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ABSTRACT: Despite the common use of nonspherical catalyst
pellets in chemical engineering applications, the packing
structures of such pellets have not been as systematically
studied and characterized as spherical packings. We propose a
packing algorithm based on rigid body dynamics to simulate
packing of nonspherical and possibly nonconvex pellets. The
algorithm exerts a hard-body approach to model collision
phenomena. The novelty is that the transition between moving
and resting particles is controlled by a cutoff on the relative
contact velocities, instead of artificially damping linear and
angular velocities to stabilize the algorithm. The algorithm is
used to synthesize packings of spheres, cylinders, and Raschig
rings with tube-to-pellet diameter ratios 3−9.16. The packings
are validated in terms of bulk porosity and radial void fraction
distribution, finding satisfactory agreement with literature data. Denser packing structures are generated with high restitution
coefficients and low friction coefficients. The confining tube walls play an important role, with highly fluctuating bulk porosities
in narrow tubes.

1. INTRODUCTION

Fixed bed arrangements find extensive applications, particularly
in reaction engineering, where they are employed as catalytic
reactors for the transformation of reactants into desired
products. The design of such systems is highly influenced by
the structure of the packing matrix, which, in turn, is governed
by the pellet and container size and shape, the loading method,
and the subsequent treatment of the bed. Classical approaches
in modeling fixed bed reactors, from the most simplistic model
such as the pseudohomogenous plug flow model to the more
improved Λ(r) model proposed by Winterberg and Tsotsas,1

which imposes a Brinkman−Forcheimer-extended Darcy
(BFD) model to account for the axial velocity field and to
incorporate global and local bed properties, including bulk
porosity and radial void fraction distribution. However, these
pseudocontinuum models cannot provide an accurate
prediction of the temperature field in tubular fixed beds,
particularly for those with narrow to moderate tube-to-pellet
diameter ratios (N), e.g., N ≤ 10, where the role of wall effects
as well as pellet shape is completely neglected in such
simplistic models.2−4

During the last decades, advanced numerical techniques
such as computational fluid dynamics (CFD) and lattice
Boltzmann (LB) methodologies are increasingly used to fully
resolve the three-dimensional mass-, momentum-, and heat
transport around (and inside) individual catalyst pellets inside
a bed.5−10 Before such detailed simulations can be executed,
we need to know the positions and orientations of the

individual catalyst pellets inside the bed. This has persuaded
researchers to delve profoundly into topological details of
random packing structures either through experimental
techniques such as magnetic resonance imaging (MRI) and
X-ray computer tomography (CT), e.g., refs 11−14, through
numerical procedures in the form of in-house and ad hoc
algorithms, e.g., refs 15−18, or even through commercial codes
such as PFC3D, which is a commercial discrete element method
(DEM) package, e.g., ref 19.
The majority of the prevailing efforts have concentrated on

random packings of spheres, while application of catalyst
pellets of nonspherical and often nonconvex shapes, such as
cylinders, Raschig rings, pall rings, trilobes, etc., are becoming
increasingly popular, particularly in chemical reaction
applications because of their specific potential to enhance
transport processes.4 The amount of literature addressing
structural properties of such nonspherical packings is
scarce.8,10,14,20,21 This can be ascribed to the cumbersome
and complicated strategies necessary to predict the trajectories
of nonspherical objects during the loading process, where the
orientational freedom of such pellets may not only be very
problematic in terms of collision modeling but also lead to
exceptionally high computational expenses.22,23
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The main aim of this contribution is to propose and examine
a novel physics-based hard-body packing algorithm, capable of
simulating the dynamics of the random packing process of
nonspherical and even nonconvex pellets. The novelty of our
method lies in the combination of an explicit treatment of
instantaneous binary collisions with a global treatment of
networks of contacts between multiple particles when they are
reaching their resting state. The transition between moving and
resting particles is controlled by a cutoff on the mutual contact
velocity. The fidelity and robustness of the proposed packing
procedure in reproducing the statistical mean properties of
realistic fixed bed arrangements is then thoroughly investigated
and validated using published experimental data. Before
introducing the proposed algorithm, a detailed survey on
previous research efforts in this field is given, highlighting their
advantages and restrictions.

2. LITERATURE REVIEW
Topological features of random packing structures have been
the subject of numerous analytical and experimental studies
during the last five decades.11,14,29−33,15,17,22,24−28 Nonetheless,
only a minor selection of these studies has concentrated on
evaluation and assessment of the spatial distribution of catalyst
particles inside a bed, e.g., refs 11, 15, 31, and 33−35, whereas
the amount of literature dealing with nonspherical pellets is
scarce, e.g., refs 14, 20, and 33. Their generally opaque nature
prohibits the exertion of conventional optical imaging
techniques to address the spatial distribution of pellets of
different shapes in random packing arrangements.22 To
circumvent this, several research groups have utilized advanced
experimental techniques such as noninvasive imaging methods,
e.g., MRI and 3d-CT.12−14,29,36 For example, Sederman et al.12

have used MRI in combination with image analysis techniques
to characterize random packing structures of spheres with N =
9, 14, and 19. Ren et al.13 have employed MRI, coupled with
velocity encoding and pulsed-field-gradient nuclear magnetic
resonance (PFG-NMR), to analyze the flow structure in
random packings of cylinders and spheres with N in the range
of 1.4 to 32. Zhang et al.29 have coupled X-ray micro-
tomography with a digital packing algorithm, which combines
Monte Carlo and Distinct Element Methods, to reconstruct
packing structures of equilateral cylinders with N = 12.8 from
the microtomography images on a pellet-by-pellet basis. Baker
et al.14 have investigated the fidelity of an image-based meshing
approach as a tool for reconstructing random packing
structures through pellet-scale data extracted from noninvasive
methods such as MRI and CT. Fundamentally, using such
noninvasive methods, an automated image-based algorithm
must be used to extract the pellet-scale information, which is
challenging even for realistic packings of spheres (see refs 37
and 38). However, for the case of nonspherical pellets, where
their geometry embraces a variety of surface elements, i.e., flat
and curved surfaces as well as corners, more complicated and
rigorous reconstruction techniques are needed to accurately
computate the positions and orientations of each pellet in a
bed.36

On the whole, the complexities and costs associated with
noninvasive experimental measurement of full 3d granular
systems, together with the large computational costs for
postprocessing, have persuaded researchers to seek alternative
numerical methods. This has resulted in a multiplicity of
packing algorithms, models and codes for generating random
packing structures numerically.11,15,17,31,34,35,39 Even though

the specific details make each model unique, the majority of
the prevailing algorithms can be classified into one of the
following categories: (i) sequential deposition or deterministic
algorithms, (ii) collective rearrangement algorithms, and (iii)
physics-based methods.
Sequential deposition (SD) algorithms are principally

