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S u m m a r y  

We have identified amino acid residues within the evolutionarily conserved 1 domain of the 
o~-chain (CD11a) of  the leukocyte integrin leukocyte function-associated antigen (LFA) 1 that 
are critical for intercellular adhesion molecule (ICAM) 3 (CD50) binding. ICAM-3, a ligand of 
LFA-1, is thought to mediate intercellular adhesion essential for the initiation of  immune re- 
sponses. Using a panel of human/murine I domain chimeras and point mutants, we observed 
that the Ile-Lys-Gly-Asn motif, located in the NH2-terminal part of  the C D l l a  I domain, is 
required for ICAM-3 but not ICAM-1 binding. These findings demonstrate that the I domain 
of  CD1 la contains distinct functional subdomains for ligand specific binding. An aspartic acid 
located at position 137, which is essential to ICAM-1/LFA-1 interactions (Edwards, C.P., M. 
Champe, T. Gonzalez, M.E. Wessinger, S.A. Spencer, L.G. Presta, P.W. Berman, and S.C. 
Bodary. 1995.J. Biol. Chem. 270:12635-12640), was also critical for ICAM-3 binding, whereas 
Ser at position 139 did not effect ICAM-1 or ICAM-3 binding. A synthetic peptide containing 
the Ile-Lys-Gly-Asn motif inhibited ICAM-3-dependent adhesion and proliferation of  T cells 
at micromolar concentrations, suggesting that this peptide interferes with immune recognition. 
These observations underscore the importance of lCAM-3 in leukocyte function, and may lead 
to development of a new category of immunosuppressive agents. 

T he integrin leukocyte function-associated antigen 
(LFA) 1 (CDlla/CD18) is a leukocyte-specific adhe- 

sion receptor that modulates adhesive interactions and sig- 
naling functions in the immune system (1-3). LFA-1 
mediates cell--cell adhesion upon binding to its ligands in- 
tercellular adhesion molecule (ICAM) 1 (CD54), ICAM-2 
(CD102), or ICAM-3 (CD50) (4--8). Several studies (9--13) 
have demonstrated that activation of LFA-1 is required for 
adhesion, and that this can be induced in vitro by engage- 
ment of  the TCtL-CD3 complex. Altematively, LFA-1 
can be activated by exposure to divalent cations (Mn 2+) or 
treatment with activating mAbs to C D l l a  or CD18. 

Although LFA-1 binding sites have been located in the 
NH2-terminal Ig domains of lCAM-1 and -3 (14-16), pre- 
cise determination of  the ligand-binding sites in LFA-1 is 
still lacking. It has been postulated that the 200-amino acid 
inserted or 'T '  domains, which are found in the oe chains of  
integrins (LFA-1 [CD11a, oiL], MAC-1 [CD11b, aM], 
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p150,95 [CDllc ,  otX], VLA-1 [otl], VLA-2 [oe2], and 
otEI37) and are homologous to the type A domains o f v o n  
Willebrand factor, cartilage matrix-binding protein, and 
complement factor B (17, 18), are essential to ligand bind- 
ing (19-23). The observations that most blocking mAbs to 
CD1 la map to the I domain (22-24) and that recombinant 
I domains both inhibit integrin-mediated adhesion and 
possess ligand-binding activity (19-21) underscore the role 
of  the I domain in ligand binding. 

In this study a panel of  human/murine CD1 la I domain 
mutants were used to identify amino acids that were essen- 
tial for the binding of  LFA-1 to ICAM-3. We observed 
that residues located in the NH2-terminal portion of  the I 
domain ofCD1 la are critical for ICAM-3 binding, but not 
for ICAM-1 binding. 

Materials and Methods  
Antibodies. Function-blocking mAbs directed against human 

CDlla NKI-L15 (11), human CD18 (MHM23) (25), and mu- 
rine CD1 la (M17) (26) were used. mAbs R.ek-I (anti-ICAM-1; 
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CD54) (6) and AZN-IC3.1 (anti-lCAM-3; CD50) (Binnerts, 
M.E., S.J. van Vliet, Y. van Kooyk, and C.G. Figdor, manuscript 
in preparation) were used to inhibit LFA-1/ICAM-1 or LFA-1/ 
ICAM-3 interactions, respectively. For cell adhesion studies, the 
activating antibody KIM185, directed against CD18 (12), was 
used. The mAb T3b, directed against CD3 (27), was used for T 
cell costimulation assays. 

