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Background: Anoikis, as a specific form of programmed cell death, involves in tumor metastasis. 
However, there is still lacking of anoikis-related long non-coding RNA (lncRNA) risk signature in the 
diagnosis and prognosis of lung adenocarcinoma (LUAD). This study constructed a prognostic risk model 
by comprehensively analyzing anoikis-related lncRNAs which could effectively diagnose and predict the 
outcomes of LUAD patients.
Methods: A list of anoikis-related genes (ARGs) was retrieved from literatures. Anoikis-related lncRNAs 
were selected using co-expression analysis from The Cancer Genome Atlas (TCGA) database. Univariate 
and multivariate regression analyses were used to construct a prognostic model. The performance of the risk 
signature in predicting the prognosis and clinical significance were determined by Kaplan-Meier survival 
analysis, receiver operating characteristic (ROC) curves, univariate and multivariate regression analyses. 
Moreover, the differences of tumor immune microenvironment between the high- and low-risk groups were 
explored. Finally, a novel nomogram was developed by combining the signature and clinicopathological 
factors, and the association between lncRNAs and differential N6-methyladenosine (m6A) genes was 
analyzed by Spearman’s analysis.
Results: A total of 1,694 anoikis-related lncRNAs were identified from 479 cases of LUAD. According 
to the univariate and multivariate Cox analyses, we established a prognostic risk model consisting of 
seven lncRNAs (AC026355.2, AL606489.1, AL031667.3, LINC02802, LINC01116, AC018529.1, and 
AP000844.2). This prognostic risk model could efficiently classify low- and high-risk patients. The 
area under the curve (AUC) value was 0.717, which indicated more powerful predictive capability than 
commonly used clinicopathological factors. The high- and low-risk groups demonstrated different immune 
microenvironment. Moreover, the nomogram also demonstrated good performance in predicting the 
prognosis. Twelve differential m6A regulators were identified, and RBM15 was found to be correlated 
positively with the hub lncRNA AL606489.1.
Conclusions: Our study constructed a prognostic risk model based on anoikis-related lncRNAs, which 
could provide novel perspective on the prognosis of LUAD patients.
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Introduction

Lung cancer ranks the leading cause of cancer-related death 
worldwide (1,2). Lung adenocarcinoma (LUAD), as the 
major histopathological type of lung cancer, its prognosis 
remains unsatisfactory (3). The treatment strategies rely on 
tumor stages. But most of the patients are staged at advanced 
stages. Despite the advanced development in targeted 
therapy and immune therapy, the 5-year overall survival (OS) 
rate remains low (4-7). Therefore, identification of novel 
diagnostic and prognostic biomarkers is of great importance.

Anoikis, as a novel form of programmed cell death, 
demonstrates important roles in maintaining tissue 
homeostasis and preventing abnormal cell adhesion to 
abnormal extracellular matrix (ECM) (8-10). However, 
tumor cells could gain the capability to resist anoikis 
thereby enabling tumor cells to survive and metastasis to 
develop (11,12). In recent years, an increasing number 
of anoikis‐related genes (ARGs) have been identified 
in LUAD. Jin et al. confirmed that GDH1-mediated 
metabolic reprogramming of glutaminolysis promotes 
anoikis resistance and tumor metastasis in LKB1-deficient 
lung cancer (13). A prior study demonstrated that four 
ARGs (PLK1, SLC2A1, ANGPTL4, and CDKN3) were 
highly expressed in the tumor samples from clinical LUAD 
patients, and knockdown of these genes in LUAD cells 
by transfection with small interfering RNAs significantly 
inhibited LUAD cell proliferation and migration, and 
promoted anoikis (14). Diao et al. developed a risk model 
based on 16 ARGs, demonstrating that LUAD patients 
in the high-risk group exhibited shorter survival times. 
Additionally, the infiltration of tumor-infiltrating immune 
cells (M0 macrophages, neutrophils, resting mast cells, 
and activated memory CD4+ T cells), and the expression 
of immunosuppressive receptors (CTLA4, PD-1, LAG3, 
BTLA, and TIGIT) and immunosuppressive ligands (PD-
L1, PD-L2, and TNFSF14) was higher in the high‐risk 
group. These factors may contribute to tumor immune 
escape in LUAD, further worsening patient prognosis (15). 
Wang et al. constructed a risk model based on 21 ARGs 
that effectively divided patients into low- and high-risk 
subgroups with distinct prognoses and patterns of immune 
cell infiltration, indicating that anoikis plays an important 
role in tumor microenvironment (TME) regulation and 
immune pathways in LUAD (16). Although the prognostic 
value and roles of ARGs have been studied in multiple solid 
cancers, including LUAD (15,17), the prognostic value 
of an anoikis-related long non-coding RNA (lncRNA) 
signature remains to be defined in LUAD.

