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Cryo-electron tomography (Cryo-ET) has been regarded as a revolution in structural

biology and can reveal molecular sociology. Its unprecedented quality enables it to

visualize cellular organelles and macromolecular complexes at nanometer resolution

with native conformations. Motivated by developments in nanotechnology and machine

learning, establishing machine learning approaches such as classification, detection

and averaging for Cryo-ET image analysis has inspired broad interest. Yet, deep

learning-based methods for biomedical imaging typically require large labeled datasets

for good results, which can be a great challenge due to the expense of obtaining and

labeling training data. To deal with this problem, we propose a generative model to

simulate Cryo-ET images efficiently and reliably: CryoETGAN. This cycle-consistent and

Wasserstein generative adversarial network (GAN) is able to generate images with an

appearance similar to the original experimental data. Quantitative and visual grading

results on generated images are provided to show that the results of our proposed

method achieve better performance compared to the previous state-of-the-art simulation

methods. Moreover, CryoETGAN is stable to train and capable of generating plausibly

diverse image samples.

Keywords: Cryo-ET, image synthesis, image translation, generative model, generative adversarial network

1. INTRODUCTION

Cryo-electron tomography (Cryo-ET) has emerged as a powerful 3D imaging tool with
unprecedented quality in capturing structural and spatial organization information of
macromolecules inside single cells. Analysis of macromolecules in a Cryo-ET image (i.e., a
tomogram, usually of size 6,000 × 6,000 × 1,500 voxels) is done at subtomogram level.
A subtomogram is a small 3D cubic sub-image of a tomogram that generally contains
one macromolecule extracted from tomograms. Deep-learning-based classification has been
successfully applied and achieved high accuracy on Cryo-ET subtomogram identification. Plenty of
previous works have been devoted to separating structurally highly heterogeneous macromolecules
captured by Cryo-ET data into structurally homogeneous subgroups (Bartesaghi et al., 2008;
Scheres et al., 2009; Xu and Alber, 2011, 2012; Xu et al., 2012; Chen et al., 2014; Bharat et al., 2015;
Che et al., 2018). Nevertheless, the main bottleneck for these deep learning methods is a lack of
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training data. Since various subtomogram datasets may be
collected under different experimental conditions, directly
applying the knowledge learned from one dataset to the other
will result in a decrease in performance such as classification
accuracy due to domain shift. Therefore, part of the dataset
must be manually labeled in order to predict the rest of the
data, which is a highly time consuming process. To automate
this process and reduce domain shift, training the network
on realistically generated subtomogram datasets becomes an
ideal approach. Simulation can provide an unlimited number of
training instances with pre-specified labels.

Conventional image simulation methods for Cryo-ET use
atomic models in Protein DataBank (PDB) (Bernstein et al.,
1977), using a specified resolution and voxel spacing together
with low-pass data filtering. Gaussian-distributed noise and
Modulation Transfer Function noise (MTF) are applied for the
realistic electron optical effect to match a certain signal-to-
noise ratio (SNR). Random rotation and translation operations
are performed to synthesize more samples. Yet, simulating
realistic data presents challenges due to high degree of structural
complexity, irregular noise, and tomographic distortions. Neural
networks trained on them result in poor testing performance
when applied to experimental data. By inferring from real image
data, machine learning methods potentially overcome common
restrictions such as infeasible interactive use and substantial
computational resources.

The recent explosion in the Generative Adversarial Networks
(GANs) field have shown great success in tasks such as
image synthesis, image-to-image translation (Yang et al., 2017;
Schlemper et al., 2018; Seitzer et al., 2018;Wang et al., 2019, 2021;
Guo et al., 2020; Yuan et al., 2020; Chen J. et al., 2021; Chen Y.
et al., 2021; Jiang et al., 2021; Li et al., 2021; Lv et al., 2021a,b,c).
Recent advances have used GANs to formulate biomedical image
simulation as an image-to-image translation task and arouse a
wide interest in biomedical area (Bi et al., 2017; Calimeri et al.,
2017; Nie et al., 2017; Wolterink et al., 2017; Zhao et al., 2017;
Liu et al., 2021a,b). In most cases, 3D images do not have
paired data; as a result, learning from unpaired data becomes
crucial. The cycle-consistent generative adversarial network (Zhu
et al., 2017) successfully performed unpaired image-to-image
translations, only requiring two unpaired datasets and is capable
of preserving semantics. In the same spirit, we formulate
a framework called CryoETGAN to simulate subtomograms
indiscriminable from real data on given structures from density
map which shows electron density occupancies and distribution
of the particle (Kaur et al., 2021). We conduct experiments
to demonstrate the effectiveness of our method qualitatively
and quantitatively. The generated datasets can serve as training
datasets for future subtomogram study.

