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Introduction

Coronavirus disease 2019 (COVID-19) is a disease caused 
by infection with a novel coronavirus known as severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to 
its high transmissibility, approximately 4,880,000 people 
have been infected with SARS-CoV-2, and millions of peo-
ple have died (1,900,000 dead as of January 8, 2021).

The symptoms of COVID-19 infection are generally non-
specific and include fever, dry cough, shortness of breath, 
and myalgia and are generally related to inflammation of 
the lower respiratory tract (Lechowicz et al. 2020). Radio-
logical findings from computed tomography (CT) and chest 
X-ray (CXR) show that the affected pulmonary lobes of 
COVID-19 patients contain patchy ground-glass opacities 
(GGOs), fibrous stripes, and irregular solid nodules. Clini-
cally, SARS-CoV-2 infection causes acute lung injury and 
eventual pulmonary fibrosis, but some aspects of COVID-19 
pathogenesis remain unclear (Hadjicharalambous and Lind-
say 2020).

In this article, we summarize the causes and molecular 
mechanisms of pulmonary fibrosis and compare them with 
those of COVID-19 patients, with a focus on angiotensin 
converting enzyme-2 (ACE2). We also review radiological 
imaging methods, CT and CXR, for visualizing the patho-
physiology of patient lungs, as well as drugs in clinical use 
and clinical trials. Given that lung fibrosis is associated with 
COVID-19, treatments for pulmonary fibrosis are being 
proposed as treatments for COVID-19, and compounds 
used to treat other diseases have been suggested as cures 
for COVID-19. We classify potential treatments based on 
their relation to lung disease and whether a clinical trial is 
in process.

Abstract In 2019, an unprecedented disease named coro-
navirus disease 2019 (COVID-19) emerged and spread 
across the globe. Although the rapid transmission of 
COVID-19 has resulted in thousands of deaths and severe 
lung damage, conclusive treatment is not available. How-
ever, three COVID-19 vaccines have been authorized, and 
two more will be approved soon, according to a World 
Health Organization report on December 12, 2020. Many 
COVID-19 patients show symptoms of acute lung injury 
that eventually leads to pulmonary fibrosis. Our aim in this 
article is to present the relationship between pulmonary 
fibrosis and COVID-19, with a focus on angiotensin con-
verting enzyme-2. We also evaluate the radiological imag-
ing methods computed tomography (CT) and chest X-ray 
(CXR) for visualization of patient lung condition. Moreover, 
we review possible therapeutics for COVID-19 using four 
categories: treatments related and unrelated to lung disease 
and treatments that have and have not entered clinical trials. 
Although many treatments have started clinical trials, they 
have some drawbacks, such as short-term and small-group 
testing, that need to be addressed as soon as possible.
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Molecular mechanisms of pulmonary fibrosis

As summarized in Fig. 1, pulmonary fibrosis is character-
ized by irreversible scarring and remodeling of the lung and 
can occur in progression of several lung disorders. Some 
interstitial lung diseases, for example non-specific interstitial 
pneumonia, autoimmune-featured interstitial lung disease, 
and idiopathic pulmonary fibrosis, have a similar onset to 
COVID-19-induced pulmonary fibrosis. Among them, idi-
opathic pulmonary fibrosis, a specific form of pulmonary 
fibrosis with an unknown etiology (Sundarakrishnan et al. 
2018), is a chronic and progressive lung disease that leads 
to irreversible remodeling of lung structure (Selman et al. 
2001). Environmental (e.g., smoking, toxic dust, viral infec-
tion), microbial, genetic, and epigenetic (e.g., hypomethyla-
tion, telomerase, miRNA) factors can damage the alveolar 
epithelium (Coward et al. 2010; Evans et al. 2016; Chioma 
and Drake 2017).

Injury to the lung promotes proliferation and activation of 
type 2 alveolar epithelial cells (AEC2) (Shannon and Hyatt 
2004) to cover the exposed alveolar surface and activates 

provisional matrix (Chambers 2008). In the normal repair 
process, the provisional matrix slowly disperses, and the 
lung regains its normal structure and function (Hadjich-
aralambous and Lindsay 2020). Type 1 alveolar epithelial 
cells (AEC1) make up 90% of the alveolar surface. When 
AEC1s are injured, AEC2s undergo apoptosis and differen-
tiation into AEC1s to re-establish the alveolar epithelium 
(Selman and Pardo 2006). However, when injury is exten-
sive, AEC2s cannot adequately re-establish the epithelium 
(Hadjicharalambous and Lindsay 2020), resulting in abnor-
mal tissue repair followed by fibroblast activation, collagen 
deposition, connective tissue deposition, and angiogenesis 
(Parimon et al. 2020; Selman and Pardo 2020).

Environmental, microbial, genetic, and epigenetic fac-
tors can damage the alveolar epithelium, inducing recurrent 
microinjuries to lung epithelia and causing an imbalance 
between profibrotic (e.g., transforming growth factor-β 
[TGF-β], platelet-derived growth factor [PDGF], basic 
fibroblast growth factor, interleukin-1 [IL-1], tumor necrosis 
factor-α [TNF-α]) and antifibrotic (e.g., keratinocyte growth 
factor, hepatocyte growth factor, Extracellular biopolymers) 

Fig. 1  Summary of pulmonary fibrosis mechanisms
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mediators, which disturbs regeneration of lung epithelia 
(Kinoshita and Goto 2019). Some cytokines and growth 
factors produced by alveolar macrophages play an impor-
tant role in the repair process at the site of injury. The body 
uses proliferation of bronchiolar stem cells, stimulated by 
epidermal growth factor (EGF) and transforming growth fac-
tor-alpha (TGF-α), to compensate for the damaged alveolar 
epithelium (Crosby and Waters 2010). The migration and 
proliferation of intact endothelial cells lead to pulmonary 
capillary angiogenesis, in which vascular endothelial growth 
factor (VEGF) and fibroblast growth factor (FGF) play a 
central role (Barrientos et al. 2008).

