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Abstract Population averaging due to paracrine communication can arbitrarily reduce cellular

response variability. Yet, variability is ubiquitously observed, suggesting limits to paracrine

averaging. It remains unclear whether and how biological systems may be affected by such limits of

paracrine signaling. To address this question, we quantify the signal and noise of Ca2+ and ERK

spatial gradients in response to an in vitro wound within a novel microfluidics-based device. We

find that while paracrine communication reduces gradient noise, it also reduces the gradient

magnitude. Accordingly we predict the existence of a maximum gradient signal to noise ratio.

Direct in vitro measurement of paracrine communication verifies these predictions and reveals that

cells utilize optimal levels of paracrine signaling to maximize the accuracy of gradient-based

positional information. Our results demonstrate the limits of population averaging and show the

inherent tradeoff in utilizing paracrine communication to regulate cellular response fidelity.

DOI:10.7554/eLife.09652.001

Introduction
Cellular variability is likely a biological trait with significant phenotypic consequences. Technological

advances in single-cell measurement methodologies reveal substantial cellular variability. For

instance, single-cell quantification of protein concentration variability between cells shows that the

concentration of many signaling molecules can vary by ~25% (coefficient of variation) (Sigal et al.,

2006; Bar-Even et al., 2006; Spencer et al., 2009). Furthermore, a large and rapidly growing body

of single-cell transcriptomics experiments further demonstrates that cells homogeneous in ’type’

have substantially heterogeneous gene expression patterns (Junker and Van Oudenaarden, 2014).

The origin of this cellular variability has been traced to fundamental properties of gene expression.

Notably, single-molecule kinetics regulates gene expression and, as a result, is an inherently stochas-

tic process (Sanchez and Golding, 2013).

While the costs and benefits of cellular variability are likely dependent on the specific physiologi-

cal context, the functional significance of cellular variability suggests that cellular variability magni-

tude is regulated. Functional analysis of cellular response variability demonstrates that the observed

cellular variability affects the core function of signaling networks. Despite a homogenous environ-

ment, cells respond in a heterogeneous manner due to biological variability. Response variability

potentially degrades transmitted information and decreases downstream effector ability to reliably

respond to environmental changes (Selimkhanov et al., 2014; Cheong et al., 2011; Voliotis et al.,

2014; Hansen and O’Shea, 2015). The abundance of cellular variability throughout biological pro-

cesses and the potential consequences of information degradation suggest that biological systems

have developed mechanisms to regulate cellular variability. However, cellular variability is not
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necessarily detrimental to cellular function. In fact, cellular heterogeneity often plays a critical role in

ensuring proper cellular response by mechanistically increasing the cellular response range to a con-

stantly changing environment (Altschuler and Wu, 2010). For example, single-cell noise in NFkB

dynamics creates robust population level responses to a wider range of inputs (Hughey et al., 2014;

Kellogg and Tay, 2015).

Cells share information with each other via paracrine signaling, which effectively averages variable

cellular responses and therefore reduces cellular variability. Overall population-level averaging

decreases variability by following the statistical laws of the central limit theorem and the law of large

numbers (Piras and Selvarajoo, 2014). Paracrine signaling averaging can decrease variability in a

similar manner, but functions on a local population level. Specifically, paracrine signaling averaging

functions such that the local concentration of the paracrine ligand, or the concentration of ligand a

cell is exposed to, is the average ligand concentration secreted by local cells (Figure 1A). Indeed,

the benefits from paracrine communication were previously demonstrated to increase post-paracrine

cellular response fidelity (Rand et al., 2012; Shalek et al., 2014). The process of local population

’information averaging’ by each cell enables increased accuracy of inherently single cell decisions

such as proliferation and differentiation.

Despite promises of noise mitigation from paracrine averaging, parameters set by biological sys-

tems can limit these potential benefits. For example, population averaging due to paracrine commu-

nication may cause loss of information in a similar manner to the information loss of single-cell

dynamics due to ‘population average’ bulk measurements (Elowitz et al., 2002; Newman et al.,

2006; Bar-Even et al., 2006). The potential information loss due to ‘over-averaging’ of variable sin-

gle-cell responses demonstrates a limitation to paracrine communication. Limitations to paracrine

communication are also observed in post-paracrine single-cell responses that remain highly variable

despite paracrine averaging. These limitations suggest an overall functional constraint to the poten-

tial benefits of paracrine communication. However, the identity and source of these limitations on

paracrine communication benefits are unknown.

eLife digest The human body is made up of many different types of cell that are each

specialized to perform particular roles. Although each cell type has the same set of genes, the level

of activity (or “expression”) of these genes varies between each type. Additionally, gene expression

in cells of the same type can vary due to randomness in the regulation of genes.

Although variation in gene expression between cells can allow populations of cells to adapt to a

changing environment, variability can also cause problems when many different cells need to work

together. A system called “paracrine signaling” allows cells to communicate with each other by

releasing signaling molecules that bind to and activate surrounding cells. The distance that this

molecule travels, or the “paracrine communication distance”, determines how many surrounding

cells each cell can communicate with to coordinate their responses. However, it is not clear what

impact paracrine signaling has on the variability between cells, or what limitations there are on the

size of the paracrine communication distance.

Cells that are damaged during wounding immediately release a molecule called ATP, which acts

as a danger signal to activate the wound healing process in the surrounding cells. The release of

ATP from wounded cells forms a spatial gradient in the surrounding healthy cells and stimulates the

release of molecules called growth factors that are required for the healing process.

Here, Handly et al. developed a new device to study the responses of human cells to a wound

and used it in combination with a computational model to measure the impact of paracrine

communication on these responses. The experiments show that paracrine signaling by the growth

factor EGF reduces the variability in the responses of cells to the ATP signal. However, this reduction

is limited by the size of the paracrine communication distance. Paracrine communication distances

that are too small or too large either do not provide adequate reduction in variability or result in

“over-averaging”. Handly et al.’s findings show that there is an optimal level of paracrine signaling

during wounding that helps to coordinate the response in nearby cells without inappropriately over-

averaging the signal.