Generation of CD 1 l a I Domain Mutants. The generation of hu- 
man/mouse (H/M) chimeras, the I domain point mutants, and 
mu3, has been described previously (24, 28). mu I and mu2 were 
generated by overlap extension PCIL. Briefly, using full-length 
human CD11a cDNA (piLK LFAotm) and mu3 cDNA as tem- 
plates, the NH 2- and COOH-terminal halves of the mul and 
mu2 1 domains were generated by PCIL (mul: for residues 125- 
234, mu3 was used, and for residues 235-308, pR.K LFAcxm was 
used; mu2: for residues 125-234, pRK LFA~m was used, and for 
residues 235-308, mu3 was used.) The Bglll at residue 297 was 
removed from the mul I domain. The two halves of mul and 
mu2 were joined by overlapping extension PCIL and cloned into 
the C D l l a  at the appropriate I domain restriction sites (Narl, 
BglIl: mul; Narl,  PflMl: mu2). 

Expression of CD 1 la I Domain Mutants in 293 Cells. Mutated 
CD1 la and wild-type CDI8 cDNAs were cloned into the ILK 5 
and ILK 7 expression plasmids .and transfected into the 293 hu- 
man kidney adenocarcinoma cell line using a standard calcium 
phosphate coprecipitation method (29). Transfection e~ciencies 
ranged from 20 to 70%. After 3 d, transfectants were harvested by 
EDTA (5 rnM) treatment and were assayed for adhesion to ICAM-1 
and ICAM-3. Staining of the transfectants with various anti- 
LFA-I mAbs revealed that the mutations did not affect the overall 
conformation of the LFA-I heterodimer (28) (data not shown). 

Adhesion to ICAM-I and ICAM-3. ICAM-1 and ICAM-3 fu- 
sion proteins consisting of the five domains oflCAM-1 or ICAM-3 
fused to a human lgG1 Fc fragment (ICAM-1Fc, ICAM-3Fc, re- 
spectively) were isolated from supernatants of L cell cultures sta- 
bly transfected with plCAM-IFc and plCAM-3Fc, respectively 
(7, 16). Culture supematant was purified by protein A column af- 
finity chromatography and eluted with 3.5 M MgCI 2 and 10% 
glycerol. 96-well plates (Maxisorb; Nunc, ILoskilde, Denmark) 
were precoated with 4 Ixg/ml goat anti-human Fc (Jackson Im- 
munoiLesearch Laboratories, Inc., West Grove, PA) for 2 h at 
37~ and blocked with 1% BSA (Boehringer Mannheim, Mann- 
helm, Germany) (1 h at room temperature). ICAM-IFc or 
ICAM-3Fc proteins were coated overnight at 4~ or at 37~ for 
2 h, at a concentration of 200 ng/well. Transfected 293 cells 
(200,000 cells/well) were added in adhesion buffer (0.14 M 
NaCI, 0.02 M Hepes, 0.2% glucose, 1 mM MgCI2, and 1 mM 
CaCI2), with the anti--CD18-activating mAb KIMI85 (12) and 
allowed to adhere for 1.5 h at 37~ Nonadherent cells were re- 
moved by washing three times with PBS, and cell attachment was 
measured using the PNAG (P-nitrophenyl-N-acetyl-13-D-glu- 
cosaminide) method of Landegren (30). The mean OD405 of 
triplicate wells was determined and corrected for the expression 
levels ofCD1 la/CD18 on the distinct transfectants. For compar- 
ison 50,000 cells gave an average OD of 1. For adhesion of the 
human T cell line HSB (obtained from American Type Culture 
Collection, ILockville, MD), cells (40,000/well) were labeled 
with StCr for 45 n'fin at 37~ Cells were incubated with different 
concentrations of synthetic peptides followed by activation with 
KIMI85. Subsequendy, cells were incubated on ICAM-1Fc- or 
ICAM-3Fc---coated plates for 30 rain at 37~ in the presence of 
peptides and KIM185. Nonadherent cells were removed by three 
washes with adhesion buffer, adhering cells were lysed with 1% 

Triton X-100, and radioactivity was quantified. Results are ex- 
pressed a.s the mean percentage of adhesion of triplicate wells. 