We are the first to propose an image translation based
simulation method for cryo-ET 3D images. Although image
translation has been used to simulate cryo-EM 2D images (Gupta
et al., 2020b, 2021; Miolane et al., 2020), they are not directly
comparable to our method as 3D cryo-ET and 2D cryo-EM
images capture different kinds of information. One prior work
applying GANs in a related space is Gupta et al. (2020a), in
which a GAN is trained to perform single-particle cryogenic

electron microscopy (Cryo-EM) reconstruction given a large
number of Cryo-EM images. We note this work differs in
many aspects including the task and the nature of the data.
First, Gupta et al. (2020a) trains a generative simulator using
many Cryo-EM images of a specific particle, not a general
image-to-image translationmodel. In addition, 2D single-particle
cryogenic electron microscopy (Cryo-EM) images and 3D cryo-
electron tomography (Cryo-ET) images are different media:
single-particle Cryo-EM typically uses noisy images of many
copies of a macromolecular structure, while Cryo-ET operates on
a single cell sample (Marx, 2018). As noted inMarx (2018), Cryo-
ET shines where it is not feasible to make “tens of thousands” of
copies of a structure of interest, and has led to discoveries such
as Basler et al. (2012). In essence, Gupta et al. (2020a) solves an
important but distinct task in a related field.

Thus, our main contributions are as follows:

1. We propose the use of a GAN-based image translationmethod
in order to augment the training datasets of Cryo-ET models
using density maps.

2. We develop a GAN framework to robustly generate diverse
Cryo-ET images from density maps. We propose several
architectural modifications to incorporate priors on Cryo-ET
data to stabilize training.

3. We demonstrate the effectiveness of these techniques on
traditional metrics of generative model performance as well
as downstream classification performance.

2. MATERIALS AND METHODS

Our proposed framework for Cryo-ET image synthesis:
CryoETGAN is presented in Figure 1. In the following
paragraphs, we will elaborate on CryoETGAN and its network
architecture starting with preliminary details.

2.1. Formulation
Wefirst introduce our notations.Macromolecular complexes and
cellular components which can be extracted from tomograms of
cells using template-free methods such as Difference of Gaussian,
are densely packed in small 3D volume of cubic shape (3D analog
of a 2D image patch). Those experimental subtomograms are
represented as {si}

N
i=1 where si ∈ S (i.e., 3D gray scale images of

size n× n× n).
Another domain we use contains density maps which are

simulated from proteins using EMAN2 (Tang et al., 2007), which
is a image processing package with a focus on single particle
reconstruction. Those experimental density maps are denoted as
{di}

N
i=1 where di ∈ D, our goal is to learn two mapping functions,

Gds :D → S and Gsd : S → D. The generators are guided by the
discriminators to learn the mappings between the subtomograms
and density maps in order to preserve the edges and details.

As shown in Figure 1, our CryoETGAN model has four main
components: two generators Gds and Gsd to capture the data
distribution from two domains, two discriminators DA and DB

that estimate the probability of the generated samples whether
they are from the experimental datasets or generated ones.
Discriminator DA aims to distinguish between experimental
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FIGURE 1 | Overview of CryoETGAN: with adversarial loss, cycle-consistency

loss, and Wasserstein loss, our method is capable of learning mapping

between domain S and D with unpaired data.

subtomograms {si}
N
i=1 and generated ones {Gds(di)}

N
i=1, and

DB aims to discriminate between experimental density map
{di}

N
i=1 and generated ones {Gsd(si)}

N
i=1. Two generators are

trained to produce realistic data to fool the adversarially trained
discriminators DA and DB. The training loss of CryoETGAN
contains three types of terms: adversarial loss for matching the
distribution of generated data to corresponding D or S domain;
cycle-consistent loss to make sure the generated images in target
domain can be generated back to the source domain and enable
the mapping between these two domains; andWasserstein loss to
prevent mode collapse.