DOI:10.7554/eLife.09652.002
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Figure 1. Local averaging using paracrine signaling reduces response variability in a communication distance dependent manner. (A) A hypothesis for

local averaging based reduction of response variability using paracrine signaling for ERK activation by P2Y receptors. ATP binds to P2Y receptors to

increase cytosolic Ca2+ levels with high variability between cells despite equivalent ATP dosage per cell (pink shading). EGF release from each cell is

proportional to the primary response to ATP (green arrows). Due to diffusion of EGF, the local concentration will be the average of EGF released from

nearby cells and subject cells in a local neighborhood to the same level of EGF (blue arrows) to result in similar ERK activation. (B) ATP activates ERK in

a paracrine fashion in MCF-10A cells. ERK response to 10 mM ATP addition with (green dashed) and without (green solid) 1 mM of EGFR inhibitor

tryphosphitin AG1478. 0 mM ATP addition with (blue dashed) and without (blue solid) 1 mM AG1478 shown as controls. (C) MCF-10A cells were

clustered based on their spatial proximity so that cells within a cluster were within a specific maximal communication distance (MCD) and cells in other

clusters were farther than the MCD. Cluster denisty was calcuated by dividing the number of cells per cluster by the circular area inhabitated by each

cluster. (D) Standard deviation of ERK response per cluster to 10 mM ATP. Standard deviation decreases with increasing cluster density (p-value <0.05,

Pearson correlation). (E) Average maximum Ca2+ response with increasing ATP dosage. The standard deviation, that is noise, of the Ca2+ response to

each ATP dosage is large when compared to the increase in average response with increasing ATP dose, that is signal (SNR = 0.9, gray error bars

[standard deviation]). Noise decreases when Ca2+ response is locally averaged with a PCD of 100 mm (SNR = 20.2, black error bars [standard deviation]).

x-axis shown in log-scale. F. Single-cell maximum Ca2+ response is locally averaged across an area specified by the PCD to produce a predicted

single-cell ERK response. Variability between cells in the predicted ERK response decreases with increasing PCD. Response magnitude of Ca2+ and

ERK response indicated by pink to yellow and blue to yellow colorbars, respectively. G. The SNR of the predicted ERK response from locally averaged

Ca2+ data continually increases with increasing PCD shown for a model with rapid diffusion (green) or limited by the diffusion rates and integration

time of paracrine signals (blue, Materials and methods). SNR calculated in same manner as panel E with increasing PCD. Shaded area is SEM (N = 5).

DOI: 10.7554/eLife.09652.003

The following figure supplements are available for Figure 1:

Figure supplement 1. MCF-10A cells can be separated and analyzed in cell clusters when plated at low densities.

DOI: 10.7554/eLife.09652.004

Figure supplement 2. Cluster standard deviation and cluster average as a function of cluster density show significant trends for ERK activation but not

Ca2+ activation.

DOI: 10.7554/eLife.09652.005

Figure supplement 3. Paracrine ERK activation depends on Src prior to MMP activation.

DOI: 10.7554/eLife.09652.006

Figure supplement 4. Inhibiting paracrine communication does not allow decreased cellular response variability.

DOI: 10.7554/eLife.09652.007

Figure supplement 5. Mutual information and SNR both continue to increase with increasing PCD.

DOI: 10.7554/eLife.09652.008

Figure supplement 6. Scaling of Paracrine Communication Distance.

DOI: 10.7554/eLife.09652.009

Figure supplement 7. Required Integration time.

DOI: 10.7554/eLife.09652.010

Figure supplement 8. The effect of fluid flow on paracrine communication.

DOI: 10.7554/eLife.09652.011

Figure supplement 9. The effect of cellular decoding schemes on paracrine communication.

DOI: 10.7554/eLife.09652.012

Handly et al. eLife 2015;4:e09652. DOI: 10.7554/eLife.09652 3 of 18

Research article Computational and systems biology

http://dx.doi.org/10.7554/eLife.09652.003
http://dx.doi.org/10.7554/eLife.09652.004
http://dx.doi.org/10.7554/eLife.09652.005
http://dx.doi.org/10.7554/eLife.09652.006
http://dx.doi.org/10.7554/eLife.09652.007
http://dx.doi.org/10.7554/eLife.09652.008
http://dx.doi.org/10.7554/eLife.09652.009
http://dx.doi.org/10.7554/eLife.09652.010
http://dx.doi.org/10.7554/eLife.09652.011
http://dx.doi.org/10.7554/eLife.09652.012
http://dx.doi.org/10.7554/eLife.09652


The initial paracrine signaling pathways that are activated in response to Damage Associated

Molecular Patterns (DAMPs) are a good model system for investigating the influence and limits of

paracrine communication on cellular response fidelity. Paracrine communication is pervasive during

initial wound response. Wound healing begins as soon as the wound occurs and the initial cellular

wound response provides the foundation for proper downstream healing. The initial cellular wound

response relies on external environmental cues as well as programs inherent to the cell, including

DAMPs as primary danger signals (Enyedi and Niethammer, 2015). DAMPs are released from

necrotic cells and bind to extracellular receptors on surrounding cells. This binding initiates a signal

in the surrounding cells to secrete a secondary set of cytokines and growth factors required to coor-

dinate the wound healing process. Many DAMP signals, such as extracellular ATP, are transient and

released in limited quantities. As a result, the initial wound response to such DAMPs shows high cel-

lular variability and low fidelity. Despite the limited fidelity of the initial wound response, the

wounded epithelium is able to establish a robust healing response. The complicated and multi-step

wound healing process utilizes several paracrine communication mechanisms to share cellular infor-

mation and coordinate the overall healing program.

Here we use the paracrine release of epidermal growth factor (EGF) ligands initiated by ATP bind-

ing to P2Y receptors as a model to investigate the limits of cellular information sharing through para-

crine communication to mitigate biochemical noise (Figure 1A). We show that paracrine

communication increases extracellular signal-regulated kinase (ERK) response fidelity using live sin-

gle-cell quantitative fluorescent imaging of primary Ca2+ and secondary ERK responses downstream

of P2YR and EGFR, respectively. Statistical analysis of the primary response signal-to-noise ratio

(SNR) demonstrates that the increase in response fidelity is limited by paracrine communication dis-

tance (PCD). To analyze this pathway in the physiological context of wound response we developed

a new microfluidics device to monitor the spatial propagation of initial wound response signaling.

Our results demonstrate that the interplay between the wound induced spatial signaling gradient

and the cellular noise pattern produces an optimal PCD. The optimal PCD balances the benefits of

decreased noise from local averaging with the cost of reduced signal of the spatial signaling gradi-

ent due to over-averaging. Empirical measurements of the PCD reveal that cellular communication

occurs at a distance to maximize cellular response fidelity.

Results

Paracrine signaling reduces response variability
Here we establish that the paracrine activation of ERK by ATP provides a suitable system to investi-

gate signaling response fidelity changes due to paracrine communication. Extracellular ATP binding

to P2YR results in EGF family ligand release to bind EGFR and activate ERK response as monitored

by ERK activity following ATP addition. In the mammary epithelial cell line MCF-10A, addition of

extracellular ATP increases ERK kinase activity in an EGFR dependent manner (Figure 1B) similar to

results reported in other in vitro epithelial models (Yin et al., 2007). ERK, as measured by the genet-

ically encoded FRET sensor EKAREV (Albeck et al., 2013; Komatsu et al., 2011), increases when

stimulated with ATP. Inhibiting EGFR with tryphostin AG1478 prevents ERK activation upon ATP

addition showing that ERK activation depends on secreted EGF binding to EGFR (Wetzker and

Böhmer, 2003).