LncRNA demonstrates important roles in cancer 
development by regulating gene expression through a 
variety of mechanisms, including transcriptional, post-
transcriptional, and translational levels (18-21). A bunch of 
differentially expressed lncRNAs with specific biological 
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functions have also been detected in LUAD (22,23). 
Ferroptosis-, cuproptosis-, or pyroptosis-related lncRNA 
signatures with prognostic values have been identified 
in LUAD (24-26). However, there is still lack of study 
concerning anoikis-related lncRNA in LUAD.

In this study, we constructed a prognostic risk model 
by comprehensively analyzing anoikis-related lncRNAs 
in  LUAD. The prognost ic  predict ive  capabi l i ty, 
clinicopathological significance, and immune landscape of 
the risk model were further explored. Finally, a nomogram 
was established to validate the potential clinical significance 
of the risk signature in LUAD. Our study would provide 
an overview of a novel prognostic model which could 
effectively diagnose and predict the outcomes of LUAD 
patients. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-264/rc).

Methods

Data retrieval and identification of differentially expressed 
ARGs and lncRNAs 

The RNA sequence data and corresponding clinical data 
of LUAD patients were downloaded from The Cancer 
Genome Atlas (TCGA) database. The study met the 
publication guidelines of TCGA, thus additional approval 
by the ethics committee was not required. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

A list of ARGs was downloaded from literature screening 
(27,28). The differentially expressed ARGs and lncRNAs 
were extracted using “edgeR” package in R software or Peal 
software. |Log(fold change)| >1 and adjusted P value <0.05 
were defined as the cut-off criteria. Heatmap clustering was 
generated using “pheatmap” package in R software.

Acquisition of anoikis-related lncRNAs in LUAD

We identified anoikis-related lncRNAs using Spearman 
correlation coefficient analysis of gene expression data. With 
a threshold of |correlation coefficient| >0.4 and P<0.001, 
we selected the significant anoikis-related lncRNAs for 
further analysis. A correlation coefficient of 0.4 was chosen 
to ensure that only moderate to strong correlations were 
included. The P value of <0.001 indicated a high degree of 
statistical significance.

Expression of the anoikis-related lncRNAs

Differential expression of independent anoikis-related 
lncRNAs between LUAD tumor tissues and normal tissues 
was compared using “limma”, “plyr”, “reshape2”, and 
“ggpubr” packages.

Kaplan-Meier survival analysis

The correlations between the anoikis-related lncRNAs and 
OS of LUAD patients were analyzed using Kaplan-Meier 
survival analysis and log-rank test via “survival” package 
in R software. A P value <0.05 was considered statistically 
significant.

Construction of a prognostic risk model

The univariate Cox analysis was further performed to 
identify candidate prognostic lncRNA biomarkers. The 
candidate anoikis-related lncRNAs with a P value <0.01 
were subjected to the multivariate Cox analysis to select 
independent prognostic biomarkers and construct a 
prognostic risk model in R software. Ultimately, seven 
prognostic lncRNAs were identified. The coefficients 
for constructing risk score model were derived from 
multivariate Cox regression analysis for significant 
lnRNAs. The risk score for all patients was determined by 
summing the regression coefficients of the selected lnRNAs 
multiplied by the corresponding expression values. In light 
of the coefficient and expression value of each lncRNA in 
our study, risk score = −0.2584 × AC026355.2 + 0.2478 × 
AL606489.1 + 0.1513 × AL031667.3 + 0.1511 × LINC02802 
+ 0.0652 × LINC01116 + (−1.7244) × AC018529.1 + 0.1004 
× AP000844.2. Based on the calculated risk scores, the 
LUAD patients were categorized into low- and high-risk 
groups using the median value as the threshold.