Proliferation Assay. 96-well plates were coated with subopti- 
mal concentrations ofanti-CD3 antibodies (T3b, 10 ng/well, I h at 
37~ followed by goat anti-human Fc (400 ng/well, 1 h at 37~ 
1% BSA (100 I~l/well, 30 min at 37~C) and ICAM-1Fc or 
ICAM-3Fc proteins (100 ng/well, 1 h at 37~ ILestmg PBL ob- 
tained by centrifugal elutriation from normal donors as described 
previously (31) were added (100,000 cells/well) and cultured for 
3 d. On day 3, cells were pulsed for 16 h with [3H]thymidine 
(1.52 TBq/mmol, 0.5 ~Ci/well; Amersham Corp., Arlington 
Heights, 1L), and uptake was quantified to measure ICAM-1-  or 
ICAM-3-dependent proliferation. To determine whether in- 
duced proliferation was LFA-1 and ICAM-I specific, ceils were 
cultured in the presence of function-blocking antibodies at a con- 
centration of 10 Ixg/rnl. 

Results  and Discuss ion  

Despite the high sequence homology  between human 
and mouse LFA-1,  murine LFA-1 does not  bind human 
ICAM-1  (32). Exploit ing this species specificity, we deter-  
mined that substitution o f  murine I domain sequences into 
human C D l l a  abolished the ability o f  LFA-1 to bind 
ICAM-1  (28). In this study, we adopted a similar strategy 
to determine the role o f  I domain sequences in LFA-1 /  
I C A M - 3  interactions. A panel o f  H / M  C D l l a  I domain 
mutants was used, some o f  which correspond to epitopes 
recognized by CD1 la  blocking mAbs (24), to identify amino 
acids that were essential for the binding of  LFA-1 to ICAM-3  
(Fig. 1). The  capacity o f  293 cells transfected with cDNAs 
encoding chimeric CD1 la  and human CD18 to bind puri-  
fied human I C A M - 1 F c  and I C A M - 3 F c  is shown in Fig. 2 
A. Wi ld - type  human C D l l a / C D 1 8  transfectants bound 
both ICAM-1 and ICAM-3.  As had been previously shown 
with ICAM-1  (28), the mu3 chimera (which contains the 
complete  murine I domain) did not  bind human ICAM-3 .  
FACS | analysis, using the M17, NKI-L16,  and M H M 2 3  
rnAbs (11, 25, 26), showed that the mu3 chimera contains 
the expected murine I domain epitopes as well as human 
CD1 la  and CD18 epitopes, suggesting that this heterodimer 
was correctly folded (28). Thus it appeared that the I domain 
o f  murine LFA-1 lacked the binding site(s) for I C A M - 3  as 
well as ICAM-1 .  W e  also observed that m u l  (which con-  
tains the NH2-terminal  port ion o f  the murine I domain) 
bound  ICAM-1 but  not  ICA M -3 ,  whereas mu2 (which 
contains the C O O H - t e r m i n a l  port ion o f  the murine I do-  
main) bound  to both ICAM-1  and ICAM-3 .  W e  conclude 
that the NH2-terminal portion o f  the human I domain con- 
tains residues critical to ICAM-3  binding, and that I C A M - I  
and 1CAM-3 bind to distinct sites within the I domain o f  
LFA-1. Precise mapping o f  residues involved in ICAM-1 
binding is in progress. 

To precisely locate the I C A M - 3  binding site in the 
NH2-terminal  port ion o f  the I domain,  we tested the abil- 
ity o f  seven H / M  chimeras to bind ICAM-3 .  (Fig. 2) The  
overall conformation o f  these H / M  LFA-I  chimeras was 
intact and did not  affect ICAM-1 binding (24, 28). O f  all 
H / M  chimeras tested, only H / M 5 3 ,  in which the human 
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Figure 1. Amino acid sequences of the murine and human CD11 a I domains and the H / M  I dommn chimeras and point mutants. Schematic represen- 
tation of  C D l l a  with the location of  the I domain and the metal binding (EF hand) domains. Chimeras were generated in which the complete human I 
domain was replaced with the corresponding murine residues (amino acids 125-311; mu3), or in which the NH2-terminal portion of  the human I do- 
main (amino acids 125-222; mul)  or the COOH-tenninal  portion of the human I domain (amino acids 223-311; mu2) were exchanged for the murine 
I domain residues. H / M  chimeras (H/M48-54 ,  I126M, K127A, G128A, N129K) contained from one to five murine residues substituted for the human 
I domain sequences (24). The Ala substitutions for conserved residues are shown for the constructs D137A and $139A. The human residues are repre- 
sented by a dash, and where the sequence differs from the human sequence, the residue is shown. All chimeric proteins and H / M  mutants were expressed 
in the human kidney cell line 293 as LFA-1 (CD11a/CD18)  heterodimers. 