With our paracrine communication system established, we next confirmed the influence of para-

crine communication on cellular response variability. Under conditions of low cell density we used a

spatial clustering analysis to group cells such that the distance between groups effectively con-

strained communication to cells within groups (Figure 1C,D, Figure 1—figure supplement 1,2). In

the case that cellular coordination is beneficial, we anticipated that the ERK response within groups

of higher cellular density, that is cells have increased communication ability, would have reduced

response variability than cell clusters with decreased communication ability. ERK response variability

within clusters decreases with increasing cluster density indicating increased intercellular communica-

tion ability. Increased intercellular communication ability is not observed in the absence of paracrine

communication such as with the primary Ca2+ response to ATP (Figure 1D, Figure 1—figure sup-

plement 2). Furthermore, disrupting paracrine communication by partially inhibiting Src results in

the loss of the observed benefit of paracrine communication in higher density clusters (Figure 1D,
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Figure 1—figure supplements 3,4). Together these observations support the hypothesis that para-

crine communication decreases cellular variability by increasing cellular coordination.

Computational analysis of variability reduction resulting from paracrine
information sharing
Next we developed a computational model that mimics the coordination-effects of paracrine com-

munication (see Materials and methods for details). This computational model quantifies the overall

observed benefit of paracrine coordination and predicts the potential reduction in variability. Experi-

mental single-cell dose response data of primary Ca2+ (prior to paracrine communication) response

to ATP is used as an input to predict the secondary ERK response. We quantify cellular response

fidelity by using a simple signal-to-noise analysis (SNR). In this analysis the cellular response magni-

tude of the input ligand (signal) is divided by the cellular response variability (noise). The signal is

estimated by calculating the spread between the average cellular Ca2+ responses from multiple ATP

concentrations using multi-well dose response data. Noise is calculated from the average variability

between cellular responses to a single input ligand concentration. SNR is simply the ratio of these

two estimates (Figure 1E). To mimic the benefit of paracrine communication our computational

model performs a local, spatially weighted average (convolution) of the primary Ca2+ response to

predict the variability of response post paracrine communication (ERK) (Figure 1F). In short, the con-

volution averages the signal for every cell with its associated surrounding cells by weighting the sur-

rounding cells based on a Gaussian function parameterized with varying PCDs. The PCD represents

how far the paracrine molecule travels from a single-cell to activate its associated surrounding cells.

Local spatial averaging provides an upper bound of the possible benefit resulting from cellular com-

munication in conditions where no additional noise exists in the paracrine pathway. This analysis indi-

cates that paracrine averaging using a PCD of 100 mm increases response SNR from 0.9 to 20.2 by

decreasing noise, or response variability, of the predicted ERK response (Figure 1E, gray/black). To

investigate the limits of paracrine averaging, we repeated this analysis for multiple PCDs. Interest-

ingly, our analysis estimates that the overall response SNR can increase up to eightyfold at PCDs of

500 mm when paracrine diffusion is not limiting, and up to twenty fivefold when diffusion of the para-

crine ligand is limiting (Figure 1G). More sophisticated statistical measures, such as mutual informa-

tion, produce similar results (Figure 1G, Figure 1—figure supplement 5). The large maximal SNR

benefit suggests a potentially noise-free ERK response. However, experimental measurements of

ERK response fidelity shows substantial ERK variability indicating potential factors that limit the ben-

efit gained from paracrine communication (data not shown).

Cellular response fidelity depends on the extent of paracrine signaling
during wound response
Extracellular ATP released from necrotic cells act as DAMPs to activate healthy cells proximal to the

wound (Cordeiro and Jacinto, 2013). Given this role, the spatial component produced by the ATP

concentration gradient and the resulting cellular positional information relative to the wound may be

important in the analysis of paracrine communication that occurs over hundreds of microns from the

wound. Our previous SNR analysis demonstrating an increasing SNR with increasing communication

distance was done based on multi-well experiment data. However, the bolus addition of ATP creates

a spatially uniform ligand concentration in the well and does not represent a physiologically relevant

spatial component. To examine whether ATP spatial patterns influence the paracrine communication

benefit we repeated the SNR analysis using single-cell wound response data.

In order to measure the spatial wound response for epithelial cells, we first developed a convec-

tion-free, small-volume wounding device. Scratch-assays, where a monolayer of cells is mechanically

wounded using a pipet tip, are traditionally used for epithelial cell wounding (Sholley et al., 1977).

Although the scratch-assay is useful for studying cell-migration following wounding, scratch-assays

lack the ability to study paracrine signaling. The large volume above the cells and convection caused

by the scratch present challenges to examine paracrine signaling due to the dilution and inadvertent

mixing of any paracrine molecules released from a cell into the surrounding media. To circumvent

these technical issues we developed a microfluidics based wounding device (Figure 2A,B). Our

device has two components: an air channel (black) and a cell chamber with a ~2.5 mL volume

(orange). The ceiling of the cell chamber has a PDMS pillar that, when air pressure is increased in the
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upper air channel, lowers down on to the cells, thereby wounding the cells in the cell chamber in a

highly controlled and reproducible manner (Figure 2B,C, Figure 2—figure supplement 1, Video 1).

Figure 2. Paracrine communication reduces response variability during wounding. (A) Dual layer microfluidic-based wounding device with a top air

channel (black) and bottom cell chamber (orange). (B) Schematic of wounding in the device. Cells are first loaded into the cell chamber (top). Increasing

the air pressure in the air channel lowers a pillar in the ceiling of the cell chamber until cells below the pillar are mechanically crushed (middle). The

pillar returns to the original height when air pressure is released (bottom). (C) Ca2+ response visualized by the Fluo-4 Ca2+ indicator dye over a period

of 5 min following a 300 mm diameter wound (black circle). (D) Top: Maximum single-cell (dots) Ca2+ response to a 300 mm wound. Inset shows

maximum Ca2+ response to 300 mm wound in the presence of the ATP scavenger apyrase. Bottom: Maximum single-cell (dots) of Ca2+ response to

wound according to distance from the wound. (E) Same as D but for maximum ERK response. (F) Top: Cells are binned according to distance from the

wound (Figure 3A) and the average and standard deviation (error bars) are found for each bin. Middle: Coefficient of variation (CV) calcuated by

dividing the standard deviation of each bin by the mean of that bin. Bottom: Ca2+ has higher variability than ERK response for the wound according to

the CV of every bin for all wounds (Black bar = average CV, p-value by t-test).