2.2. Adversarial Loss
The adversarial losses are applied to both mapping directions.
Given a distribution s ∼ pdata, generators define the probability
distribution as the distribution of the sample Gds(d) and Gsd(s)
For the generator Gds :D → S and its discriminator DA, the
objective is defined as:

LGAN (Gds,DA,D, S) = Es∼pdata(s)

[

logDA(s)
]

+ Ed∼pdata(d)

[

log
(

1− DA

(

Gds(d)
)] (1)

In this setting, we train the generators Gds, Gsd, and
discriminators DA, DB together. Without paired data, we

conduct a min-max training between the generators and
discriminators. Ideally the image Gds(d) generated by Gds will
be visually similar to images in S domain. Meanwhile the
discriminators distinguish between generated images and real
images. Similarly, the adversarial loss for the mapping function
Gsd : S → D and its discriminator DB is defined as below:
minGsd

maxDB LGAN(Gsd,DB, S,D)

LGAN (Gsd,DB, S,D) = Es∼pdata(d)

[

logDB(d)
]

+ Es∼pdata(s)

[

log
(

1− DB

(

Gsd(s)
)] (2)

2.3. Cycle Consistency Loss
To further guarantee that the mapping function can map an
input di to its ideal output si, also from si to di. Inspired by Zhu
et al. (2017), we use cycle-consistent loss to enable the image
translation cycle to force d back to the original image, i.e., d →

Gds(d) → Gsd(Gds(d)) ≈ d. Similarly, for each image s from
domain S, Gsd and Dd should also make the reconstructed image
Gds[Gsd(s)] to be identical to input s. The cycle-consistent loss is
written as:

Lcyc (Gds,Gsd ) = Ex∼pdata (d)

[∥

∥Gsd

(

Gds(d)
)

− d
∥

∥

1

]

+ Es∼pdata (s)

[
∥

∥Gds

(

Gsd(s)
)

− s
∥

∥

1

]

.
(3)

2.4. Wasserstein Loss
During preliminary testing, expressions of density maps were
frequently transferred to the same pose and to the same
subtomogram expression. Moreover, the standard discriminator
loss uses cross-entropy loss and suffers from vanishing
gradients. Instead of the Jensen-Shannon divergence,Wasserstein
GAN (Arjovsky et al., 2017) adopts the Earth Mover distance to
measure the distance between real and generated samples:

W
(

Pr ,Pg

)

= inf
γ∈5(Pr ,Pg)

E(x,y)∼γ [‖x− y‖]. (4)

Following the notation from Arjovsky et al. (2017) 5(Pr ,Pg)
represents for the set of all joint distributions. γ (x, y) represents
for the transporting cost from x to y in order to transform
the distributions Pr to Pg . In practice, this is accomplished by
replacing the discriminator with a critic and using the difference
between the critic predictions on real and fake images as the
critic’s loss, and the negated version for the generator, and
then enforcing a constraint on the discriminator to enforce 1-
Lipschitz continuity. Inspired by Wasserstein GAN, we adopted
the following improvements in order to deal with the model
collapse problem in adversarial training and to achieve more
stable results.

• Clip the weight ofs D.
• Use RMSProp instead of ADAM.
• Lower learning rate. The rate in the paper is α = 0.0005.

2.5. Mode Collapse
The scenario of mode collapse refers to the generator produces
similar data every time and still able to successfully fool the
discriminator. We pass random noise vectors to the generator
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in order to deal with mode collapse. To learn the distribution
over subtomogram, the generator builds a mapping function
from a distribution density map to subtomogram. Between
convolutional layers and deconvolutional layers, we concatenate
a noise vector to it so that it can generate different pattern
according to the style. On the other side of the cycle translation,
another generator builds a mapping function from subtomogram
to density map.