Ile-126 and Asn-129 were replaced with murine residues 
Met and Lys, respectively, completely abrogated adhesion 
to ICAM-3 (Fig. 2 B). In contrast, the adhesion of  this m u -  

tant  to a wide range of  concentrations of  ICAM-1 showed 
identical binding as that of  wild-type CD11a (data not 
shown). This indicates that the loss of  binding of H/M53 
to ICAM-3 was not due to the low afl]nity of  ICAM-3, 
compared with ICAM-1, for LFA-1. Point mutations of  
Ile-126 and Asn-129 revealed that only the replacement of  
Asn with Lys at position 129 dramatically reduced the ad- 
hesion to ICAM-3. When Lys-127 and Gly-128, which are 
conserved between the human and mouse, were mutated 
to Ala, only the Lys-127 mutation led to reduced binding 

to ICAM-3. These data demonstrate that residues critical 
for ICAM-3 binding are located in the NH2-terminal por- 
tion of  the I domain ofCD1 la within the Ile-Lys-Gly-Asn 
motif at positions 126-129, and that Lys-127 and Asn-129 
are critical to ICAM-3 binding (Fig. 2 C). 

It is interesting to note that the Ile-Lys-Gly-Asn se- 
quence was previously found to be critical for the binding 
of  several mAbs to murine and human CD11a that block 
binding to ICAM-1 (24). Although subsequent studies (28) 
demonstrated that these residues were not directly involved 
in ICAM-1 binding, the fact that an immediately adjacent 
sequence (residues 130-143) was highly conserved among 
the CD11 integrin I domains, as well as homologous domains 
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Figure 2. LFA-l-mediated adhesion ofH/M CDlla I domain chimeras and point mutants to purified human ICAM-1 and ICAM-3. 293 cells, trans- 
fected with pAdv RNA (mock) or together with wild-type human CD18 and the indicated CDlla constructs, were tested for their capacity to bind 
ICAM-I (white bars) and ICAM-3 (black bars) in the presence of 5--20 I~g/rnl activating anti-CD18 mAb (KIMI85) (12). (A) Adhesion of the mul, mu2, 
and mu3 chimeric proteins to human ICAM-1 and ICAM-3. (B) Adhesion of the H/M I domain chimeras to human ICAM-1 and ICAM-3. (C and D) 
Adhesion of the I domain point mutants to human ICAM-1 and ICAM-3. One representative experiment out of three is shown. 

o f  other proteins (e.g., cartilage matrix protein, von WiUe- 
brand factor, and factor B [33]), suggested that this was a 
functionally significant domain. Studies by Michishita et al. 
(19) showed that mutation o f  Asp-140GlySer to AlaGlyAla 
o f  the closely related integrin CD11b abohshed binding to 
C3bi. Recent  x-ray diffraction studies o f  the I domain of  
Mac-1 have shown Asp-140 and Ser-142 to be part o f  a 
novel cation binding site in which the acidic side chain co-  
ordinates directly to a Mg 2+ ion (34). Studies o f  C D l l a  (28) 
have shown that the homologous  Asp-137 in CD11a was 
critical to ICAM-1 binding. W e  found that mutation of  Asp- 
137 to Ala abrogated binding to ICAM-3 (Fig. 2 D). In con- 
trast, mutation o f  Ser-139 to Ala did not profoundly effect 
LFA-1 binding to ICAM-1 or ICAM-3,  suggesting that Ser- 
139 o f  C D  1 la  may not be involved in cation coordination. 
Since the residues corresponding to the Ile-Lys-Gly-Asn 
mot i f  were absent from the Mac-1 I domain fragment used 
for the x-ray diffraction study (34), and since Mac-1 lacks a 
homologous  sequence, it will  be o f  interest to determine 
the structure and proximity o f  this mot i f  to the C D l l a  cat- 
ion binding site. 