DOI: 10.7554/eLife.09652.013

The following figure supplements are available for Figure 2:

Figure supplement 1. Microfluidic wounding device characterization demonstrates cell viability, isotropic wounding, wounding control, and

reproducibility.

DOI: 10.7554/eLife.09652.014
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We used our wounding device to monitor Ca2+ and ERK response to a 300 mm diameter wound

using a stable, dual reporter MCF-10A cell line expressing the genetically encoded Ca2+ indicator

RGECO (Akerboom et al., 2013; Zhao et al., 2011) and the EKAREV FRET reporter for ERK

(Albeck et al., 2013; Komatsu et al., 2011) (Figure 2D,E; Video 2). We verified the key role of ATP

in initial wound response by wounding in the presence of apyrase, an enzyme that rapidly hydrolyzes

ATP. Wounding in the presence of apyrase inhibits both Ca2+ and ERK response (Figure 2D,E,

insets). From each wound we quantified single-cell time traces for over 3000 cells. Notably, the maxi-

mum activity per cell shows a larger response in cells closer to the wound compared to cells farther

away from the wound for both Ca2+ and ERK. These response gradients demonstrate the impor-

tance of the cellular position to determine the cellular response, or positional information

(Figure 2D,E). We used coefficient of variation (CV) to measure the variability of the post-paracrine

ERK response and the pre-paracrine Ca2+ response in the wound (Figure 2F). Indeed, the CV for

Ca2+ wound response shows statistically higher variability than ERK wound response indicating that

paracrine communication reduces response variability during initial wound response.

We adapted the computational SNR analysis to wound response data to determine the influence

of spatial patterns on response fidelity. As opposed to the dose-response data, the wound response

data uses the distance of each cell from the wound as the input rather than the concentration of acti-

vating ligand (Figure 3A). Similar to the dose-response data, noise is estimated by averaging the

cellular response variability over all distances. The variability between the average response magni-

tude of each distance constituted the signal (Figure 3B). Other statistical measures of response fidel-

ity such as mutual information were also adapted for the wound context (Figure 3—figure

supplement 1).

The maximum primary Ca2+ response shows highly variable cellular response when plotted

according to distance (Figure 3C, pink). This variability complicates the ability for a cell to distinguish

its respective position to the wound based on its response We again mimicked paracrine communi-

cation to predict the post-paracrine ERK response by locally averaging the single-cell Ca2+ wound

response using a Gaussian kernel (Figure 1F). Locally averaging the cellular Ca2+ response creates a

smoother predicted ERK response pattern versus distance from the wound (Figure 3C, gray). How-

ever, the reduction in variability also decreases the overall response pattern trend. Locally averaging

the Ca2+ signal using increasing PCDs decreases the magnitude of change of the average predicted

ERK response between cells closest to the wound and farthest from the wound (Figure 3D). In other

words, the response gradient becomes less obvious when cells are averaged over larger distances.

Therefore, although the increase in PCD decreases response noise, the corresponding decrease in

signal demonstrates the limit of PCD on the SNR benefit (Figure 3E). The difference in rates at which

the signal and noise decrease results in a maxi-

mum SNR at a PCD of 91.0+/-6.3 mm (SEM, N =

5) (Figure 3F). This peak corresponds to a PCD

where the amount of noise is decreased to the

lowest amount possible without reducing the

response gradient due to ‘over-averaging’. The

Video 1. Isotropic Ca2+ response to wounding. Ca2+

response to a 300 mm wound, indicated by the Fluo-4

Ca2+ sensor. Upon wounding, Ca2+ response

propagates isotropically from the wound. Movie time

lapse is 5 min.

DOI: 10.7554/eLife.09652.017

Video 2. Ca2+ and ERK dual wounding. Ca2+ and ERK

are measured simultaneously using the fluoresecent

reporter RGECO for Ca2+ (pink) and the ERK FRET

sensor EKAREV (cyan). Ca2+ response is completed

within 5 min whereas ERK response takes

approximately 30 min.

DOI: 10.7554/eLife.09652.018
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predicted PCD with maximal benefit did not change when we expand the model to consider limita-

tions due to diffusion (Figure 3F green curve, Materials and methods). Similar analysis using mutual

information statistics shows a similar PCD with the maximal mutual information at the distance that

showed maximal SNR (Figure 3E,F, Figure 3—figure supplement 1B). This analysis shows that the

benefits from paracrine communication depend on how far a paracrine molecule travels which, in

this specific case, has a maximal benefit at ~100 mm, or approximately three cell diameters.

Direct measurement of Paracrine Communication Distance
We next empirically measured the PCD in our experimental system to compare to the PCD pre-

dicted to maximize the SNR in the wound context. To measure the PCD of ERK activation we first

established a co-culture system that allows us to separate the effects of autocrine and paracrine sig-

naling. Our assay utilizes a synthetic GPCR: Designer Receptors Exclusively Activated by Designer

Drugs (DREADD). The Gq human muscarinic derived GPCR DREADD is activated by a synthetic small

molecule, clozapine-N-oxide (CNO), that has no known endogenous receptors (Armbruster et al.,

2007). In addition, DREADD activates the Gq pathway similar to purinergic ATP receptors

(Dong et al., 2010). Using a co-culture of DREADD expressing (activated by CNO) and non-express-

ing cells (not activated by CNO), we can determine which cells release EGF (DREADD expressing-

red) and which cells accept EGF (non-expressing-gray) (Figure 4A). Using a synthetic system allows

us to directly measure the average communication distance of EGF. CNO addition selectively acti-

vates Ca2+ response in DREADD expressing cells while the surrounding non-expressing cells show

Figure 3. Signal to noise analysis of initial wound response shows limits to paracrine communication. (A) Representative single-cell time traces of Ca2+

response to wounding, grouped according to distance from the wound (concentric circle colors). (B) SNR calculation method for Ca2+ response

adpated to the wound. Horizontal bars represent bin average and error bars represent bin variance. (C) Maximum single-cell (dots) Ca2+ response to

wound with respect to distance away from the wound (pink). Predicted ERK cellular response after paracrine communication as determined by local

averaging (gray). Local averaging done in same manner as Figure 1F. (D) Predicted ERK response according to distance from the wound using PCDs of

0 to 600 mm (colorbar). Predicted ERK response determined through local averaging using increasing PCDs results in decreased response magnitude

over space. (E) Signal (blue), Noise (green) and SNR (orange) as function of PCD of locally averaged Ca2+ response trends in panel D. (F) SNR analysis

of locally averaged Ca2+ response to a wound with increasing PCD shows a maximum SNR at PCD of 91.0 mm+/-6.3 mm indicated by the asterick (blue,

SEM indicated by shaded region, N = 5). The maximum SNR for conditions controlled for biologically relevant integration times show the same

maximum SNR (green, Materials and methods).