initialized by either a sphere or sphere cluster. The packing
structure is then generated on the basis of a procedure known
as random settlement,40,41 whereby the filling process is usually
modeled by instantaneous placement of a new sphere in
contact with either three spheres or with two spheres and the
container wall, all of which are already fixed in their positions.
A subcategory of deterministic approaches is the drop-and-roll
type algorithm,42 in which a packing is initially assembled in
vertical direction and then is compacted through lateral
displacements of pellets by imposing a gravitational force field.
Coelho et al.43 proposed a sequential packing model based on
the successive deposition of grains in a gravitational field. Their
model initiates with random placement of grains above the
bed, and then the filling process is continued layer after a layer,
until the grain particles reach a local minimum of their
potential energy. The algorithm allows any displacement and
rotation of particles that contributes to a lowering of their
barycenters. Atmakidis and Kenig44 have employed an
improved version of this approach proposed by Kainourgiakis
et al.45 to generate random packing model of spheres with N =
5. Mueller39 has investigated four different deterministic
algorithms including modified Bennett,46 layer, alternate, and
percentage methods, to synthesize packing geometries of
monosized spheres. What distinguishes these proposed
approaches are the methods adopted to model the loading
process, viz., the procedures devised for placement of new
spheres in the alternative positions. Mueller demonstrated that
the percentage model gives the best results for radial void
fraction distribution out of the other approaches considered.
The basis of this method is to locate a sphere at the lowest
alternative vertical positions based on a prescribed percentage.
It means that the resting site for a new sphere is determined by
comparison between the percentages of accessible alternative
sites and the prescribed one. Mueller suggested that the
optimum value of this percentage corresponds to the lowest
bed porosity; however, his further analyses demonstrated the
severe dependence of this value on N, where for N ranging
from 3.96 to 20.3, the optimum value of the percentage
decreases from 70% to 10%. Furthermore, it was noticed that
the accuracy of these deterministic approaches becomes lower
as the bed-to-pellet diameter ratio increases. Mueller has
improved his algorithm in another work,34 by proposing a
dimensionless packing parameter, thereby enhancing the
procedure of the sphere’s sequential placement. Using this
improvement, Mueller generated packings of monosized
spheres with much better approximation of the radial void
fraction profile, even for cases of large N-beds. Magnico47 has
used a modified version of the Bennet method, which was
improved on the basis of the Mueller method39 to account for
wall effects, to generate random packings of spheres with N =
5.96 and 7.8. Basically, the distinct advantages of SD
techniques are their low computational expenses as well as
their intrinsic simplicities in terms of programming. However,
as a major disadvantage, it is very difficult to manage the
porosity of the resulting structures even with highly complex
deposition algorithms.
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Collective rearrangement (CR) algorithms form another
category of packing simulation. CR is fundamentally regarded
as a process whereby (i) the overlapping particles undergo a
series of repetitive minor displacements so that all detected
overlaps in the computational domain are removed (if the
initial condition is overlapping) and (ii) the particles are
migrated stochastically with the aim of decreasing the bulk
porosity (if the initial condition is nonoverlapping). Liu and
Thompson48 have proposed a CR algorithm to generate
random packing structures of spheres. The authors have
investigated the influence of different boundary conditions on
the generated packing structures. Maier et al.49 have used a
hard-sphere Monte Carlo algorithm to synthesize random
packings of monosized spheres. In this algorithm, spheres are
initially arranged at the intersections of a cubic lattice within a
cylindrical tube with periodic boundaries set at its ends. Each
sphere is then migrated stochastically, where a displacement is
allowable if it does not lead to overlap with another sphere or
the wall. The investigators benchmarked the radial void
fraction profiles obtained from three generated-structures with
N > 10 against experimental data. Sobolev and Amirjanove50

have proposed a similar CR algorithm; however, their model
benefits from a method allowing for a much denser initial
arrangement of spheres in the container, thereby reducing the
computational expenses significantly. The authors have shown
that the density of simulated structures increases by repetition
of the CR procedure, i.e., the number of packing trials. Freund
et al.5 have exercised a two-step Monte Carlo process based on
the packing algorithm proposed by Soppe.11 The CR algorithm
exerted starts with initial placement of spheres inside a
cylindrical tube, and then the packing is compressed through
rearranging the spheres with an increased possibility into the
direction of gravity. The packing process is stopped using
convergence criteria that take into account changes in potential
energy as well as mechanical stability.
A subcategory of CR algorithms is the digital packing

approach, which is based on “pixelation” (2D) or “voxelation”
(3D) of both objects and packing space.20,31 The basis of a
code called DigiPac, which has been developed and improved
by Caulkin et al.,20,31 is to allow random migration of particles,
one grid for each time interval, on a cubic lattice. This random
movement includes both directional and diffusive motions,
imitating a random walk-based sedimentation model. In fact,
the movement of particles over a grid facilitates the process of
collision detection as it can be examined whether two particles
occupy the same grid space at the same time. This interesting
feature significantly reduces the computational expense of a
typical run compared to other CR algorithms, whereby overlap
detection is mostly undertaken by further mathematical
analysis.20 One of the most important advantages of this
algorithm is to use digitization for representing packing
objects, allowing for synthetic generation of random packings
of even nonspherical particles. The investigators have
inspected the validity of DigiPac by comparing the radial
void fraction profiles, extracted from a number of simulated
packing structures of both solid and hollow cylinders with 7 <
N < 16, with their own experimental data. Baker and Tabor51

have employed DigiPac to generate random packings of
spheres including 160 particles with N = 7.14.
Fundamentally, CR algorithms have significant advantages

compared to SD algorithms. For instance, the final bed
porosity can be adjusted a priori, and a spatial correlation for
particle size distribution as well as their initial placement can

be prescribed. Nonetheless, the main disadvantage of such
randomized particle packing algorithms is that they are
neglecting the physical aspects of the packing process.
Moreover, their computational demands are high due to the
very slow process of convergence, particularly for very dense or
very loose packings.48

The third classification, i.e., physics-based methods,
embraces the whole procedure that realistically describes the
interactions between pellets and between pellets and wall. The
foundations of such procedures are rooted in Newtonian
mechanics. Salvat et al.15 have proposed a physics-based
approach in the form of a soft-sphere algorithm to generate a
packed bed structure of monosized spheres in a cylindrical
container. The algorithm allows some interpenetration
between particles but does not account for friction forces.
The authors validated their model by comparing the predicted
particle center distribution for N = 7.99 to experimental data
by Mueller.52 Dixon et al.6 have employed an improved version
of this algorithm using part of Mueller’s algorithm39

concerning the initial placement of spheres at the base of the
cylindrical container. The authors have then validated their
packing generation procedure, for models of more than 1000
spheres, with N = 5.45 and 7.44, by comparing the predicted
radial void fraction profile to the literate data reported by
Benenati and Brosilow.24 In a similar work, Behnam et al.7

have validated their packing generation model using the
experimental data reported by Mueller.52 Siiria and Yliruusi16

have developed a program based on Newton’s laws of motion
to generate random packing of spheres. Their model accounts
for all forces including gravity, collision forces, and friction.
The discrete element method (DEM) can be considered as a

subcategory of physics-based methods. DEM (Cundall and
Strack53) is conceptually related to molecular dynamics, in
which the trajectories of individual particles are computed by
evaluating all forces. Since the main emphasis of researchers in
this area is to investigate dense granular flows, thereby
generating the most packed particulate beds, most of
investigators have thus implemented a time-driven (soft-
sphere) class of DEM. Nowadays, DEM has become a
common and reliable computational tool either to probe the
dynamics of grains in a particulate bed54 or to be coupled with
CFD tools to investigate the hydrodynamics of a packed
bed.10,19,21,55,56 For example, Theuerkauf et al.57 used DEM to
investigate the local and global bed properties in narrow
tubular fixed beds. The investigators have introduced DEM as
a robust tool for generating random packing structures of
spheres with moderate to low tube-to-pellet diameter ratios.
Bai et al.19 have exercised a commercial DEM code, PFC3D, to
generate realistic random packings of spheres and cylinders
with N ≤ 4 as a part of a CFD study of flow field and pressure
drop in packed beds. The authors have highlighted the
difficulties associated with simulation of nonspherical packing
structures using DEM. Eppinger et al.55 have exercised coupled
DEM-CFD using a commercial CFD package, STAR-CD, to
investigate the behavior of the flow field in DEM-generated
packings of spheres with 3 ≤ N ≤ 10. The authors inspected
the validity of their simulated models by comparing with
published correlations concerning radial void fraction dis-
tribution. Yang et al.58 have also employed the same DEM
package as in the work of Bai et al.19 to generate random
packings of spheres with 3 < N ≤ 8, as a part of a CFD analysis
of flow and thermal fields in packed beds. The investigators
have shown satisfactory agreements between the radial void
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fraction data obtained from the models and published
experimental data. In fact, DEM seems to be the most
promising concept among the available methods for predicting
both macroscopic and microscopic features of particulate
flows. However, a particular challenge, not only in DEM but
also in every numerical approach, is the accurate incorporation
of nonsphericity, convexity, and nonconvexity of packing
objects, as frequently encountered in practical situations. Only
a few studies have dealt with nonspherical DEM, investigating
various strategies to model nonspherical objects and contact
detection algorithms. For a detailed review on the application
of DEM in nonspherical particulate system, we refer to the
works of Lu et al.22 and Zhong et al.23 These reviews have
surveyed recent advances in 3d modeling of nonspherical
objects, covering the main findings as well as the inherent
difficulties concerned with nonspherical particulate systems
using DEM.
The simplest nonspherical objects that have been incorpo-