To obtain further insight into the role o f  the Ile-Lys- 
Gly-Asn-126 to 129 and the Asp-137 sequences in binding 
o f l C A M - 3  to LFA-1, a series ofpeptides that spanned this 
region o f  C D l l a  were synthesized (Fig. 3). Interestingly, 
we observed that low concentrations o f  one peptide effi- 
ciently inhibited the ability o f  the LFA-l-expressing T cell 
clone HSB to bind to ICAM-3,  but not to ICAM-1 (pep- 

tide 2; ICs0 = 25 p~g/ml; 10.8 ~,M). In contrast, the two 
other peptides (peptides 1 and 3), which  also contain the 
Ile-Lys-Gly-Asn motif, did not inhibit LFA-l-mediated 
adhesion at concentrations up to 100 ixg/ml. These data in- 
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Figure 3. Inhibition of LFA-1/ICAM-3-mediated adhesion by low 
concentrations of synthetic I domain peptides. The LFA-1--expressing HSB 
T cell clone was preincubated with different concentrations of the indi- 
cated synthetic peptides (6.25--200 Ixg/ml) followed by activation with the 
anti-CD18 mAb KIM185 (10 ~g/ml). The capacity of the peptides to 
block binding to ICAM-1 or ICAM-3 was measured. Results are ex- 
pressed as the mean percentage of inhibition of cell binding from triplicate 
wells. Standard deviation was <8%. One representative experiment out 
of three is shown. 
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dicate that the sequences surrounding this moti f  are impor-  
tant for the inhibitory effect ofpept ide 2. Since ICAM-3  is 
thought  to play a role in the initiation o f  the immune re- 
sponse, we investigated whether the I le-Lys-Gly-Asn-con-  
taining peptides also affected immune function. We  assayed 
whether the peptides would inhibit either the ICAM-1 or 
I C A M - 3 / C D 3 - i n d u c e d  costimulation o f  resting PBL pro- 
liferation (35). As illustrated in Fig. 4, peptide 2 inhibited 
ICAM-3--induced proliferation, but not ICAM-l - induced  
proliferation. Peptides 1 and 3 were inactive. The inhibi- 
tory activity o f  the peptides is likely to result from binding 
of  the peptide to residues o f  ICAM-3  that are involved in 
LFA-1 binding. This is currently under investigation. 

Comparison o f  the sequence homology of  the I domains 
o f  the other CD18 integrins indicated that the Ile-Lys-Gly- 
Asn mot i f  is unique to C D l l a ,  suggesting that LFA-1 con-  
tains a unique binding site for ICAM-3.  Indeed, no studies 
have reported M a c - l -  or p150/95-mediated binding to 

I C A M - 3  

3000 400O 

Figure 4. Inhibition of ICAM-3 costimulation of 
PBL with I domain peptides. Resting PBL (100,000 
cells/well) were cultured in the presence of the syn- 
thetic peptides (100 I.Lg/ml; depicted in Fig. 3) on 
plates coated with ICAM-1Fc (white bars) and ICAM- 
3Fc (black bars) (100 ng/weU) along with suboptimal 
concentrations ofanti-CD3 mAb (1 ng/well) for 3 d at 
37~ One experiment out of three, in which triplicate 
determinations were carried out, is shown. 

ICAM-3.  It will be interesting to know whether the re- 
cently described fourth member  o f  the CD18 integrins 
C D 1 1 d / C D 1 8  contains the Ile-Lys-Gly-Asn sequence in 
the I domain, since there is evidence that this heterodimer 
binds to ICAM-3  with high affinity (36). 

Collectively, these findings demonstrate for the first time 
that the I domain o f  C D l l a  contains distinct functional sub- 
domains for ligand-specific binding: a conserved Asp-137 
residue important for binding o f  ICAM-1 and -3, an Ile- 
Lys-Gly-Asn domain important for binding of  ICAM-3,  
and distinct, yet-to-be-defined residues important for bind- 
ing o f  ICAM-1 (37). Our  finding that low concentrations 
o f  I domain peptides significantly inhibit ICAM-3-depen -  
dent immune function, without  affecting I C A M - l - d e p e n -  
dent function, may direct the development o f  a new class 
o f  antiinflammatory/immunosuppressive agents for the treat- 
ment o f  diseases such as arthritis or graft rejection after organ 
transplantation. 
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