DOI: 10.7554/eLife.09652.015

The following figure supplements are available for Figure 3:

Figure supplement 1. Mutual information analysis of locally averaged Ca2+ response to wounding shows similar peak to SNR analysis.

DOI: 10.7554/eLife.09652.016
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no response indicating a lack of paracrine activation of Ca2+ response in cells (Figure 4A). Although

some systems show that Ca2+ response can propagate from cell-to-cell through gap junctions

(Ross 2012), this does not appear to be the case in MCF-10A cells as non-expressing cells showed

no cytosolic Ca2+ increase upon activation of DREADD cells. Alternatively, ERK response was found

in both DREADD expressing and the surrounding non-expressing cells upon CNO addition but was

inhibited in both cell types in the presence of the EGFR inhibitor tryphosphitin AG1478, confirming

paracrine activation of ERK in the DREADD system (Figure 4B). The Ca2+ and ERK responses in the

DREADD system suggest that local averaging takes place only at the EGF level between Ca2+ and

ERK response. Additionally, increasing the ratio of DREADD cells to non-expressing cells shows an

increasing ERK response magnitude in non-expressing cells, further supporting that paracrine com-

munication locally activates ERK (Figure 4C).

We measured the PCD by monitoring local paracrine ERK activation with our DREADD co-culture

assay. We co-cultured DREADD cells at a low concentration compared to non-expressing cells to

ensure that neighboring non-expressing cells were activated only by a single DREADD cell. We then

analyzed the ERK response of ~1500 non-expressing cells neighboring a DREADD cell. (Figure 4D,

E). Local ERK activation of non-expressing cells surrounding a DREADD cell show decreasing

response with increasing distance from the DREADD cell. ERK response as a function of distance fol-

lows a Gaussian fit, consistent with how the concentration of diffusing molecules, like in paracrine

signaling, changes over distance (Figure 4E) (Berg, 1993). The PCD was determined by calculating

the spread, or sigma, of this Gaussian curve. According to our fit, the paracrine activation of ERK has

Figure 4. Empirical PCD measurement using DREADD synthetic GPCR show that cells use an optimal level of

paracrine communication to maximize cellular response fidelity. (A) The addition of 5 mM CNO to a co-culture of

DREADD expressing (red) and non-expressing (gray) MCF-10A cells shows increased fold Ca2+ response in

DREADD expressing cells but not non-expressing cells (SEM indicated by error bars, N = 3; *p-value<0.005, t-test).

(B) Fold ERK increase in DREADD co-culture assay. Both DREADD and non-expressing cells show significant ERK

increase when both DREADD cells and 5 mM CNO are present. ERK activation inhibited by 1 mM AG1478 (SEM

indicated by error bars, N = 3; *p-value <0.005, t-test). (C) The average maximum ERK response of non-expressing

cells in a given well increases linearly with an increasing percentage of DREADD cells per well. (D) Representative

images from a timelapse experiment showing ERK activation (cyan) in non-expressing cells surrounding a single

activated DREADD cell (yellow) over a 40 min time period. ERK activation level indicated by black to cyan colorbar.

(E) Average maximum ERK activation in non-expressing cells surrounding single DREADD cell according to

distance from the DREADD cell. PCD was calcuated as the spread, or sigma, of the fitted Gaussian curve (dashed

line) and measured to be 99.5 mm+/-19.6 mm (blue *) (SEM indicated by error bars, N = 12 DREADD cells). Scale

bar represents average length of a single-cell. F. Comparison between calculated optimal PCD per wound (pink,

Figure 3F) and experimentally measured PCD found using the DREADD co-culture assay per DREADD cell (blue,

Figure 4E) (p-value>0.5, t-test). Horizontal bars represent average.

DOI: 10.7554/eLife.09652.019
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a communication distance of 99.5+/-19.6 mm (SEM, N = 12 DREADD cells). This empirically mea-

sured value is statistically similar to the predicted communication distance value that maximizes the

SNR of wound response (Figure 4F). In other words, the cellular communication distance is tuned to

maximize the overall response fidelity during wound response signaling.

Discussion
Multicellular organisms utilize cellular diversity for specialization and division of labor. However, the

variability between cells can be detrimental due to the potential loss of response fidelity (Uda et al.,

2013; Hansen and O’Shea, 2015; Voliotis et al., 2014; Cheong et al., 2011; Selimkhanov et al.,

2014). Paracrine communication can serve to share information between cells to regulate cellular

variability. In this study we analyzed the benefits and limitations of paracrine communication based

information sharing between cells as a mechanism to control cellular response variability.

We analyzed the limits of paracrine communication on cellular response fidelity in two cases. First

we analyzed the response to a spatially uniform ligand. Our analysis reveals that, under these condi-

tions, the magnitude of single-cell response fidelity increases as a function of the PCD with no upper

bound. In order for cells to facilitate larger PCDs, cells would need to synthesize larger amounts of

paracrine signaling molecules or utilize fast diffusing paracrine ligands like H2O2 (Enyedi and Niet-

hammer, 2015). The increased energy required to synthesize the additional molecules is likely to be

minor in comparison to the overall energetic demand of a cell. Therefore cells could potentially take

advantage of large PCDs to substantially mitigate biochemical noise. However, a spatially uniform

input, while common in cell culture experiments, is likely an inadequate representation of physiologi-

cal conditions. In the second case we analyzed the response of cells to spatially defined inputs in the

form of a mechanical epithelial wound. We analyzed the cellular response to extracellular ATP gra-

dients, a damage associated molecule, following a controlled wounding of an epithelial monolayer

in vitro. Similar to developmental systems, an extracellular input ligand conveys positional informa-

tion in wound response (Dubuis et al., 2013; Sonnemann and Bement, 2011). Analysis of the para-

crine communication benefit in our novel quantitative wound response assay with defined spatial

perturbations demonstrates that paracrine communication increased cellular response fidelity, but

with limitations. Unlike the spatially uniform ligand in the first case, the magnitude of the response

fidelity benefit varies with increasing PCD. The maximal increase of cellular response fidelity occurrs

at a PCD of ~100 mm, or approximately 3 cell diameters. In vivo work measuring ERK propagation

using the same EKAREV FRET sensor also showed propagation extending ~100 mm

(Hiratsuka et al., 2015). Our results demonstrate that the paracrine information sharing benefit

depends on the input ligand spatial scale, or PCD. Furthermore, empirical measurements of para-

crine communication match the physiologically relevant spatial wound response maximum communi-

cation distance.