rated into DEM are ellipses in 2D and ellipsoids in 3D, where a
surrogate model of such particles can be simply represented by
algebraic equations.59,60 However, this method, i.e., modeling a
nonspherical particle using algebraic equations, is restricted to
particle shapes that can be expressed algebraically, as an (often
relatively simple) equation. To date, one of the most frequent
and straightforward approaches in nonspherical DEM is the so-
called composite-sphere or glued-sphere method, in which the
established framework of spherical DEM is applied to
approximate nonspherical particles and their collisions during
the packing process. A number of researchers have addressed
the hindrances associated with the application of DEM glued-
sphere approach such as its sensitivity to the parameters and
the need for calibration.61,62 Wu et al.33 have employed this
approach to investigate the behavior of cubical particle
packings. The authors have investigated the influence of
vibration conditions on packing densification. Dong et al.10

have implemented the same approach using a commercial
DEM code, STAR-CD (using the methodology proposed by
Eppinger et al.55) to generate random packings of steatite rings
(with do/di/h equal to 6.2/3.5/4.5 and 8/6/8 mm), as part of a
CFD analysis of the flow field and heat transfer in pack beds.
However, the main disadvantages of the composite-sphere
method are (i) the computational expenses, which increase
tremendously with the number of spheres required for 3d
approximation of a nonspherical object (viz. the more realistic
the geometry of a particle, the higher the number of spheres
necessary per particle), and (ii) the occurrence of multiple
contact points, which is inherent in nonspherical particles,
which may lead to inaccurate force calculation.22 This has
urged several researchers to improve the glued-sphere DEM
method.62,63 Furthermore, alternative approaches to model
collisional contact between particles have recently been
proposed and applied to different problems, addressing
different issues for modeling nonspherical particles.22,64,65

Notably, the Gilbert−Johnson−Keerthi (GJK) distance
algorithm is a fast computational procedure that can be used
to detect overlap between nonspherical particles, which has
recently been combined with a soft-particle approach for the
contact model.65 Of course, a GJK contact detection algorithm
could also be combined with a rigid body dynamics approach
(discussed next), but a major disadvantage of the GJK
approach is that it is inherently limited to convex particles,
i.e., particles without any holes and with only convex outer
surfaces.

Despite the above seeds of research covering nonspherical
pellets, there has been relatively little progress in this field.
Several important modeling aspects, such as the contact
detection procedure in such complicated systems, and the
problem of force-torque coupling upon collision, require
substantial research efforts. The main purpose of this paper
is to address this complex problem, introducing a procedure of
generating packings of nonspherical and even nonconvex
particles. To this end, a physics-based packing algorithm based
on rigid body dynamics (RBD) is developed and examined for
generating random packings of catalyst pellets with different
shapes, including spheres, equilateral solid cylinders, and
Raschig rings. The essential features of our algorithm are (i) a
realistic representation of nonspherical pellets using triangular
face mesh, which allows for simulation of even nonconvex
pellets with sharp edges, (ii) the exertion of a hard-body
collisional model whereby avoiding the unphysically large
overlap of particles that might be caused by artificially lowered
spring stiffnesses, frequently employed in DEM simulations to
prevent unfeasibly small time steps in the treatment of particle
collisions, and (iii) an explicit way of modeling resting contacts
between multiple particles based on relative velocities, which
avoids artificial damping of linear and angular velocities. The
fidelity of the approach in reproducing the topological
properties of realistic packing arrangements is then discussed
using comparisons between the predicted data obtained from
computer-generated structures and published experimental
data.

3. NUMERICAL SETUP AND MODEL FORMULATIONS
3.1. Rigid Body Dynamics (RBD) and the Problem of

Resting Contacts. RBD is frequently used in the field of
graphic design and simulation.66 Fundamentally, it is an
analytical scheme capable of simulating the dynamic behavior
of assemblies of arbitrarily shaped objects based on Newton’s
laws of motion and Lagrangian mechanics. The background of
RBD has been thoroughly investigated by several authors.67,68

The main hypothesis of this approach is to consider the objects
as rigid bodies, thereby facilitating the analysis of their motion
by describing the translation and rotation of reference frames
attached to each rigid body. Furthermore, contrary to the
widely used time-driven DEM that benefits from the soft
contact approach, RBD is more akin to hard contact methods,
streamlining the process of collision analysis, particularly in a
system of nonspherical objects, where any overlap between
nonconvex objects makes the detection of contact points/
edges very problematic.22 RBD has been frequently used as an
appropriate middleware framework in computer graphics and
animation software such as FlipBook by DigiCel, Blender by
the Blender Foundation, Maya by Autodesk, and Cinema 4D
by Maxon. The application of RBD in the field of chemical
reaction engineering has recently been introduced by Boccardo
et al.,8 where the authors used the open-source code Blender
(which uses the Bullet Physics liberary) to synthesize packed
beds of different pellet shapes such as spheres, cylinders, and
trilobes. Following this, Partopour and Dixon69 proposed an
integrated workflow for resolved-particle fixed bed models with
nonspherical pellet shapes. The authors have also used the
Bullet Physics Library for generating packing structures of
spheres, cylinders, Raschig rings, and quadrilobes with five
holes. In the Blender software, a simplified approach based on
damping the translational and rotational velocities of each
object is used to speed up the process of getting objects to the
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resting position (see Blender reference manual at www.
blender.org and Partopour and Dixon69). This simplistic
approach is pursued to avoid overshoot and jiggling of objects
in the resting contact condition which accordingly leads to a
more stable simulation and convergence. However, the
damping of linear and angular velocities is implemented on
each “active” object during the simulation, i.e., at each time
step, and causes a violation of the law of conservation of linear
and angular momentum and energy over each time interval. In
this paper we offer an alternative RBD-based packing algorithm
in which no damping forces are applied to moving particles.
Rather, the transition between moving and resting particles is
controlled by a cutoff on the relative contact velocity followed
by a detailed balance of constrained forces acting on each
pellet to model the resting contact condition rigorously and to
facilitate the stability of convergence in RBD simulations.
3.2. Description of a Nonspherical Pellet. In this work,

a catalyst pellet is regarded as a nondeformable material, which
is characterized by a translation vector x(t), indicative of the
barycenter of a pellet in the world space, and a unit quaternion
q(t) = [q0(t), q1(t), q2(t), q3(t)], with q0

2 + q1
2 + q2

2 + q3
2 = 1,

which determines the orientation of a pellet around its center
of mass in the world space. A rotation matrix R(t) that
transforms the orientation of the particle from a body(-fixed)
to the world space coordinate system can be expressed in terms
of quaternions as

t

q q q q q q q q q q q q
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Using the quaternion-based approach, we can circumvent
singularities (“gimbal lock”) inherent in the Euler angle
method70 and also diminish numerical drifts, and correspond-
ing topological skewness, stemming from the direct exertion of
rotational matrices in computing the orientation of a pellet
during numerical simulation of the packing process. The other
constant parameters describing the physio-mechanical proper-
ties of a catalyst pellet are its mass m, moment of inertia tensor
Ib in the body space, collisional dissipation measured by a
coefficient of restitution COR, and surface friction factor μk.
Lastly, the most important part of the preprocessing step in
RBD-based simulations is the 3d modeling of the pellet shape,
accomplished by describing the particle boundaries in the body
space. In order to model a surrogate for the pellets, a fast and
simplified subdivision-based polygonal approach proposed by
Loop71 is adopted, by which the body surfaces of an object are
approximated using triangular meshes. Having incorporated
the general formula of packings such as sphere, equilateral solid
cylinder, and Raschig ring into the Loop algorithm, the body
space of surrogate geometries is modeled optimally and in the
most smoothed fashion. Figure 1 illustrates 3d models of the
pellets investigated in this work.
3.3. Rigid Body of Equation of Motion. The transla-

tional and rotational state of a moving object in the world
space at time t is described here by a state vector, X(t), which
is expressed as
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where x(t) is the position of the center of mass in world space,
q(t) is the unit quaternion describing the object orientation,
and P(t) and L(t) are linear and angular momentum,
respectively. The equation of motion, EOM, for an assembly
of rigid pellets would hence be the derivative of the state vector
at time t:
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where