Assessment of the performance of the prognostic risk model

A “survival” package was performed to investigate the 
prognostic value of the risk model in R software. The 
risk score distribution, survival status distribution and 
differential expression of the anoikis-related lncRNAs 
between the high- and low-risk groups were analyzed using 
“pheatmap” package. The receiver operating characteristic 
(ROC) was assessed by “survival ROC” package in R 
software.
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Clinicopathological significance of the risk signature

The correlations between the risk score and various 
clinicopathological parameters, such as age, gender, T stage, 
N stage, M stage, and tumor-node-metastasis (TNM) stage, 
were analyzed using “limma” and “ggpubr” packages in R 
software.

Immune landscape analysis

The immune cell infiltrations were calculated using the 
CIBERSORT algorithm. The differences in the immune 
functions were analyzed using “GSVA”, “GSEABase”, 
“ggpubr” and “reshape2” packages based on “immune.
gmt” file. The differences in the expression of immune 
checkpoints were analyzed using “limma”, “ggplot2”, 
“ggpubr” and “reshape2” packages. The correlations 
between the risk score and immune subtype were assessed 
using “limma” and “ggpubr” packages.

Construction of nomogram

A nomogram was established by combining the risk score 
and clinicopathological factors (age, gender, T stage, N stage, 
M stage, and TNM stage) using “survival”, “timeROC”, and 
“regplot” packages. Then, the discrimination and calibration 
of the nomogram was assessed in the entire LUAD dataset by 
the ROC and calibration curves.

Drug sensitivity analyses

In order to investigate the clinical manifestations of 
chemotherapeutic drugs and targeted drugs in patients 
with LUAD, we calculated the half-maximal inhibitory 
concentration (IC50) values of common drugs by using the 
“pRRophetic” package. And P value <0.001 was considered 
as statistical significance.

Association analysis between risk signature and N6-
methyladenosine (m6A) regulators

The expression profile of m6A-related regulators was 
obtained from the TCGA database. Then, the expression 
of m6A-related regulators between high- and low-risk 
groups were visualized using the R package “ggplot2” and 
“ggpubr”. Pearson’s correlation analysis was subsequently 
implemented to investigate the correlation of anoikis-
related lncRNAs and m6A-related regulators.

Competing endogenous RNA (ceRNA) regulatory network 
and functional enrichment analysis

The miRcode database (http://www.mircode.org/) was 
applied to predict the target microRNA (miRNA) of 
AL606489.1. Potential target messenger RNAs (mRNAs) 
of the miRNAs were then screened using miRDB (http://
www.mirdb.org/), miRTarBase (https://mirtarbase.cuhk.edu.
cn/), and TargetScan databases together. Gene Ontology 
(GO) analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis were performed to 
investigate the functions and potential signaling pathways 
of differentially expressed mRNAs using the R package 
“clusterProfiler”.

Statistical analysis

The retrieval of RNA profiling and clinical information 
from the TCGA dataset was performed in R software (R 
4.2.1) or Perl software. All statistical analyses and functional 
enrichment were assessed by R software. A P value <0.05 
was statistically significant.

Results

Identification of anoikis-related lncRNAs in LUAD 
patients

RNA sequence data and clinical data of LUAD patients 
were downloaded from the TCGA database. There are 479 
cases of LUAD patients, including 497 tumor tissues and 54 
non-tumoral tissues. Firstly, a list of 27 ARGs were retrieved 
from published article (27). LncRNAs demonstrated close 
correlations with ARGs were defined as anoikis-related 
lncRNAs (|R|>0.4, P<0.001). A total of 1,694 anoikis-
related lncRNAs were identified. The heatmap showed the 
anoikis-related lncRNAs between LUAD tumor tissues and 
adjacent noncancerous tissues (Figure S1).