The process of wound healing is a complex multi-stage program that coordinates the action of

multiple cell types over multiple timescales, from minutes to weeks, to address an acute need. The

initial steps of wound healing programs propagate information concerning the wound in a manner

that is appropriate to the magnitude of damage. Both inflammatory and fibrotic processes, critical

steps in wound response signaling, are damaging when they go awry. Therefore, the initial cellular

responses and the establishment of signaling gradients are key steps in wound healing. The mecha-

nistic details underlying how tissues robustly match the wound response magnitude to the extent of

wound-induced damage remain unknown. Our results demonstrate that intercellular communication

during the initial wound response is optimized to increase overall response fidelity and provides the

initial evidence that matching the wound response to wound damage is a critical aspect to wound

healing programs. Future work is needed to further investigate tissue level response fidelity during

wound healing programs.

Paracrine communication increases the fidelity of response at the single-cell level by mitigating

biological noise at the single-cell level. Each cell integrates information from its local neighborhood

to increase its individual response fidelity. Local averaging at the cellular level is a distinct mecha-

nism compared to the benefit of global averaging at the population level. Without any paracrine

communication, the reliability of the average of a cell population response can only increase with the

size of the population. This is a consequence of the central limit theorem where the uncertainty of a

sample average decreases with sample size. However, this increase in reliability is only true for the
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population average and not for individual cells in the population. Therefore, in cases where the bio-

logically significant output is the collective action of the population, for example the secretion of a

cytokine, intercellular information sharing is not required. However, when biologically significant out-

put requires single-cell action, local information sharing via paracrine communication increases cellu-

lar response fidelity. Therefore, whether paracrine communication is required remains context

dependent. It is possible that paracrine information sharing is more prevalent in signaling networks

that support individual cellular decisions and less prevalent in cases where biologically meaningful

outcomes result from population averages.

In cases where paracrine information sharing is used as a method to mitigate biological noise, the

breakdown of this system could be detrimental. In vivo studies of ERK response in mammary tumor

cells using the same EKAREV FRET sensor utilized here show highly variable ERK response that may

lead to the survival and propagation of cancer cells (Kumagai et al., 2014). Although the cause for

this heterogeneity is unknown, one possible mechanism may be the breakdown of paracrine commu-

nication between cells similar to how our partial inhibition of paracrine communication showed no

decrease in ERK variability (Figure 1—figure supplement 4).

The abundance of paracrine communication in mammals, that is the activation of a receptor by a

ligand synthesized by another cell, demonstrates the heavy utilization of intercellular communication

(Ben-Shlomo et al., 2003; 2007). Paracrine averaging demonstrates how intercellular communica-

tion enables cellular collective decision making where the ’wisdom of the crowd’ is greater than the

individual cell. Theoretical and empirical work in humans and animal collectives has shown that the

benefit of collective decision making depends on the size of the group; big crowds are not always

better than small crowds (Sasaki et al., 2013; Kao et al., 2014; Hoare et al., 2004; Sueur et al.,

2011). Therefore, it is likely that the extent of secretion of each paracrine ligand is adjusted to the

level of cellular information sharing to ensure an effective collective decision.

The optimal PCD we identified is not universal. Rather, the optimal distance depends on the spe-

cific shape of the spatial pattern of the initial activating ligand and the noise pattern of the primary

response. Additionally, propagation patterns of the same activating ligand can depend on the physi-

ological signaling context as demonstrated by differences found during in vivo ERK propagations

under wound and normal conditions (Hiratsuka et al., 2015). The effective PCD can be regulated at

the cellular level by several possible factors to optimize the benefit of paracrine communication to

the specific noise and spatial patterns characteristic to each signaling system (Batsilas et al., 2003;

Muratov and Shvartsman, 2003a; 2003b). PCD also depends on the effective diffusion coefficient

of the secreted molecule, transmitted signal strength (e.g. number of secreted molecules), and

receiver cell sensitivity (e.g. receptor Kd). The diffusion coefficients of paracrine signaling molecules

can vary by two orders of magnitude, let alone differences in signal strength and receptor sensitivity

in individual paracrine signaling pathways (Kreuz et al., 1965; Gregor et al., 2007). Fine-tuning

each of these factors provides a possible mechanism for cells to regulate the PCD and thereby the

extent a cell locally communicates. The ability to specifically tune PCD raises the possibility that evo-

lutionary pressures can tune paracrine communication to provide the optimal benefit in many other

paracrine communication systems.

Materials and methods

Ca2+ and ERK measurements in MCF-10A cells
MCF-10A cells were cultured following established protocols (Debnath et al., 2003). Before plating

cells, each surface was first treated with a collagen (Life Technologies, Carlsbad, CA), BSA (New Eng-

land Biolabs), and fibronectin (Sigma-Aldrich) solution in order for cells to completely adhere,

according to established methods. In order to maintain a viable environment, cells were imaged at

32˚C and 5% CO2. All EGF (PeproTech) titrations and DREADD experiments were conducted in 96-

well plates using extracellular hepes buffer (ECB) to reduce background fluorescence (5 mM KCl,

125 mM NaCl, 20 mM Hepes, 1.5 mM MgCl2, and 1.5 mM CaCl2, pH 7.4). All imaging for wounding

was done in MCF-10A assay media (Debnath et al., 2003).
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ERK and Ca2+ activation by DREADD
Cells were plated at a density of 2,000,000 cells/100mm plate and allowed to adhere overnight.

Cells were transfected with the Gq-coupled DREADD HA-tagged hM3D with an mCherry tag using

a 3:1 ratio of FuGene HD (Promega) to DNA and allowed to incubate overnight (Dong et al., 2010).

In order to measure the paracrine signal from a single-cell, non-transfected cells were mixed with

DREADD-transfected cells at ratios of 1:0, 1:1, 1:2, 1:5, 1:7, and 0:1 (non-transfected:DREADD) and

plated in 96-well plates at a density of 30,000 cells/well. The following day, cells were loaded with

1 mM Hoechst dye for nuclear imaging for 30 min for cell segmentation purposes. 5 mM clozapine-N-

oxide (CNO) (Enzo Life Sciences) was added to each well to specifically activate DREADD cells. ERK

activation was monitored using the EKAREV FRET reporter (Albeck et al., 2013; Komatsu et al.,

2011) and Ca2+ activation was monitored using the Ca2+ indicator dye Fluo-4 using the published

protocol (Invitrogen).

Cell clustering assay and analysis
In order to measure the standard deviation of Ca2+ and ERK activity within a small group of cells,

MCF-10A cells were plated at densities of 1000, 2000, and 3000 cells per well in a 96-well plate, tak-

ing advantage of the natural tendency for MCF-10A cells to cluster together. Cells were stimulated

with 10 mM or 100 mM ATP and imaged for 5 min every 3 s (Ca2+ ) or 30 min every minute (ERK).