Lt t t t t tI I R I R( ) ( ) ( ) ( ) ( ) ( )i i i i i i
1

b
Tω = =−

where i = 1, 2, ..., np denote the pellet index number, vi(t) is the
linear velocity of the center of mass of a pellet, ωi(t) the
angular velocity around its center of mass, Fi(t) is the total
external force acting on pellet i, τi(t) is the torque on the
object (around its center of mass), and Ii(t) is the moment of
inertia tensor of pellet i, which can be simply computed from
the body-fixed moment of inertia tensor Ib and the rotation
matrix Ri(t). Note that both world space and body space
(local) coordinate systems are required to rigorously describe
the rotational motion of a nonspherical pellet in the world
space during numerical packing simulations (see Figure 2a).
Transformation between these two reference frames is
conveniently performed using the rotation matrix at each
time step. To compute the rotational motion of pellets in the
world space system, the vector transformation approach is
applied, which has been demonstrated to be more computa-
tionally efficient compared to the tensor transformation
approach.72

To track the change of the state variables of the catalyst
pellets over time, the EOM for each pellet, which is
conceptually an initial value ODE problem, is resolved using
a midpoint scheme. The reason behind adopting such a
method to handle EOMs is the order of precision of O(h3),
which alleviates skewing effects in the orientations of pellets

Figure 1. 3d models of catalyst pellets, represented by triangular face
mesh: (a) sphere with dp = 10 mm, (b) equilateral solid cylinder with
dp = h = 10 mm, and (c) Raschig ring with dpo/h/δ = 10/10/2 mm.
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stemming from numerical drift during the packing process.
The algorithmic update for the ith pellet can be expressed as
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where Δtm is the time step at iteration m. To eliminate error
accumulation in updating the orientation of a pellet, the
quaternion of each pellet is renormalized after each time
interval.73

3.3.1. Implementation of Force Fields and Torque. The
total force acting on the ith pellet at time t, Fi(t) can be
expressed as

t t t tF W F F( ) ( ) ( ) ( )i i i i,n ,t= + + (6)

where Wi is a body force, in this case the weight acting on the
center of mass of the pellet, causing it to accelerate at 9.81
ms−2 in the direction of gravity. This force is simply described
as

m gW zi i= − ̂ (7)

where z ̂ is the unit vector in the direction of the z-axis in the
world space coordinate system.
Fi,n(t) and Fi,t(t) describe the collision forces on pellet i due

to its interaction with neighboring pellet or tube walls. In
essence, for a typical oblique contact between two rigid
objects, the contact force can be decomposed into normal and
tangential directions. The normal contact force Fi,n(t) includes
a repulsive force and viscous dissipation (associated with a
certain coefficient of restitution). The tangential contact force
Fi,t(t) is considered as a friction force. Figure 2 shows a typical
schematic of the forces acting on two colliding cylindrical
pellets.

The total tangential force acting on the body of pellet i is
expressed as

t t t tF F F F( ) ( ) ( ) ( )i i i
k

ik,t L,t B,t ,t∑= + +
(8)

where FiL,t(t) and FiB,t(t) are the tagential friction forces caused
by lateral and bottom walls, respectively, and Fik,t(t) is the
tangential friction force due to collisional contact between the
ith and kth pellets. Fundamentally, the friction force between
two objects resists the sliding motion of two contacted surfaces
against each other. Here, the Coulomb friction model is
employed to describe the friction force at contact time t. This
model can be represented for colliding contact between pellets
i and k as

t f t tF t( ) ( ) ( )ik ik ik,t d ,nμ= ̂ (9)

tt
n v n

n v n
( )

( )

( )ik
ik ik ik

ik ik ik
c

p

p

̂ = −
̂ × × ̂

| ̂ × × ̂ | (10)

and

t t tv v v( ) ( ) ( )ik i kp p p= − (11)

where f ik,n(t) is the magnitude of the normal force at the
contact point (discussed later), μd is the dynamic friction
coefficient, tîk(t) is the unit vector in the world space
coordinate system that friction force acts along, n̂ik(t) is the
normal unit vector of the cell face or plane to which the
contact point p belongs, and vpi(t) and vpk(t) are the surface
velocities at the contact points on the ith and kth pellets,
respectively, which can be mathematically expressed by

t t t t tv v p x( ) ( ) ( ) ( ( ) ( ))i i i i ip ω= + × − (12)

t t t t tv v p x( ) ( ) ( ) ( ( ) ( ))k k k k kp ω= + × − (13)

In order to evaluate if dynamic friction should occur at the
contact point, a threshold εf, based on the relative tangential
velocity of the colliding pellets on the face cell or plane, i.e., |
vpik·tîk|, is considered, thereby restricting the role of this force
in the analysis when packings are being stabilized. It is worth
remarking that both FiL,n(t) and FiB,t(t) can be computed using
a simpler procedure by setting vpL = vpB = 0. Using the scalar
vpik,n(t) = vpik(t)·n̂ik(t), which describes the relative contact
velocity in the direction of n̂ik, we can classify the behavior of
collision, into three categories. Fundamentally, positive values
of vpik,n(t), i.e., vpik,n(t) > εp, mean that the pellets are
separating and the contact point is vanishing after tc. In this

Figure 2. Typical 3d-schematic of collision between two rigid cylinders: (a) spatial variables of colliding pellets and (b) normal and tangential
forces acting on the contact point.
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condition, the ODE solver can still continue the computational
procedure. A zero value within a numerical threshold, −εp <
vpik,n(t) < εp, indicates that the pellets are neither approaching
nor receding, which describes a situation called resting contact.
This is a complicated condition for modeling support and
counter forces at contact points (this is meticulously tackled in
section 3.3.2). The last possibility, i.e., a negative value of this
quantity, vpik,n(t) < −εp, corresponds to the case of colliding
contact. These alternative cases are illustrated in Figure 3.
Similarly, the total normal force acting on the body of ith

pellet, i.e., Fi,n(t), is described by the following relation:

tF F F F(t) (t) (t) ( )i i i
k

ik,n L,n B,n ,n∑= + +
(14)

where the first two terms in the right-hand side of eq 14
describe the normal force acting on the contact points of the
ith pellet while in collisional contact with lateral and bottom
walls, respectively, and the rightmost term, i.e., Fik,n(t), is the
normal force due to interaction between the ith and kth pellets.
Conceptually, FiL,n(t) and FiB,n(t) are always directed at the
normal of the confining walls at the contact points and only
affect the pellets, while Fik,n(t) acts on the contact points in the
direction of normal vector of either the cell face or the plane
passing through the two crossed cell edges, whereas two pellets
are colliding (the procedure of contact time/point evaluation is
explained in section 3.3.2.1).
Conceptually, upon a collision, the normal relative velocities

of the colliding pellets are suddenly reversed in a discontinuous
way so that the bodies do not interpenetrate. Such a situation
would violate the assumption under which the ODE solver is
able to work, namely, a smooth variation of Xi(t) over the time
intervals. Therefore, the ODE solver for the pellets engaged in
collision conditions, whether it is colliding or resting contact,
ought to be stopped, and another computational procedure
should be pursued to trace the trajectories of the pellets. We
note that this computational procedure is founded on the state
vector of colliding objects at a time step before the contact
time tc, implicating that we assume that (i) the state vectors of
colliding objects do not change during the collision period, i.e.,
tc ϵ [tm, tm+1], and that (ii) the state vectors of objects in
collisional contact change discontinuously at the end of the
collision period, i.e., at tm+1.
In this study, we will work with the impulse due to a

colliding contact when vpik,n(t) < − εp. For such a collision,
taken place at time tc within the interval [tm, tm+1], with the net
impulse is defined as

t t tJ F P( ) ( ) di t

t

i i t
t

m

m

m
m

1
1∫= = Δ |

+
+

(15)