Construction of an anoikis-related lncRNA risk model for 
LUAD patients

We established a prognostic risk model using univariate 
and multivariate Cox regression analyses. According to 
the univariate Cox analysis, a total of 16 anoikis-related 
lncRNAs demonstrated statistically significant by setting 
a P value <0.01 as the standard (Figure 1A). These 16 
anoikis-related lncRNAs were subjected to multivariate 
Cox regression analysis to construct a prognostic risk 

http://www.mircode.org/
http://www.mirdb.org/
http://www.mirdb.org/
https://mirtarbase.cuhk.edu.cn/
https://mirtarbase.cuhk.edu.cn/
https://cdn.amegroups.cn/static/public/TCR-24-264-Supplementary.pdf
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Figure 1 Identification of prognostic anoikis-related lncRNAs in LUAD patients. RNA sequence data was downloaded from the TCGA 
database. Anoikis-related lncRNAs were identified using R software. Univariate Cox regression analysis (A) and multivariate Cox regression 
analysis (B) were utilized to select anoikis-related lncRNA for the prognosis of LUAD patients. CI, confidence interval; coef, coefficient; 
LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; lncRNA, long non-coding RNA.

model. According to the multivariate Cox analysis, there 
were seven anoikis-related lncRNAs in the prognostic risk 
model. As shown in Figure 1B, the forest plots indicated the 
independent prognostic values of these seven anoikis-related 
lncRNAs. Among them, six anoikis-related lncRNAs could 
be viewed as independent prognostic factors for LUAD 
patients, including AC026355.2 (P=0.001), AL606489.1 
(P=7.58e−05), AL031667.3 (P<0.001), LINC01116 
(P=0.02), AC018529.1 (P=0.003), and AP000844.2 (P=0.02) 
(Figure 1B).

Performance of the prognostic risk model

We further verified the efficiency of the prognostic 
risk model. Patients were divided into high- and low-

risk groups according to the risk model. As shown in 
Figure 2A, the Kaplan-Meier analysis demonstrated that 
there was significant difference between high- and low-
risk groups (P<0.001). This risk model could significantly 
predict the risk score for LUAD patients. The distribution 
of risk scores (Figure 2B) and the correlation between the 
risk score and survival status (Figure 2C) were displayed. 
The expression levels of these seven anoikis-related 
lncRNAs are demonstrated in Figure 2D. The expression of 
AL606489.1, LINC02802, LINC01116, and AP000844.2 
demonstrated higher expression in the high-risk group. 
While, the expression levels of AC026355.2, AL031667.3, 
and AC018529.1 were much higher in the low-risk group  
(Figure 2D).

Moreover, univariate and multivariate Cox regression 
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Figure 2 Performance of a prognostic risk model. The prognostic risk model was constructed using multivariate Cox regression analysis. 
(A) Kaplan-Meier survival curve demonstrates the correlation between the risk score and OS of LUAD patients. (B) The distribution of 
risk scores of the prognostic risk model. (C) Survival status of the LUAD patients in high-risk group and low-risk group. (D) Heatmap 
demonstrated the expression profiles of the seven anoikis-related lncRNAs in the prognostic risk model. OS, overall survival; LUAD, lung 
adenocarcinoma; lncRNA, long non-coding RNA.

analyses verified the significant prognostic value of the risk 
signature (P<0.001, Figure 3A,3B). As shown in Figure 3C, 
the ROC curve of the risk model showed that the area 
under the curve (AUC) values at 1-, 2-, and 3-year were 
0.717, 0.705, and 0.712 respectively, which suggested that 
the constructed prognostic model may be a good prognosis 
indicator for LUAD patients. We further compared the 
prognostic value of the risk signature with age, gender, and 
stage. As shown in Figure 3D, the AUC value of the risk 
signature in 0.717, which demonstrating better performance 
than other clinicopathological factors.

Expression and clinicopathological significance of the risk 
signature

The expression levels of these anoikis-related lncRNAs 
were compared between tumor tissues and normal tissues. 
Higher expression of AC026355.2 (Figure S2A, P<0.001), 
AL031667.3 (Figure S2B, P<0.001), AL606489.1 (Figure S2C, 

P<0.001), AP000844.2 (Figure S2D, P<0.001), LINC01116  
(Figure S2E, P<0.001), and LINC02802 (Figure S2F, 
P<0.001), and lower expression of AC018529.1 (Figure S2G, 
P<0.001) were detected in LUAD tumor tissues.