2.6. Full Objective
Given the formulations of adversarial loss, cycle-consistent loss,
and wasserstein loss above, our full objective is formulated
as follows:

L (Gds,Gsd,DA,DB) = LGAN (Gds,DA,D, S)

+ LGAN (Gsd,DB, S,D)

+ λLcyc (Gds,Gsd) ,

(5)

where λ adjusts the importance of the cycle-consistency objective.
Solving the min-max optimization problem has long been

known for a challenging task. Previous work proposed careful
designed network architectures and objective functions in
order to achieve good performance—we adopt the spectral
normalization layer proposed by Miyato et al. (2018) to
normalize weights, regulating the scale of feature response values
and stabilizing the training process.

2.7. Architecture
Following the CycleGAN paper notation (Zhu et al., 2017),
the generator architecture is c7s1-d32, d64, d128, R128, R128,
R128, R128, R128, R128, u64, u32, c7s1-u1. The output after
downsampling is concatenated along the filter dimension with
a one-channel Gaussian noise vector of the same shape, so the
input to the u32 layer has 129 channels. Note dk denotes a k-filter
3 × 3 × 3 and stride-2 convolution followed by instance norm
and ReLU, uk denotes the same with stride 1

2 and fractional-
strided-convolution, and Rk is a k-filter residual block. The
last convolutional layer has tanh without InstanceNorm. The
discriminator has an architecture of C64, C128, C256. Note
Ck corresponds to a 4 × 4 × 4 convolution with stride 1
followed by InstanceNorm and a Leaky ReLU with slope of 0.2.
Spectral Normalization is applied to each convolutional layer of
the discriminator.

3. RESULTS

3.1. Experimental Datasets
We tested our CryoETGAN on two experimental datasets Se1 and
Se2. Dataset Se1 contains 1,600 subtomograms of size 403 from
four classes of macromolecules, the four classes are Proteasome
(5MPA), Ribosome (5T2C), TRiC (4V94), and Membrane. Each
class has 400 images. For the density maps, We simulated
3D noise free density maps using EMAN2 corresponding
to the subtomogram classes. The proteins are from Protein
Data Bank (Berman et al., 2000) which is a database for the
three-dimensional structural data of large biological molecules,
such as proteins and nucleic acids. Dataset Se2 contains 2,800

subtomograms from seven classes of macromolecules, which
were extracted from Noble Single Particle Dataset collected
by Noble et al. (2018), each class has 400 subtomograms
from EMPIAR. Subtomograms were extracted and about 20
macromolecules were manually picked. The 20 subtomograms
were averaged to generate the structural template. Structural
template was aligned to all subtomograms extracted and
produces cross-correlation scores. Each particle is consisted of
283 voxels, and the size of each voxel is 0.94 nm. The SNR is
0.5 and missing wedge angle is 30◦. For each tomogram in the
original set, subtomograms of size 283 were extracted using a
Difference of Gaussian(DOG) particle picking process (Pei et al.,
2016) with the parameters of s1 = 7.0 and k = 1.1. We applied
a template search approach as described in Zeng et al. (2018)
to select the top 1,000 subtomograms according to the cross-
correlation scores. Four hundred subtomograms are manually
selected for each class which contain macromolecule structures.
In our experiments, we select 2,000 subtomograms for training
and the remaining 800 for testing.

3.2. Visualization Results
Figure 2 displays simulation results of applying CryoETGAN,
and each section of the image represents for a slice of
the generated subtomogram data. We can observe that the
reconstructed images Gsd[Gds(d)] end up matching closely to the
input images d as shown in Figure 3.

3.3. Evaluation Metrics
We use several common GAN evaluation metrics (Borji, 2019) as
the quality evaluation criteria for the Cryo-ET data generated in
our experiments as shown in Figures 5, 6.

3.3.1. Inception Score (IS)
IS was originally proposed by Salimans et al. (2016) to
quantitatively evaluate the quality of the generated images
(shown in Equation 6). The intuition behind Inception Score is
that a generator with high performance should generate samples
with low entropy in the class distribution of a single generated
data while producing high entropy in the classes across all
generated samples. In our experiments, we adopted CB3D (Che
et al., 2018) as our “Inception V3” to calculate an IS-equivalent
for Cryo-ET.

