely 
more prominent than those of auto-segmentation networks of anatom-
ical structures. This may explain the difference in behavior of the met-
rics across the two tasks. Previous works have mostly focused on 
segmentation tasks with arguably lower uncertainty, such as the seg-
mentation of anatomical structures [20,23] or the segmentation of brain 
tumors [17,18]. 

Although most studies propose using the average of the entire en-
tropy map, other works [17,25] have trained models to automatically 
predict the DSC coefficient directly from the entropy maps, thereby 
incorporating the metric definition into the learning task. Learning- 
based metrics can be more generic than the pre-specified average, but 
they are also less interpretable and therefore might be less desirable for 
QA purposes. 

Recent literature has focused on other methods for computing the 
score maps, such as Monte Carlo dropout [17,18,32], which averages 
the scores resulting from multiple instances of the network. We expect 
our metric to also be applicable to Monte Carlo dropout estimates. 
However, using the softmax layer outputs eliminates the need for 

specific architectural or training scheme modifications. Furthermore, it 
does not require running inference multiple times which could hinder 
the clinical implementation of the method. 

In clinical settings, the clinician could be provided with both the 
automatic segmentation and its associated HiS score that would serve as 
a quality metric. Prior to clinical implementation, a pilot study could be 
set up to assess the time savings achieved by using this tool in a clinical 
setting. The trade-off between the amount of cases that would not need 
to be reviewed manually and the missed faulty cases that would require 
reviewing, should also be assessed. 

In conclusion, we identified a simple metric derived directly from the 
output of the segmentation network that correlated strongly with 
commonly used segmentation metrics, not only for the case of DSC but 
also for the more clinically relevant distance-based metrics. The pro-
posed metric was able to flag segmentations that would require review. 
It is also easy to compute, as it does not require any architecture or 
training scheme modifications. The proposed metric has potential as a 
tool for QA of automatic target segmentations. 
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Fig. 4. Examples of the segmentations and the correspondent score maps for a cervical cancer case (left, HiS = 0.76) and a rectal cancer case (right, HiS = 0.89). The 
input images for the segmentation framework, the ground truth segmentation (green) and the automatic segmentation (pink) are depicted on the top row. The 
corresponding score maps are depicted on the bottom row. The blue line encompasses the voxels for which the score values are higher than λ = 0.3. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

R. Rodríguez Outeiral et al.                                                                                                                                                                                                                   



Physics and Imaging in Radiation Oncology 28 (2023) 100500

6

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.phro.2023.100500. 

References 

[1] Liu Z, Tong L, Chen L, Jiang Z, Zhou F, Zhang Q, et al. Deep learning based brain 
tumor segmentation: a survey. Complex Intell Syst 2023;9:1001–26. https://doi. 
org/10.1007/s40747-022-00815-5. 

[2] Biratu ES, Schwenker F, Ayano YM, Debelee TG. A survey of brain tumor 
segmentation and classification algorithms. J Imaging 2021;7. https://doi.org/ 
10.3390/jimaging7090179. 

[3] Ren J, Eriksen JG, Nijkamp J, Korreman SS. Comparing different CT, PET and MRI 
multi-modality image combinations for deep learning-based head and neck tumor 
segmentation. Acta Oncol 2021;60:1399–406. https://doi.org/10.1080/ 
0284186X.2021.1949034. 

[4] Wahid KA, Ahmed S, He R, van Dijk LV, Teuwen J, McDonald BA, et al. Evaluation 
of deep learning-based multiparametric MRI oropharyngeal primary tumor auto- 
segmentation and investigation of input channel effects: Results from a prospective 
imaging registry. Clin Transl Radiat Oncol 2022;32:6–14. https://doi.org/ 
10.1016/j.ctro.2021.10.003. 

[5] Rodríguez Outeiral R, Bos P, Al-Mamgani A, Jasperse B, Simões R, van der 
Heide UA. Oropharyngeal primary tumor segmentation for radiotherapy planning 
on magnetic resonance imaging using deep learning. Phys Imaging Radiat Oncol 
2021;19:39–44. https://doi.org/10.1016/j.phro.2021.06.005. 

[6] Trebeschi S, Van Griethuysen JJM, Lambregts DMJ, Lahaye MJ, Parmer C, 
Bakers FCH, et al. Deep learning for fully-automated localization and segmentation 
of rectal cancer on multiparametric MR. Sci Rep 2017;8:2589. https://doi.org/ 
10.1038/s41598-017-05728-9. 

[7] Yoganathan SA, Paul SN, Paloor S, Torfeh T, Chandramouli SH, Hammoud R, et al. 
Automatic segmentation of magnetic resonance images for high-dose-rate cervical 
cancer brachytherapy using deep learning. Med Phys 2022;49:1571–84. https:// 
doi.org/10.1002/mp.15506. 
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