Standard deviation and average expression of Ca2+ and ERK were analyzed by grouping cells in

to clusters based on the distances between cells and clusters (Figure 1—figure supplement 1). Fol-

lowing the cluster analysis, the average and standard deviation of Ca2+ and ERK activation were cal-

culated for each cluster. ERK activation was measured using the ERK FRET reporter (Albeck et al.,

2013; Komatsu et al., 2011) and Ca2+ activation was monitored using the genetically encoded sen-

sor R-GECO (Zhao et al., 2011).

Wounding device design, fabrication, and wounding assay
Master molds for the microfluidics based wounding device were created using silicon wafers and

layer-by-layer photolithography using established methods (Ferry et al., 2011). A separate mold for

both the air layer and cell layer were made using negative photoresists and masks. Chips were made

by pouring uncured polydimethylsiloxane (PDMS) onto each mold, allowing the PDMS to harden,

and bonding the layers together and subsequently to a glass slide. Cells were loaded into the devi-

ces through the inlet port using a 20G needle. During wounding the outlet port was plugged using

tape and the inlet port held a reservoir of media to prevent evaporation in the chamber. Wounding

was accomplished by increasing the air pressure in the top layer of the device until the pillar made

contact with the bottom of the device after which the air pressure was released to raise the pillar

back up. Cells were loaded in to the wounding device at a density of 15,000,000 cells/mL using a

20G needle. Following trypsinization and resuspension, cells were put on ice to prevent aggregation.

Two o-rings were attached to the device surrounding both the inlet and outlet ports for media reser-

voirs. Each o-ring was attached using a thin film of vacuum grease. Wounding devices were kept in

an empty pipet box filled with water to prevent media evaporation. Cells were allowed to adhere for

18–24 hr before wounding.

Imaging and image analysis
Imaging was accomplished using a Nikon Plan Apo l 10X/0.45objective with a 0.7x demagnifier and

Nikon Eclipse Ti microscope with a sCMOS Zyla camera. All imaging was accomplished using custom

automated software written using MATLAB and Micro-Manager (Edelstein et al., 2010). Image anal-

ysis was accomplished using a custom MATLAB code published previously (Selimkhanov et al.,

2014) and is available through GitHub repository https://github.com/rwollman/CellSegmentation.

git.

Model for paracrine communication based on local isotropic diffusion
The paracrine ligand concentration (P) for a cell at position (x,y) observed by (P[x,y]) is the local aver-

age of the concentration of ligand released by cells in the local neighborhood (Figure 1A). We mod-

eled this paracrine ligand local average using a convolution of two functions: S(x,y) that represents
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the amount of ligand secreted by each cell and D(x,y) that represents the expected diffusion of the

paracrine ligand during the timescale of paracrine signal integration:

P ðx;yÞ ¼
ð ð

dudvS x;yð ÞD x�u;y� vð Þ (1)

The function S(x,y) was estimated using experimental cellular Ca2+ response data according to:

Sðx;yÞ ¼ max

�

Cai
2þðtÞ

�

x;y 2 cell i

0 x;y 2 background

(

(2)

The function D(x,y) was approximated to follow Gaussian weights with a length-scale we named

the Paracrine Communication Distance (PCD):

Dðx;yÞ ¼ 1

PCD
ffiffiffiffiffiffi

2p
p e

�ðx2þy2Þ
PCD2 (3)

Detailed analysis of how PCD depends on diffusion, number of secreted paracrine molecules, sen-

sitivity of detection, physiological levels of fluid flow (Polacheck et al., 2011), and cellular decoding

of time varying paracrine signal are presented in Materials and methods. In cases where biologically

relevant integrations times may influence the predicted paracrine communication response, the PCD

did not exceed the approximate distance EGF could travel before the first ERK response

(Figure 1G, Figure 3F, Materials and methods). Based on single-cell ERK data to ATP stimulation,

this time was found to be ~5 min which resulted in a maximum PCD of ~300 mm (data not shown)

based on EGF diffusion coefficient of 50 mm2/s.

Signal to noise analysis
Signal to Noise ratio analysis on Ca2+ response to ATP titration data was estimated as was done

previously (Selimkhanov, 2014). Briefely, the signal S was calculated using:

S ¼ var
bins

�

avg
cells

�

max
t

�

Ca2þðtÞ
���

(4)

The noise N was calculated by:

N ¼ avg
bins

�

var
cells

�

max
t

�

Ca2þðtÞ
���

(5)

Where Ca2+ (t) is the temporal time series of Ca2+ response measured experimentally. Cells are

separated into bins according to either different dosages of ATP added to multiple wells (Figure 1)

or different distances from the wound source (Figure 3). SNR was then simply: SNR = S/N.

Analysis of the effects of diffusion, secretion, and integration time on
paracrine communication
In this section we analyze how the Paracrine Communication Distance (PCD), the characteristic

length-scale of paracrine communication, depends on factors related to the paracrine signal. Specifi-

cally we look into how the PCD depends on the diffusion coefficient D, the number of molecules

released from a cell Nr, the number of molecules needed for detection Nd, and the total integration

time T.

To understand how PCD depends on the factors mentioned above, we considered the diffusion

of a paracrine ligand from a single cell to its surrounding neighbors. We considered a 2D-like geom-

etry where cylindrical cells, each of height hc and radius �, grow in a chamber of total hf height. We

simplify the below analysis by approximating the cell monolayer geometry to a series of ’cell cylin-

ders’. The key results of the scaling of PCD and required integration time are similar for other com-

parable geometries (data not shown). Under these conditions one could write the analytical solution

of the diffusion equations:

C r; tð Þ ¼ Nr

hf � 4Dpt
e�

r2

4Dt (6)
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Where Cðr; tÞ is the concentration of paracrine ligand for distance r and time t. For a neighboring

cell to respond to this paracrine signal, a critical number of molecules Nd needs to reach the volume

surrounding the cell. We assume that a cell ‘senses’ a volume comparable to the volume of a cell

itself. For a cylindrical cell of area p�2 and height hcthe critical concentration required for cellular

response will be:

Cdetect ¼
Nd

hcp�2
(7)

This is simply the required number of molecules divided by the cell volume. Combining equa-

tions 6,7 we can solve for the distance and time of where the critical concentration will be reached.