IS = exp
(

Ex∼pgDKL(p(y|x)||p(y))
)

. (6)

3.3.2. Frechet Inception Distance (FID)
FID has been widely used in measuring the similarity between
real and generated images. Unlike IS, FID (Heusel et al.,
2017) compares the distance between two multivariate Gaussian
distributions as shown in (Equation 7)

FID = ||µr − µg ||
2 + Tr(6r + 6g − 2(6r6g)

1/2), (7)

s where Xr ∼ N (µr ,6r) and Xg ∼ N (µg ,6g) are the 4,096
dimensional activation inputs of the CB3D model’s dense layer
for real and generated data, respectively.

Single-value metrics such as IS and FID evaluate the
generative model, yet they are not perfect for diagnostic

Frontiers in Physiology | www.frontiersin.org 4 March 2022 | Volume 13 | Article 760404

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Wu et al. CryoETGAN

FIGURE 2 | The 2D slide visualization of generated subtomograms (Top: Se1, Middle and Bottom: Se2). In general, we find CryoETGAN retrieval produces

qualitatively similar subtomogram compared to the ground truth and is capable of producing various classes without mode collapse.

TABLE 1 | For domain S, we use two datasets for training Se1 and Se2 separately,

which contains four classes subtomograms and seven classes subtomograms,

with 400 images in each class.

Se1 EMPIAR ID Macromolecular complex

5MPA Proteasome

5T2C Ribosome

4V94 TRiC

NA Membrane

Se2 EMPIAR ID Macromolecular complex

10130&10131 Rabbit muscle aldolase

10133 Glutamate dehydrogenase

10135 DNAB helicase-helicase

10143 T20S proteasome

10169 Apoferritin

10172 Hemagglutinin

10173 Insulin-bound insulin receptor

purposes (Naeem et al., 2020). Fidelity and diversity attribute
are usually considered as a trade-off in the design strategy
of generative models, which represents for how realistic the
inputs are and how well those generated data capture the
variations in real data (Naeem et al., 2020). We use precision
and recall proposed by Sajjadi et al. (2018) to measure these

two characteristics, we use the same notations as in Naeem
et al. (2020), B(X, r): the ball around the point x with radius r,
NNDk(Xi): the distance to the kth-nearest neighbor. Xi are the
real embedded samples and Yj are the fake embedded samples.

manifold(X1, · · · ,XN) : =

N
⋃

i=1

B(Xi, NNDk(Xi)). (8)

Precision:

1

M

M
∑

j=1

1Yj∈manifold(X1 ,··· ,XN ). (9)

Recall:

1

N

N
∑

i=1

1Xi∈manifold(Y1 ,··· ,YM). (10)

3.3.3. Density
Density and coverage are proposed by Naeem et al. (2020)
as alternatives to precision and recall, respectively, to be
more robust to outliers. Density emphasizes not only whether
the samples generated are close to a real sample, but also
how many spheres around real-samples contain the generated
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FIGURE 3 | The 2D slide visualization of real subtomogram samples from every class (Top: Se1, Middle and Bottom: Se2 ), the sequence of those subtomograms is

corresponding to the sequence in Table 1.

example. It counts howmany real-sample neighborhood contains
fake samples.

1

kM

M
∑

j=1

N
∑

i=1

1Yj∈B(Xi,NNDk(Xi)) (11)

3.3.4. Coverage
Coverage is a metric evaluating recall in terms of the real
manifold rather than the fake manifold. This penalizes sparse
coverage of the real space, where generators may benefit in terms
of the recall metric by simply having few examples in some part
of the real space. It builds the nearest neighbor manifolds around
the real samples instead of the fake samples due to more outliers.

1

N

N
∑

i=1

1∃ j s.t. Yj∈B(Xi ,NNDk(Xi)) (12)

3.3.5. Classification Accuracy
Deep Neural networks are able to capture global and local
information from image data. Therefore, we use the state-of-the-
art deep learning-based classification model for Cryo-ET data:
CB3D (Che et al., 2018) to objectively quantify the generated
subtomogram generated from densitymap data.We consider this
as a way to interpret the generative ability of our model.

TABLE 2 | Evaluation results via six different metrics.

Datasets SSIM Precision Recall Density Coverage Classification acc (%)

Se1 0.3071 1.0 0.0 320.0 1.0 76.4

Se2 0.7192 0.3493 0.0678 2.21628 0.5532 67.3

Ideally, one would have a high density as well as a high coverage. We believe these metrics
alongside classification performance are themost relevant indicators for this model, as one
density map may correspond to numerous subtomograms.