The above equation is nothing but the statement that the
total impulse of all collisional forces on pellet i corresponds to
the difference in linear momentum of pellet i. As for the case of
friction force, consider that two pellets i and k are in colliding
contact at the vertex point p in their body spaces at time tc,
where pi(tc) = pk(tc) = p. In this condition, the velocities of the
collided objects need to instantly undergo a drastic change to
prevent the bodies from interpenetration. The impulse, Jik(tc),
for this case can be expressed by the following relation:

t t tJ J J( ) ( ) ( )ik ik ikc ,n c ,t c= + (16)

and

t j t tJ n( ) ( ) ( )ik ik ik,n c ,n c c= ̂ (17)

t j t tJ t( ) ( ) ( )ik ik ik,t c ,t c c= ̂ (18)

where jik,n and jik,t are undetermined scalars representing the
magnitude of impulse in normal and tangential directions with
respect to the contact face, respectively. It is worth remarking
that if the impulse of Jik acts on pellet i, the body of pellet k
would then be subjected to an equal but opposite impulse of
−Jik to satisfy the momentum conservation law. The impulse
acting on pellet i (due to its collision with pellet k) produces an
impulsive torque, τJ,ik, which is expressed as

t t t tp x J( ) ( ( ) ( )) ( )ik i i ikJ, c c c cτ = − × (19)

In order to evaluate the magnitude of the impulse in the
normal direction, jik,n, an empirical model describing the
colliding contact is used, where the relative normal velocities of
the contact vertices before and after collision are connected by
the coefficient of restitution, COR. This empirical law can be
expressed as

v v(COR)ik ikp ,n p ,n= −+ −
(20)

where vpik,n
− and vpik,n

+ are the relative velocities at the location of
the contact in the n̂ik(tc) direction before and after the collision
time tc ϵ [tm, tm+1], respectively. The coefficient of restitution
lies between 0 and 1. When it is equal to 1, the collision is
perfectly elastic and no kinetic energy is lost, while COR = 0
results in vpik,n

+ = 0, corresponding to a plastic impact, where
maximum kinetic energy is lost. Substitution of vpik,n

− and vpik,n
+

in eq 20, together with a convenient mathematical procedure
(see Appendix A in the Supporting Information for a
derivation), results in the following equation for the magnitude
of normal impulse jik,n:

j
v

n K n

(1 COR)
ik

ik

ik ik ik
,n

p ,n
T

,n
=

− +

̂ ̂

−

(21)

Figure 3. Three alternatives for collision phenomena in a 2d vertex/face contact:(a) pellets are separating, (b) pellets are in resting contact, and (c)
pellets are in colliding contact situation.
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and

m m t t
t t

K I I r n r
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r p x
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where I0 is the unit matrix and Kik,n is a collision matrix for the
colliding contact between pellets i and k. In case pellet i is in
colliding contact with a confining wall, whether lateral or
bottom wall, the magnitude of impulse can be derived in a
straightforward way. For example, jiL,n, which describes
FiL,n(tc), can be expressed by

j
v

n K n

(1 COR)
i

i

i i iL
L,n

p ,n

L
T

L,n
=

− +

̂ ̂

−

(23)

where

1 m t tK I I r n r( / ) ( )( ( ))i i i i i iL,n 0
1

c L c= + [ × ̂ ] ×−

Suppose that the relative tangential velocity at the contact
point p, where the ith and kth pellets are in colliding contact,
vpik,t
− (t) = vpik,

− (t). tîk(t) is nonzero. The magnitude of the
tangential impulse jik,t acting at contact time tc ϵ [tm, tm+1] is
defined by the product of the dynamic friction coefficient μd
and jik,n using Coulomb’s friction model as

j f t t j( ) dik t

t

ik ik,t d ,n d ,n
m

m 1∫ μ μ= =
+

(24)

However, if vpik,t is very small, jik,t calculated by eq 24 may
reverse the sign of vpik,t

+ (t), resulting in unphysical motion. To
circumvent such an incidence, we assume that jik,t = 0 if
vpik,t
− vpik,t

+ ≤ 0.
Having computed the total impulse, Jik(tc), for a typical

colliding contact between the ith and kth pellets, the
discontinuous changes of linear and angular velocities of the
pellets after collision can be expressed as

t t
t

m

t
j t t
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v v
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v
n t
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i i
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(25)

t t t tI r J( ) ( ) ( )( ( ))i i i i ikc c
1

c cω ω= + ×+ − −
(26)

The same relations can also be written for the linear and
angular velocity differences of pellet k by substituting −Jik(tc)
in the above equations.
3.3.2. Problem of Resting Contact. One of the most

problematic conditions occurring during the numerical
simulation of the packing process is the resting contact, in
which bodies are neither colliding nor detaching at their
contact points, i.e., −εp < vpik,n(t) < εp. This situation may
cause a divergent number of collisions in a finite time span,
which hence needs a specific procedure to handle the contacts,
such that the pellets are kept fixed in their positions without
any interpenetration. Consider a configuration of n contact
points at which bodies are in resting contact (see Figure 4).
We assume that in rest there are no tangential forces, viz., static
friction is omitted, and therefore the resting contacts can be
resolved by specifying a set of forces acting normal to the
contact surface, i.e., φikn̂ik(tc), chosen in such a way that they

obey three constraints: (i) they should prevent the pellets from
interpenetration, (ii) they should act repulsively in a way that
holds the bodies together in contact, and (iii) they should
become zero at the moment the bodies begin to detach again.
It is worth noting that all φik need to be determined

simultaneously, since a force acting on one contact point may
influence objects involved on other contact points. To this end,
we introduce a distance function, dp,ik(t), describing the
distance between the resting contact points from two pellets i
and k in the collision period. Considering the notations
exercised before in describing colliding contacts, the distance
function for a typical resting contact point p (whether it is a
vertex/face or edge/edge contact), at the contact time tc ϵ [tm,
tm+1], can be expressed by dp,ik(tc):

d t t t tn p p( ) ( ) ( ) ( )ik ik i kp, c c c c= ̂ ·[ − ] (27)

The first constraint is to prevent bodies from inter-
penetration. Since both dp,ik(tc) and ḋp,ik(tc), where the latter
describes the relative contact velocity in the direction of n̂ik,
vpik,n(tc), are intrinsically zero (within the numerical threshold),
we need to ensure that the second derivative of the distance
function, measuring how two pellet surfaces accelerate toward
each other at the contact point, to be equal to or greater than
zero (within a numerical tolerance), i.e., dp,ik(tc) ≥ 0. The
expression, describing dp,ik(tc) can be simply derived by two
times differentiating eq 27:

d t t t t

t t t

n v v

n v v

( ) ( ) ( ) ( )

2 ( ) ( ) ( )

ik ik i k

ik i k

p, c c p c p c

c p c p c

̈ = ̂ ·[ ̇ − ̇ ]

+ ̂̇ ·[ − ] (28)

and

t t t t t

t t

v v r

r

( ) ( ) ( ) ( ) ( )

( ( ) ( ))

i i i i i

i c i

p c c c c c

c

ω ω

ω

̇ = ̇ + ̇ × +

× × (29)

where v̇pi(tc) and v̇pk(tc) are the accelerations of the contact
points in the world space coordinate system.
It is worth remarking that if a pellet is in resting contact with

the tube wall, eq 28 can be simplified by setting the rightmost
term to zero, viz., n̂iL(tc) = niB(tc) = 0.
On the basis of the second constraint, each of the contact

forces needs to act outwardly which means that φik(tc) ≥ 0.
The third constraint can simply be described in terms of φik
and dp,ik(tc). Since the contact force must possess a value of
zero if the resting contact starts breaking, it implies that φik(tc)
must be zero when a resting contact is broken. This constraint
can be expressed by the following relation:

Figure 4. Typical schematic of resting contact condition.
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t d t( ) ( ) 0ik ikc p, cφ ̈ = (30)

The magnitudes of φik(tc) can thus be computed such that the
mentioned constraints are satisfied for each contact point.
Suppose that for a configuration of n (resting) contact points
at tc ϵ [tm, tm+1], the distance acceleration for each of the
contact points depends on the normal forces acting on all
contact points together with some other constant forces and
velocity-dependent terms related to the objects involved in that
particular contact point at the precollision time step, tm. In that
case, we can express dp,ik(tc) in terms of all unknown constraint
forces, including those directly affecting the pellets i and k as

d t a t b t( ) ( ) ( )ik
j

ik j i,k j ikp, c , ( ) c c∑ φ̈ = +
(31)

where aik,j describes how a unit change in φij(tc), if pellet i is in
direct contact with pellet j as well, can affect the contact point
pik. A more detailed derivation is given in Appendix B of the
Supporting Information.
If we define Dp as the column vector of dp,ik(tc) for n resting

contact points, at time tc, and ψN as the column vector of all
constraint forces φik(tc), then the problem of resting contact
for n contact cases can be described in matrix form as

d a b

D A B

D A B

where

, , ,

N

ik n N ik j n ik j n n ik n

p

p p, 1 , 1 , 1ψ φ

ψ̈ = +

̈ = [ ̈ ] = [ ] = [ ] = [ ]× × × ×

(32)

with the following constraints:

D A B(i) 0 0Np ψ̈ ≥ → + ≥ (33)

(ii) 0Nψ ≥ (34)

D A B(iii) 0 ( ) 0N N N
T

p
Tψ ψ ψ̈ = → + = (35)

with the understanding that eqs 33 and 34 apply to each
component of the column vectors. Equations 32−35 can be
regarded as a quadratic programing problem, QP, in which we
attempt to minimize the quadratic term ψN

TD p subject to the
conditions ψN ≥ 0 and D p ≥ 0. In this work, the procedures
proposed by Baraff74 is used to solve the problem, which has
been proven as a reliable and fast solution algorithm.
3.3.2.1. Collision/Contact Detection Philosophy. The

collision/contact detection procedure exerted here is based
upon scrutinizing the proximities between body spaces of
approaching rigid objects. This is implemented through a
coherence-based two-layer search procedure, whereby the
proximity between all pairs of face meshes are assessed to see if
the minimum distance between their bounding volumes are
lower than a preset threshold. The first layer of the search
algorithm employs a series of criteria to narrow down the list of

pairwise collision/contact possibilities at each time interval.
These criteria are as follows:
For spheres:

R t t R

R t R

x x

x

x

2 ( ) ( ) 2

(L or B) ( )

and sign( ) 1

i k

i

ik t
t

p p

p p

m
m 1

l
m
ooo
n
ooo

λ

λ

≤ | − | ≤ +

≤ | − | ≤ +

Δ | | = −+
(36)

For cylinders and Rasching rings (L = 2R):
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(37)

where λ = 0.1Rp is a proximity threshold considered between
two approaching objects and Δ|x ik|tm

tm+1 is the change of distance
between barycenters of two objects in two successive time
steps. The result of this search layer, in the form of a sorted list
of pairs of pellets that are possibly colliding, is then fed to a
supplementary search engine, thereby determining the time of
contact as well as details of intersections between the face
meshes of collided objects. Henceforward, to avoid any
probable interpenetrations of the pairs of pellets reported by
the first search layer, the midpoint scheme is run using a much
smaller time interval, δtm. To estimate δtm, let us consider two
pellets i and k, detected by the first collision detection search
procedure, with a maximum relative surface velocity of |
vik
max(tm)|. For the maximum allowable proximity of 0.2λ, the
second collision search subalgorithm can initiate at

t t t t
tv

and
0.2

( )m m m m
ik m

1 maxδ δ λ= + ≤
| |+

(38)

Using this time interval hereafter, the inner search layer is
executed in the form of a sweep/sort algorithm, by which a
sorted list of data including the points and cell face with
minimum distance to the body spaces of each pair of listed
objects is created. The list is then scanned for either an overlap
or a contact between two meshes, viz. vertex/cell face or edge/
edge contacts. A simple penalty method based on the distance
between the reported contact points and the center of mass of
the pair of pellets in contact is then exercised to avoid any
interpenetration. Following this, the algorithm returns to the
latest precollision time, allowing the postcollision calculation to
proceed by computing the collision responses based on the
type of collision. Figure 5 illustrates how the two-layer collision
detection procedure works.

Figure 5. Typical representation for two-layer collision search procedure.
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4. PACKING ALGORITHM

The physics-based algorithm is founded on the equation of
motion of rigid bodies as well as other auxiliary models
describing collision phenomena. This algorithm can be
described in four main stages: preprocessing, initialization,
simulation, and termination.
In the preprocessing stage, the details of rigid objects, i.e.,

catalyst pellets and container, including the physio-mechanical
properties as well as their 3d models in the world space, are
defined. This (preset) information is summarized in Table 1.
The initialization stage involves the initial placement of the

pellets at the top of the tube as well as setting all thresholds for
friction and collision/contact detection subalgorithms. Having
placed the pellets at the top of the container, we set the time
interval Δtm for the iterative calculation procedure (in our tests
1/40 s) as well as the desired total simulation time. We can
then proceed with the simulation, in which the ODE solver is
run simultaneously with the collision search subalgorithms to
determine the trajectories of the barycenter and orientations of
the pellets in the bed at each time step. To inspect whether
dynamic equilibrium occurs, i.e., the termination stage, the
work-energy theorem is exercised: a system of moving pellets
reaches a dynamic equilibrium if the change in total kinetic
energy of the system over a typical time period approaches
zero. Figure 6 exhibits the skeleton of the proposed packing
algorithm.

5. RESULTS AND DISCUSSION

Several series of packing simulations were conducted to assess
the influence of preset parameters, i.e., physio-mechanical
properties such as coefficient of restitution (COR) and surface
friction factor, as well as initial placement of pellets at the top
of the tube, on the structural properties of the packings. We
investigated packing structures of spheres, solid cylinders, and
Raschig rings, with a tube-to-pellet diameter ratio, N, within
the range 3.06−9.16.

To inspect the fidelity and robustness of the proposed
packing algorithm, the simulated packings have been scruti-
nized and benchmarked, first and foremost, in terms of bulk
porosity and radial void fraction distribution. To this end, the
experimental data from refs 25, 28, and 75 for bulk porosity
and refs 24, 26, 27, 52, 76, and 77 for radial void fraction
distribution were tested, which all together provide data for a
wide range of tube-to-pellet diameter ratios, 1.7 ≤ N ≤ 27.95.

5.1. Roles of Loading Methods and Filling Speed. The
choice of initial placement of catalyst pellets, i.e., the loading

Table 1. Preset Data in Preprocessing Stage

Figure 6. Flowchart of the packing algorithm.
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method, in the setup of the packing simulations is of
paramount importance as it may have a considerable influence
on the dynamic behavior of the packing process and
densification, and accordingly, on the topological properties
of the generated structures. The packing algorithm is set up on
the basis of the data given in Table 1, with COR = 0.6 and μd =
0.6, to simulate random packings of spheres with three

different loading strategies: (1) in the first scheme the pellets
are introduced in a column in line with the tube axis; (2) in the
second scheme the pellets are placed in two colums,
equidistant from the tube axis; (3) in the third scheme the
pellets are placed in four columns, equidistant from the tube
axis. These scenarios (see Figure 7) have been examined for

Figure 7. Various scenarios considered for loading method: (a) spherical packing with N = 3.1; (b) spherical packing with N = 6.1.

Figure 8. Influence of different loading schemes on the bulk voidage of generated structures: (a) spherical packing with N = 3.1; (b) spherical
packing with N = 6.1.

Figure 9. Random disturbances imposed on the first loading scheme to mimic the influence of random pouring on bulk voidage in random
packings of cylinders with N = 6.98.
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two packings with tube-to-pellet diameter ratios of N = 3.1 and
6.1.
The simulated structures then were examined in terms of

bulk voidage to determine which scenario would result in a
denser structure. The mean voidage of the generated packings
was computed precisely on the basis of the mesh counts of
catalyst pellets up to a packing altitude of H = 100 mm and
were benchmarked against empirical correlations proposed by
Dixon25 and Foumeny et al.75 The results are shown in Figure
8.
As demonstrated in Figure 8, the first loading strategy not

only results in denser packings among all test cases but also is
in better agreement with empirical correlations describing
dense packing structuers. This can be attributed to the higher
intensity of lateral displacements of the pellets for loading
method 1, leading to a higher order of densification. The same
analysis has been performed for packings of cylindrical pellets
with N = 6.98; the results of the mean porosity analysis have
confirmed the superiority of the first scenario, where the

cylinders are placed obliquely with an angle of 45° with respect
to the gravity direction. This leads to the densest structure for
such a narrow fixed beds and is in the best agreement with
published correlations. Similar results have been found by
Fernengel et al.78 for random packing of spheres with N = 6.25,
where the authors investigated the influence of number of
spheres per layer in the loading scheme on bulk voidage of
simulated structures using LIGGGHTS and Blender packages.
It was also found that increasing the distance between
successive pellets in their initial placement allows the tube to
be a little more compacted. In a second step, we imposed
random translational and orientational disturbances on the
pellets in the first scheme of loading, resulting in five extra
loading schemes, to account for the influence of random
pouring on the bulk voidage of RBD-simulated structures. This
analysis was conducted for random packings of spheres
(including translational disturbances) with N = 3.1 and 6.1
and cylinders (including both translational and orientational
disturbances) with N = 3.55 and 6.98. Figure 9 illustrates the
imposed disturbances on the first loading scenario for packing
of cylinders with N = 6.98.
Overall, the results show that denser structures can be

synthesized using the original version of the first loading
scheme for all cases. Here, for sake of brevity, the result of
comparison analysis for random packing of cylinders with N =
6.98 is presented in Table 2, where the bulk voidage obtained
from the generated packings according to the loading schemes
presented in Figure 9 is compared with the empirical
coloration by Dixon.25