The associations between the identified anoikis-related 
lncRNAs and OS of LUAD patients were analyzed using 
Kaplan-Meier analysis and log-rank test in R software. 
The Kaplan-Meier survival curves of the seven anoikis-
related lncRNAs were shown in Figure 4. High expression of 
AL606489.1 (Figure 4A, P<0.001), LINC01116 (Figure 4B,  
P<0.001), and LINC02802 (Figure 4C, P<0.001) were 
positively correlated with poor OS. While high expression of 
AC018529.1 (Figure 4D, P<0.001), AC026355.2 (Figure 4E,  
P<0.001), and AL031667.3 (Figure 4F, P=0.002) indicated 
better OS for LUAD patients .  Only AP000844.2 
demonstrated no statistical significance in predicting the 
OS of LUAD patients (Figure 4G, P=0.20).

We next investigated the correlations between the risk 
signature and various clinicopathological factors. LUAD 

https://cdn.amegroups.cn/static/public/TCR-24-264-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-264-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-264-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-264-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-264-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-264-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-264-Supplementary.pdf
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patients with lymph node metastasis (Figure S3A, P=1.8e−3) 
and advanced tumor stage (Figure S3B, P=6.3e−3) normally 
demonstrated higher risk score. Moreover, there were 
positive correlations between the risk score and RNA 
stemness score (RNAss) (Figure S3C, R=0.22, P=2.7e−06), 
as well as DNA stemness score (DNAss) (Figure S3D, 
R=0.13, P=0.007). However, there were no statistical 
significances between the risk signature and age (P=0.46), 
gender (P=0.056), T stage (P=0.051), and M stage (P=0.051) 
(Figure S4A-S4D).

Immune landscape of the risk signature

The relationships between the risk signature and immune 
landscape were analyzed by various aspects. There were 
negative correlations between the risk signature and 
immune score (Figure 5A, R=−0.2, P=3.5e−06) and stromal 
score (Figure 5B, R=−0.17, P=7.4e−05). Firstly, the immune 
functions, such as antigen-presenting cell (APC) co-
inhibition, checkpoint, human leukocyte antigen (HLA), 
T cell co-inhibition, and type II interferon (IFN) response 

were repressed in the low-risk group (Figure 5C). We next 
studied the infiltration of various immune cells between 
high- and low-risk groups. More activated dendritic cells 
(aDCs), B cells, dendritic cells (DCs), interdigitating 
dendritic cells (iDCs), mast cells, neutrophils, plasmacytoid 
dendritic cells (pDCs), T helper (Th) cells, Th1 cells, and 
tumor-infiltrating lymphocytes (TILs) were infiltrated in the 
low-risk group (Figure 5D). We next investigated differential 
expression of 47 immune checkpoints between high- and low-
risk groups. The expression level of CD276 was much higher 
in the high-risk group. Otherwise, the expression levels of 
other immune checkpoints were downregulated in the high-
risk group, which including CTLA4, CD274, CD44, and 
IDO2 (Figure 5E). The immune microenvironment was 
classified into six immune subtypes. The risk scores were 
much higher in C1 and C2 immune subtypes. Whereas the 
risk score was the lowest in C4 (Figure 5F).

Establishment of a nomogram

A nomogram combining the risk score and clinicopathological 
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factors is established in Figure 6A. In this nomogram, 
the risk score, age, T stage, N stage, and TNM stage 
demonstrated statistical significances. ROC curves revealed 
the AUC values of the nomogram in predicting 1-, 3-, and 
5-year survival were 0.822, 0.837, and 0.885, respectively 
(Figure 6B).