Compared to the traditional method (Bernstein et al., 1977)
which has the testing classification accuracy 19.7% on a well-
trained CB3D for Se1 and 28.9% for Se2, our method outperforms
the traditional method by achieving the classification accuracy of
76.4 and 67.3%.

We believe that the fact that the coverage result is much
better than the recall result is a consequence of a few factors:
first, the relatively small size of the real dataset means that
the original recall metric will penalize the model for generating
anything except exactly the correct test set examples. Using the
real manifold, as in coverage, rather than the fake manifold, as in
recall, is more forgiving. Since these metrics were not developed
with an emphasis on small real datasets and the evaluation of
precision and recall of generative models is an ongoing topic of
research, there may be a better metric to be proposed, but this is
outside the scope of our article. The evaluation results are shown
in Table 2.
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FIGURE 4 | The 2D slide visualization of uncertainty map for (Top: Se1, Middle and Bottom: Se2).

TABLE 3 | Ablation study to demonstrate the performance impact of applying

zero-mean Gaussian noise applied on density maps w.r.t. Frechet Inception

Distance and Inception Score.

GAN setup Evaluation metrics

Frechet Inception

Distance

Inception Score

CryoETGAN without gaussian noise 828.18 1.42

CryoETGAN + 0.2× gaussian noise 201.37 2.32

CryoETGAN + 0.5× gaussian noise 273.01 2.22

3.4. Uncertainty Estimation
Uncertainty estimation is a common approach to check
the generative model’s performance, we build on Gal and
Ghahramani (2016) and combine their contributions in order to
get an uncertainty map using Monte Carlo dropout as an implicit
representation of the underlying subnetworks.

The detailed description of our uncertainty estimation
method is: we apply dropout in the generator, sample 20 times
using the same density map, calculate the standard deviation per
pixel, and then we can overlay them to have an uncertainty map
over the pixel wise of the model per given input for visualization.
Then we compare the result of using Dropout and not using
dropout. In this way we will be able to measure the generator
uncertainty from pixel level. We show the uncertainty maps
in Figure 4.

FIGURE 5 | Inception Score w.r.t various standard deviations of noise.

3.5. Ablation Study
3.5.1. Analysis of Noise Standard Deviation
In Table 3, we compare CryoETGAN’s performance under
various standard deviations of noise during training. The
performance of our CryoETGAN substantially improved when
we applied zero-mean Gaussian noise to the density maps
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FIGURE 6 | Frechet Inception Distance w.r.t various standard deviations

of noise.

TABLE 4 | Ablation study to demonstrate the performance impact of using

Wasserstein loss and Spectral normalization.

Wass. Spec. SSIM Precision Recall Density Coverage Classification

loss norm acc. (%)

X X 0.3071 1.0 0.0 320.0 1.0 76.4

X 0.2006 0.0 0.0 0.0 0.0 26.9

X 0.0413 1.0 0.0 320.0 1.0 57.1

The results show that the wasserstein loss and the spectral normalization significantly
improved the performance.

in the experiment relative to training without noise. From
Figures 5, 6, we can see improvements in Inception Score and
faster convergence in Frechet Inception Distance.

3.5.2. Analysis of Model and Loss Design
We further evaluated the presence of the Wasserstein loss and
the Spectral normalization. The results are shown below. Here
we evaluated on Se1 four classes dataset. We find that without the
Wasserstein loss there is clear indication of mode collapse, and
without the spectral norm a significant penalty on downstream
performance. The ablation study results are shown in Table 4.

4. CONCLUSION

We proposed a machine learning based method: CryoETGAN
to synthesize Cryo-ET images and therefore to enable the
realistic simulation of protein density maps consistent
with the Cryo-ET data. Our generated images performed
competitively when trained for classification and this approach
potentially increases the available training data for further
new Cryo-ET based algorithms which depends on large
data collection. This new data provides a way to investigate
new methods for object detection, segmentation, domain
adaptation tasks, etc. Our approach can also be extended to
support other multimodal nanoparticles image synthesis in

fluorescence/soft X-ray/tomography of nucleoplasmic reticulum
and apoptosis in mammalian cells, which serves as a way
to study images and resolve tasks limited by insufficient
available data.
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