Solving for distance we get that

rdetect¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dt ln
� 2hcNr

4DtNdhf

� �

s

(8)

The concentration of the paracrine ligand is diluted as it diffuses from the source. Therefore,

there is a point in space which is the maximal distance from the source that the critical detection

concentration Cdetect will be reached at some point in time. Distances that are greater than the criti-

cal distance will only experience concentrations lower than the critical detection

concentration Cdetect. The existence of such maximum can also be seen by the non-monotonous

dependency of rdetect on t in equation 8. To find the maximal distance we can simply find the maxi-

mum of 1.3 in respect to t. Doing so we get that:

PCD¼ e�
1
2�

ffiffiffiffiffi

hc

p ffiffiffiffiffiffi

Nr

p
ffiffiffiffiffi

hf

p ffiffiffiffiffiffi

Nd

p (9)

We can simplify the analysis by the introduction of two dimensionless variables: 1) S ¼ Nr

Nd
repre-

sents the strength of the signal and is defined as the ratio of released molecules Nr and the number

of molecules needed to detect the signal Nd. 2) h ¼ hc
hf

represents the fraction of the height of the

flow chamber that cells occupy. When we substitute the new variables into Equation 1,4 we get

that:

PCD¼ 1

2
e�

1
2�

ffiffiffiffiffiffiffi

hS
p

(10)

Interestingly this shows that the value of PCD does not depend on the diffusion coefficient.

Rather, PCD scales as a function of the square root of the strength of the signal S with a multiplica-

tive constant that depends on the specific cell geometry. PCD also depends on cell geometry with

the cell radius � and the relative height of a cell in the effective environment h. Figure 1—figure

supplement 6 shows equation 10 graphically.

While the analysis above shows that the diffusion coefficient has no influence on the overall PCD,

the time required to reach this maximal distance has important biological implications. ’Paracrine

averaging’ requires cells to integrate the signal. However, the time required for signal integration

must be biologically feasible given the cellular response time and diffusion coefficient.

From equation 8 we can identify the time by which the PCD is maximal to be:

Tint ¼
�2hS

4eD
(11)

The integration time grows linearly with signal strength S. This is because the PCD itself scales as

a square root of S and the diffusion time grows with the square of the distance. The integration time

decreases with increasing diffusion coefficient as expected. Figure 1—figure supplement 7 shows

the scaling of the integration time with the diffusion coefficient for a few PCD values.

For diffusion coefficient values of ~10–100 mm2/s and a PCD of 100 mm (similar to the distance

measured in Figure 3) integration times ranged between 0.5 to 5 min. Given that ERK activation is

observed only after 5 min post-activation, the required integration time does not pose an issue.

However, larger PCDs will require higher diffusion coefficients to allow proper integration of the

paracrine signal. Interestingly, H2O2, another key paracrine signaling molecule critical to initial
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wound response signaling, has a diffusion coefficient of ~2000 mm2/s. A larger diffusion coefficient

could allow for a much longer PCD with reasonable biological integration times.

Analysis of the effect of fluid flow on paracrine communication
All the analysis above assumed static conditions, that is no fluid mixing or advection of any kind. In

this section we analyze the degree to which the principles of paracrine communication are applicable

in non-static conditions.

Non-static fluid conditions potentially have two effects on mass transport. 1) Non-static fluid con-

ditions can create mixing due to turbulence and 2) Laminar advection can transport secreted mole-

cules away from the secretion source. Since the extracellular environment is characterized by a low

Reynold’s number there is effectively no turbulent mixing in biologically relevant parameters.

To analyze the relative contribution of advection and diffusive transport we utilize a dimensionless

number, the Péclet number (P), that represents the ratio between the contribution of advection and

diffusion:

P ¼ vL

D
(12)

Where v is the interstitial flow rate, D is the diffusion coefficient and L is the characteristic length

scale. In our case, the characteristic length scale is the PCD, which depends on the signal strength as

described above (equation 10 and Figure 1—figure supplement 6). Therefore, the P number can

be expressed as a function of the signal strength S and diffusion coefficient:

P ¼
ffiffiffiffiffiffiffi

Sh
p

�v

D
ffiffiffi

e
p (13)

Graphical representation of this expression is shown in Figure 1—figure supplement 8 where

the map of D and S is color coded by the Péclet number with three highlighted regions: A red

region where flow will dominate, a cyan region where diffusion will dominate, and the region in

between where both advection and diffusion contribute to paracrine communication.

To gain further insight into the relative contribution of advection and diffusion we looked at the

distance molecules will travel via advection for a specific signal strength (S = 1000). As can be seen

in Figure 1—figure supplement 8b, for diffusion coefficients of small protein ligands advection will

contribute minimally.

When considering positional accuracy of cellular response, an important consideration is that

advection can potentially ’shift’ the effects of paracrine signaling downstream of the flow. Even if the

shift is characterized by low Péclet number, advection can interfere with positional information accu-

racy (as analyzed in Figure 3). To estimate the potentially degrading effects of flow we calculate the

expected level of positional accuracy error induced by flow. We estimate that the wound induced

signaling gradient (Figure 3C) to be >500 mm. Therefore the effect on positional accuracy will be

minimal (<10%) at advection distances up to 50 mm, or for a PCD of 100 mm, a Péclet number up to

0.5. The isocline of a Péclet number of 0.5 is shown in Figure 1—figure supplement 8a as a dotted

black line. This shows that for paracrine ligands with a diffusion coefficient >40 mm2/sec, advection

will have little effect on positional accuracy of initial wound response signaling.

Analysis of the effect of cellular decoding schemes on paracrine
communication
The analysis in the previous two sections assumes that the concentration of the paracrine ligand

decreases over increasing distance from the source of secretion according to a Gaussian fit where

the diffusion length-scale represents the PCD. The cellular response to a paracrine ligand depends

on cellular decoding of the temporal paracrine concentration profile a cell observes. As both the

temporal profile of the secreted paracrine molecule and the temporal cellular decoding are

unknown, we consider the simple assumption of a Gaussian profile reasonable. To quantitatively test

this assumption we compared the Gaussian profile to an alternative model that could be addressed

analytically. In the alternative model, we assume that all paracrine molecules are released at T = 0

and that cellular decoding of the paracrine signal is simple temporal averaging. Under these assump-

tions one can write an expression of the temporal average of the paracrine concentration at a dis-

tance r from the source as:
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Cavg rð Þ ¼
ð

t0

0

C r; tð Þ ¼
ð

t0

0

Nr

hf � 4Dpt
e�

r2

4Dt ¼ � Nr

4Dphf t0
ei � r2

4Dt0

� �

� (14)

Where all symbols follow equation 6 and ei represent the exponential integral: eiðxÞ ¼
ð

x

�¥

et

t
dt

Comparison of the two models can be seen in Figure 1—figure supplement 9. Overall, the two

models generate very similar Paracrine Averaging Weights (the effect of cellular decoding of para-

crine signal). There is a small discrepancy between the two models at very low distances (<50 mm).

However, this discrepancy is most likely a result of the assumption in the alternative model that all

the paracrine molecules are released at once. Under the more realistic assumption where paracrine

molecule release duration is not much smaller than the time to diffuse 50 mm (12.5 s at D = 50 mm2/

s) we anticipate that the similarity between these two profiles will further increase.
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