Roles of the risk signature in predicting chemotherapy and 
targeted therapy

For patients with advanced or metastatic who have no 

chance of surgical resection, chemotherapy, and targeted 
therapy are major treatment strategies. We next estimated 
IC50 values for 138 drugs in the TCGA-LUAD cohort. The 
findings indicated that the high-risk group exhibited a lower 
IC50 for pazopanib, temsirolimus, and bexarotene, suggesting 
that our proposed risk signature can be used as a potential 
indicator of drug sensitivity (Figure 7A-7C). Moreover, 
small molecule drugs such as NU.7441, GDC0941, and 
AMG.706 have demonstrated lower IC50 values in the high-
risk groups, indicating their potential as novel therapeutic 
agents for patients afflicted with LUAD (Figure 7D-7F).
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Correlation of m6A-related regulators, ceRNA network 
construction, and functional enrichment analysis

Increasing evidence has demonstrated the pivotal role 
of RNA modification in governing the expression and 
functionality of lncRNA. m6A emerges as the most 
prevalent and influential modification of RNA. The 
regulatory molecules involved in m6A modification exert 
a significant impact on LUAD by modulating diverse 
biological processes. To elucidate the association between 
m6A methylation and risk signature, we first interrogated 
the expression of 12 common m6a regulators in high 
and low-risk groups (Figure 8A). Pearson’s correlation 
coefficient was further conducted to analyze the relationship 
between m6A-related regulators and prognostic signature. 
As shown in Figure 8B, the m6A-related regulator RBM15 
was found to be significantly correlated with the prognostic 

lncRNA AL606489.1. A previous study has shown that 
AL606489.1 has been reported as a valuable prognostic 
predictor in LUAD patients (29). Therefore, we believe 
that there is a compelling need for further investigation 
into the ceRNA networks associated with AL606489.1 to 
deepen our understanding of its potential implications. 
We constructed a ceRNA network through the miRcode 
database to explore the potential interaction miRNAs of 
AL606489.1. We found that there were eight miRNAs that 
possessed interaction positions with lncRNA AL606489.1. 
The target mRNAs of miRNAs which potentially interact 
with AL606489.1 were further screened by combining the 
miRDB, miRTarBase, and TargetScan databases together 
(Figure 8C). We conducted GO and KEGG analyses to 
elucidate the functional enrichment and pathways associated 
with the mRNAs regulated by lncRNA AL606489.1. The 
KEGG pathway analysis revealed that cellular senescence, 
cell cycle, and human T-cell leukemia virus 1 infection were 
significantly enriched (Figure 8D). On the other hand, the 
GO annotation demonstrated that the biological processes 
were predominantly linked to cell proliferation and DNA 
methylation (Figure 8E).

Discussion

The advancement in the next-generation sequencing 
(NGS) promotes the development of targeted therapy 
and immunotherapy for lung cancer patients (30-32). 
Besides, the NGS technology also leads us to learn more 
about the significant roles of lncRNA in lung cancer 
(33,34). Currently, dysregulated expression of lncRNAs 
has been used to diagnose and predict the outcomes of 
LUAD patients (33,35,36). Combination of multiple 
lncRNAs could enhance the specificity and accuracy of 
the lncRNA-based prediction model (37-39). More and 
more studies focus on exploring lncRNAs related to 
cellular functions, such as ferroptosis, pyroptosis, and 
immune microenvironment (24,26,40). In this study, we 
comprehensively analyzed anoikis-related lncRNAs in the 
TCGA database and established a prognostic risk model to 
predict the outcomes of LUAD patients.

In this study, a total of 1,694 anoikis-related lncRNAs 
were identified between LUAD tumor tissues and adjacent 
normal tissues. Among these 1,694 lncRNAs, univariate 
and multivariate Cox regression analyses were performed 
to identify seven prognostic anoikis-related lncRNAs to 
establish a prognostic risk model, including AC026355.2, 
AL031667.3, AL606489.1, AP000844.2, LINC01116, 
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LINC02802, and AC018529.1. Except for LINC02802, the 
other six lncRNAs could be used as independent prognostic 
biomarkers for LUAD patients. The performance of 
the risk model was verified according to Kaplan-Meier 
survival analysis, ROC curve, univariate and multivariate 
Cox regression analyses. Our study demonstrated that this 
prognostic risk model demonstrates good performance 
than tradition clinicopathologic parameters, and with good 
sensitivity and specificity for LUAD patients.