It is worth remarking that the aforementioned loading
schemes were also implemented in our further analysis
described in sections 5.2 and 5.3, where we have investigated
the roles of restitution and friction factors in the bulk voidage

Table 2. Influence of Imposing Translational and
Orientational Disturbances on the First Loading Scheme on
the Resulting Bulk Voidage for Packing of Cylinders with N
= 6.98

loading scenario

1 2 3 4 5 6

bulk voidage
(calculated)

0.405 0.410 0.419 0.416 0.420 0.425

predicted voidage
after Dixon
(1988)

0.395 0.395 0.395 0.395 0.395 0.395

MER (%) −2.4 −3.8 −6.1 −5.2 −6.2 −7.5

Figure 10. Influence of coefficient of restitution (COR) of catalyst pellets on the bulk porosity of generated structures for packings of (a) spheres
with N = 3.1, (b) cylinders with N = 3.55, (c) spheres with N = 6.1, and (d) cylinders with N = 6.98. Results of six independent simulations for
each COR (with different random disturbances on the initial pellet positions and orientations) are shown, indicating the variability of the results.
Dashed lines are trendlines based on the average of these independent simulations.
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of simulated structures. Similarly, our results demonstrate that
denser packing structure can be generally generated using the

original version of first loading method for such narrow beds
for all ranges of restitution and friction coefficients considered.

5.2. Role of Surface Bounciness (Coefficient of
Restitution). The amount of surface bounciness, expressed
as the coefficient of restitution, can substantially affect the
subsequent chain of collisions, and therefore the final
structures. Zhang et al.79 investigated the influence of the
coefficient of restitution on packing density, but their work was

Figure 11. Influence of friction factor of catalyst pellets on the bulk porosity of generated structures for packings of (a) spheres with N = 3.1, (b)
cylinders with N = 3.55, (c) spheres with N = 6.1, and (d) cylinders with N = 6.98.

Table 3. RBD Simulation Setup for Validation Study

catalyst pellet bed environment

no. of face mesh (per pellet): bed size:
sphere: 3120 spherical beds: dt = 31, 39.6, 41, 56,

59.6, 61, 79.9 mm & bed altitude:
120 mm

cylinder: 4400 cylindrical beds: dt = 33.65, 35.49,
46.93, 69.83, and 91.58 mm & bed
altitude: 120 mm

Raschig ring: 8008 Raschig ring beds: dt = 30.58,
40.45, 60.18, and 79.91 mm & bed
altitude: 120 mm

density: 8030 kg/m3 tube wall friction coefficient (dynamic): 0.6
surface friction coefficient
(dynamic): 0.1

tube wall surface bounciness (COR): 0.6

surface bounciness (COR): 0.9 gravity acceleration: 9.81 ms−2

Figure 12. Dynamics of packing process for packing of cylinders with
COR = 0.9 and μd = 0.1 in a tube with N = 4.69. A video of a packing
process with COR = 0.1 and μd = 0.9 with N = 5 is supplied in the
Supporting Information.

Figure 13. RBD-simulated structures.
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restricted to packings of spheres in large-N beds, e.g., N = 24,
where in the effect of container wall on the packing process
and final bulk voidage cannot be elucidated. Since the impact
of this physio-mechanical property on the packing densifica-
tion has not yet been systematically investigated in low-N
packings of (non-) spherical pellets, an effort is made here to
monitor the role of this property on the bulk porosity of
packings of spheres and cylinders. To this end, the packing
algorithm is set up on the basis of the data given in Table 1, to
synthesize random packings of spheres with N = 3.1 and 6.1
and cylinders with N = 3.55 and 6.98. The friction factor is set
to μd = 0.6, while the restitution coefficient is set to 0.05, 0.15,
0.35, 0.55, 0.75, and 0.95, respectively, covering the whole
range of collision behavior from semiplastic to semielastic. The
first loading scheme is applied. However, to generate
statistically independent samples for averaging, random
disturbances (with a maximum magnitude of 0.8 dp and
maximum angle of 45°) have been imposed to the initial pellet
positions and orientations for each packing case (see Figure 9).
This was repeated six times for each case, leading to 144
generated test cases for spherical and cylindrical packings.

The mean voidage of all test cases was then computed on
the basis of the number of pellets stacked within a tube up to
the altitude of H = 120 mm and depicted versus COR in
Figure 10.
Overall, the results of this analysis agree with the prevailing

hypothesis on the influence of restitution coefficient, viz.,
higher values of COR generally result in denser packings,
because with more elastic collisions, the probability of longer-
lasting successive collision chains increases. This allows pellets
to be further displaced laterally, and to be vibrated for a longer
duration of time, allowing them to find their optimal positions.
However, our results also show considerable variability of the
mean porosity from sample to sample, in particular in narrower
structures (see Figure 10a,b), which can be reasonably
attributed to the restrictive role of the tube wall. The trends
in wider beds, as shown in Figure 10c,d, demonstrate a lower
amount of variability. Furthermore, the results demonstrate
that the influence of COR on the resulting packing density is
more discernible for COR values beyond 0.5, where it causes
an intensive vibration of catalyst pellets in the bed.

5.3. Role of Surface Roughness. The surface roughness
of a pellet, which is fundamentally described by its friction
coefficient, is another physio-mechanical property that can
affect the process of packing. To assess the impact of this
parameter on structural properties of random packings, the
same procedure as for the role of COR is pursued. In this case,
the pellet’s COR is set to 0.6, whereas the surface friction
coefficient is set to 0.05, 0.3, 0.5, 0.7, and 0.95, respectively,
covering a large spectrum of dynamic friction coefficient.
The bulk porosity of all samples for each test case has been

computed, and plotted against friction coefficient in Figure 11.
The results confirm the general understanding of the effect

of surface friction on packing density: lower values of friction
facilitate sliding of the contact surfaces relative to each other,
leading to denser packing structures. In fact, the influence of
friction factor on the packing density appears to be 1.5 times

Figure 14. Comparison between the mean porosity extracted from RBD simulations and empirical correlations for three types of pellets: (a)
spheres, (b) equilateral solid cylinders, and (c) Raschig rings.

Figure 15. Implementation of the planar mesh-based approach for
evaluating axially averaged radial void fraction data for RBD-simulated
structure of raching ring with N = 6.02.
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larger (in the studied range) than that of the COR, leading to
an apparently lower variability between different samples.
5.4. Validation Study and Postprocessing of the

Results. The main goal of our work is to introduce a new RBD
methodology to synthesize realistic random packings of
particles of any shape. We now present a detailed validation
study, whereby the reliability of the RBD-algorithm in
replicating structural properties of realistic packings is
scrutinized. The specifications of the physical simulations
(see Table 3) were chosen to reproduce the experimental
arrangements utilized in the works of Benenati and Brosilow,24

Roshani,76 and Mueller.52 More simulation runs have been
performed to generate random packings in the range 3.1 ≤ N <
9.16 to examine the restrictive role of confining walls on the
predicted bulk porosity over a range of tube-to-pellet diameter
ratios, and to benchmark the predicted radial porosity
distribution against some of the most-frequently used empirical
correlations. Table 3 addresses the specifications and data used
in setup of RBD simulations.
Figure 12 illustrates the dynamic behavior of the random

packing process, in four frames, for a typical cylindrical
packing. The Supporting Information contains a video of a
similar packing process.