Some of the anoikis-related lncRNAs in our prognostic 
risk model have been reported to be involved in the 
tumorigenesis of solid tumors, including LUAD. In 
accordance with our study, AL031667.3, as a cuproptosis- 
or ferroptosis-related lncRNA, has been reported to work 
as independent prognostic maker for LUAD (41,42). 
AL606489.1 has been identified as a prognostic lncRNA 
in LUAD, which is related to pyroptosis and ferroptosis 
(26,43). Besides, Chen et al. reported AL606489.1 as a 
necroptosis-related lncRNA in hepatocellular carcinoma (44).  
AP000844.2 expression is correlated with the prognosis 
of hepatocellular carcinoma and prostate cancer patients 
(45,46). The expression, prognosis value, and cellular 
functions of LINC01116 have been explored in multiple 

cancers, including melanoma (47), colorectal cancer (48), and 
hepatocellular carcinoma. LINC01116 has been reported 
to promote LUAD proliferation, cisplatin resistance, and 
metastasis (49). Ye et al. identified LINC0280 as an immune-
related prognostic lncRNA in cervical cancer (50). However, 
AC026355.2 and AC018529.1 have not been reported and 
their biological functions are unclear.

Anoikis-resistance contributes to the invasion, metastasis, 
and drug resistance (51-53). There are many mechanisms 
contributing to anoikis-resistance, including the modulation 
of TME. There were negative correlations between the risk 
score and immune score, as well as stromal score. Thus, 
we analyzed the differences in the infiltration of immune 
cells, expression of immune checkpoints, as well as immune 
functions between high- and low-risk groups. The high-
risk group demonstrated repressed immune functions, 
down-regulated expression of immune checkpoints, and 
less infiltration of immune cells, including B cells, dendritic 
cells, Th cells, and Th1 cells. Moreover, we observed that 
the risk scores were much higher in C1 and C2 immune 
subtypes, whereas the risk score was the lowest in C4. As 
we all know that C2 represents IFN-γ dominant, while C4 
represents lymphocyte depleted, these results suggested 
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Figure 8 Correlation between m6A and lncRNAs and ceRNA network construction. (A) Expression correlation between the risk signature 
and 12 m6A regulators. (B) Correlation between risk lncRNAs and m6A regulators. (C) ceRNA network of AL606489.1 (purple), its 
target miRNAs (green), and corresponding target mRNAs (blue). (D) KEGG pathway analyses and (E) GO enrichment of target mRNAs 
in TCGA-LUAD. *, P<0.05; **, P<0.01; ***, P<0.001; ns, not significant. BP, biological process; CC, cellular component; MF, molecular 
function; m6A, N6-methyladenosine; lncRNA, long non-coding RNA; ceRNA, competing endogenous RNA; miRNA, microRNA; mRNA, 
messenger RNA; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; TCGA, The Cancer Genome Atlas; LUAD, 
lung adenocarcinoma.
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that the risk signature was closely correlated to the tumor 
immune microenvironment. Since the functions of most of 
these lncRNAs are poorly understood and need further study, 
thus, our future work will focus on the biological functions of 
these lncRNAs in LUAD. In addition, we calculated the IC50 
values of common drugs by using the “pRRophetic” package. 
Our results indicated that the high-risk group exhibited a 
lower IC50 for pazopanib, temsirolimus, and bexarotene, 
suggesting that our proposed risk signature can be used as a 
potential indicator of drug sensitivity.

In conclusion, we have established an anoikis-related 
lncRNA-based prognostic risk model for LUAD patients. 
Further study verified the good sensitivity and specificity of 
this risk model, as well as its significance related to tumor 
immune microenvironment. This study indicates that 
integrated analysis of anoikis-related lncRNA will provide 
novel insight to diagnose and predict the outcomes of 
LUAD patients.

Conclusions

This study establishes a robust prognostic signature based 
on seven prognostic anoikis-related lncRNAs, providing 
a reliable tool for predicting prognosis, delineating 
immune landscape, and offering profound insights for the 
development of personalized treatment strategies in LUAD 
patients.
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