Several packings have been generated, on the basis of the
specifications in the Table 3, including seven different tube-to-
particle ratios for packings of spheres, five for packings of solid
cylinders, and four for packings of raching rings. Each case has
been executed in triplo with slightly perturbed initial pellet
positions to generate statistically independent data. Figure 13
illustrates some typical results of RBD-simulated packings of
spheres, cylinders, and Raschig rings.
The bulk porosity of the generated structures has been

computed on the basis of the total amount of pellet material up
to the altitude of 100 mm and compared with well-known
published correlations in Figure 14.
The RBD simulation results demonstrate satisfactory

agreement with the empirical correlations for all cases, giving
a maximum relative error (MRE) of 3.9%, 17.6% (relating to
the narrowest bed case), and 6.6% for packings of spheres,
cylinders, and Raschig rings, respectively, based on the
empirical correlation by Dixon.25

The local structural properties of the RBD-simulated
packings have also been examined. For this, the axially
averaged radial void fraction distribution of the RBD-simulated
structures was extracted and compered to literature data. To
evaluate radial void fraction profiles, a planar mesh-based
approach was adopted, in which a packing structure is

Figure 16. Comparison between the radial void fraction profiles obtained from RBD simulations of sphere packings and literature data. The
experimental data presented here are extracted with permission from refs 52 and 24.
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intersected with a series of concentric tubes with different
diameters (see Figure 15). The local void fraction at a specific
radius can then be precisely computed by the following
formula:

r
S

S
( ) 1 int

total
ε = −

(39)

where Sint is the intersecting area with pellets and Stotal is the
area of tube that intersects the packing at radius r.

The radial void fraction profiles from the RBD simulations
versus the distance from the tube wall (made dimensionless by
dpv, the equivalent diameter of a sphere of the same volume)
are shown in Figures 16 and 17 for spheres and cylinders,
respectively.
Figures 16 and 17 show very good agreement between the

radial void fraction profiles extracted from RBD simulations
and the corresponding experimental data by Mueller52 for
packings of spheres and Roshani76 and Giese et al.77 for

Figure 17. Comparison between the radial void fraction data obtained from RBD simulations of packings of cylinders and experimental data by
Roshani76 and Giese et al.77 The experimental data presented here are extracted with permission from refs 76 and 77.

Figure 18. Radial void fraction profiles obtained from RBD simulations of packings of Raschig rings.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.8b03915
Ind. Eng. Chem. Res. 2018, 57, 14988−15007

15003

http://dx.doi.org/10.1021/acs.iecr.8b03915


packings of cylinders. The same conclusion can be made when
the RBD data are compared with empirical correlations by de
Klerk27 and Roshani,76 giving R2 and root-mean-square error
values of more than 0.85 and lower than 0.08 for spheres,
respectively, and more than 0.84 and lower than 0.07 for
cylinders, respectively.
Overall, it can be concluded that the proposed packing

algorithm is able to reasonably reproduce the essential features,
including the oscillatory-damped behavior as well as amplitude
and period of oscillations, of the most-frequently used
experimental data.
We can now use the method to investigate the radial void

fraction profile in packings of Raschig rings, as shown in Figure
18.
As revealed in Figure 18, the behavior and pattern of the

void fraction distribution over the dimensionless distance from
the tube wall in Raschig ring packings is quite different
compared to those known for sphere and cylinder packings. A
similar trend has been reported by Giese et al.77 for a Raschig
ring bed with N = 10.

6. CONCLUSION
A physics-based packing algorithm, founded on the concepts of
rigid body dynamics (RBD), has been presented and validated.
The algorithm enables us to synthesize random packing
structures of nonspherical and nonconvex shapes. The
advantage of our approach, compared to popular computer
graphics software such as Blender, is that we proposed a more
rigorous and realistic approach to model the resting contact
phenomenon, wherein the transition between moving and
resting particles is controlled by a cutoff on the relative contact
velocity followed by a detailed balance of constrained forces
acting on each pellet, facilitating the stability of convergence in
RBD simulations. Our approach avoids the usage of artificial
translational and angular momentum sinks on moving particles
and therefore exactly obeys the laws of conservation of linear
and angular momentum.
We used our new approach to generate realistic random

packings of spheres, cylinders, and Raschig rings with a bed-to-
pellet diameter ratio N ranging from 3 to 9.16, where the role
of confining walls in the packing process is very important. The
results of our validation study have demonstrated satisfactory
agreement with literature data concerning the bulk porosity
and radial void fraction profiles, substantiating the merits of
this approach in replicating the structural properties of realistic
random packing geometries of nonspherical catalyst pellets.
Furthermore, the influence of essential physio-mechanical
properties of catalytic particles, such as surface roughness and
bounciness, were studied for both spherical and cylindrical
particulate beds.
A particular feature of this approach is that it can synthesize

both loose and dense packing structures, depending on the
precise loading scheme and physio-mechanical properties,
thereby in a way mimicking both sock-loading and dense-
loading methods utilized in industrial practice.
The packing algorithm provides detailed information

concerning the topological features of randomly packed fixed
bed structures, e.g., the position and orientation of catalyst
pellets in the bed. Therefore, it has the potential of being used
as a supplementary tool to lattice Boltzmann or computational
fluid dynamics simulations of reacting flows and heat- and
species-transport characteristics of such complicated unit
operations.

We finish our conclusions by noting that from the results
presented in this work, we cannot yet make a statement about
the possibly improved quality of the packing structures by our
method relative to other methods such as Blender, DigiDEM,
and LIGGGHTS. We have shown that the packing structures
are highly sensitive to pellet shape, physiomechanical proper-
ties, and loading methods. To trustfully show the differences
between the different methods, it is therefore necessary to
conduct a systematic comparison study, covering different
pellet shapes with different ranges of physiomechanical
properties and loading methods. We note that small but
significant differences in the void fraction of sphere packings in
cylindrical beds predicted by Blender, compared to DigiDEM
and LIGGGHTS, have already been found in a recent paper by
Fernengel et al.78 (see their Figure 2). At this point it is not
certain whether such differences are caused by differences in
handling the dynamics of the packing process (which for
instance is influenced by the magnitudes of the translational
and angular momentum damping terms) or by small
differences in the contact model. Small differences in predicted
voidage may even be acceptable for certain applications in view
of the greatly enhanced computational speed of Blender
relative to these other packages. In any case, a careful and
systematic comparison of these different methods is clearly
needed and will be the topic of our forthcoming contribution.
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■ NOMENCLATURE
A matrix of multipliers introduced in eq 32 [kg−1]
B matrix of acceleration souce terms introduced in eq 32

[ms−2]
a a multiplier introduced in eq 31 [kg−1]
b an acceleration source term introduced in eq 31 [ms−2]
COR coefficient of restitution [−]
D matrix of distance function introduced in eq 32 [m]
d distance function described by eq 27 [m]
dp pellet diameter [m]
dt tube diameter [m]
dpv equivalent diameter of a sphere volume [m]
f magnitude of normal force [N]
F force vector [N]
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g gravity acceleration [ms−2]
I moment of inertia tensor [kg m2]
j magnitude of impulse [kg ms−1]
J impulse [kg ms−1]
K collision matrix [kg−1]
L angular momentum [kg m2 s−1]
m mass of a pellet [kg]
n̂ unit vector at the normal direction [−]
np number of rigid particles [−]
N tube to pellet diameter ratio [−]
p position of contact vertex at the surface of a pellet [m]
P linear momentum [kg ms−1]
r vector between a contact point and center of mass [m]
Rt tube radius [m]
t time [s]
t ̂ unit vector in the tangential direction [−]
v linear velocity in a specific direction [ms−1]
v linear velocity [ms−1]
W weight force [N]
x position of center of mass of a pellet [m]
X state vector [−]
z ̂ unit vector at the direction of gravity [−]
Greek Letters
ε bulk porosity [−]
ε(r) radial porosity [−]
ε p numerical threshold [−]
μd dynamic friction coefficient [−]
ω angular velocity [s−1]
ΨN matrix of normal forces introduced in eq 32 [N]
φ normal force acting on resting a contact point [N]

Subscripts
B bottom wall
b body
c contact
i pellet i
j pellet j
k pellet k
L lateral wall
n normal
p contact point
t tangential
+ after collision
− before collision
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