Fibroblasts and myofibroblasts are key cell types in idi-
opathic pulmonary fibrosis. In the abnormal biochemical 
environments produced by activated epithelial and endothe-
lial cells, fibroblasts and myofibroblasts are induced and 
activated to differentiate and proliferate (Upagupta et al. 
2018). Fibroblasts in the alveolar interstitium synthesize 
ECM ground substance, collagen, and fibronectin (Kend-
all and Feghali-Bostwick 2014). FGF, PDGF, and TGF-β 
stimulate fibroblast migration to the injured site, and those 
fibroblasts acquire a profibrotic phenotype that is resistant 
to apoptosis (Yin et al. 2020).

EGF, PDGF, TGF-β, and IL-1 proliferate and differ-
entiate fibroblasts into myofibroblasts that perpetuate the 
fibrotic process. Myofibroblasts secrete IL-1, IL-6, IL-8, and 
monocyte chemo-attractive protein-1, which influence the 
inflammatory response (Ojo et al. 2020). ECM produced by 
myofibroblasts is more disorganized than that of fibroblasts 

(Wipff et al. 2007; Sgalla et al. 2018). α-Smooth muscle 
actin enables ECM to contract irreversibly, creating one of 
the features of fibrogenesis: spatial reorganization of col-
lagen fibrils (Sgalla et al. 2018; Ojo et al. 2020). Excessive 
deposition of ECM components, such as fibronectin, colla-
gens, and hyaluronan, leads to thick alveolar walls that dis-
turb gas exchange (Wynn 2011; Fernandez and Eickelberg 
2012; Kolahian et al. 2016).

Pulmonary fibrosis in COVID‑19: focusing 
on the role of ACE2

As with other coronavirus infections, acute lung injury 
and subsequent repair processes are observed in COVID-
19 patients. In this review, we focus on ACE2, a key entry 
receptor for SARS-CoV-2. Because ACE2 is a potential 
receptor for the SARS coronavirus infections that occurred 
between 2002 and 2003 (Kuba et al. 2006), many studies 
have examined the correlation between ACE2 and pulmo-
nary fibrosis.

The renin-angiotensin system (RAS) is important in 
maintaining blood pressure homeostasis and salt balance 
(Wigen et al. 2020). In addition, RAS helps to regulate 
inflammation and pulmonary diseases such as idiopathic 
pulmonary fibrosis, asthma, and chronic obstructive pul-
monary disease (Tan et al. 2018).

As summarized in Fig. 2, angiotensin converting enzyme 
(ACE), which is widely expressed in capillary blood vessels 

Fig. 2  Summary of ACE function in the renin-angiotensin system and how viral infection affects it
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in the human lung (Studdy et al. 1983), generates octapep-
tide angiotensin II (Ang II) from decapeptide angiotensin I 
(Ang I) by cleaving dipeptides from the C-terminus (Cor-
vol et al. 1995; Skeggs et al. 1980). ACE also generates 
angiotensin 1–7 (Ang 1–7) from angiotensin 1–9 (Ang 1–9). 
ACE2 removes a single residue from Ang I, generating Ang 
1–9, and from Ang II, generating Ang 1–7 (Donoghue et al. 
2000). Thus, both ACE and ACE2 function as carboxypepti-
dases, but they have different substrate specificity (Dono-
ghue et al. 2000; Tipnis et al. 2000; Vickers et al. 2002). 
Lungs express the angiotensin II type 1 receptor (AT1R), 
angiotensin II type 2 receptor (AT2R), Mas receptors, and 
MrgD receptors (Jia 2016; Shrikrishna et al. 2012). Ang II 
binds to AT1R or AT2R, Ang 1–7 binds to Mas receptors 
(Errarte et al. 2017), and alamandine binds to MrgD recep-
tors (Kaur et al. 2020a). Through AT1R, Ang II performs 
biological functions such as promoting vasoconstriction, 
inflammation, fibrosis, lung damage, and edema (Errarte 
et al. 2017). Through the Mas receptors, on the other hand, 
the downstream actions of Ang 1–9 or Ang 1–7 contribute 
to vasodilation, inflammation reduction, and edema inhibi-
tion (Errarte et al. 2017; Wigen et al. 2020). Through MrgD 
receptors, alamandine, which is the decarboxylated form 
of Ang 1–7, increases cyclic adenosine monophosphate 
(cAMP) in endothelial cells, and this leads to vasodilation, 
as in the case of activation of Mas receptors (Kaur et al. 
2020a). Thus, ACE2 functions as a negative regulator of the 
angiotensin system (Furuhashi et al. 2020).

At the adsorption step in the viral replication cycle, the 
viral spike (S) protein of SARS-CoV-2 binds to membrane-
anchored ACE2 of the RAS. Then, the cellular transmem-
brane protease serine 2 (TMPRSS2) and other related pro-
teases, such as tumor necrosis factor-α-converting enzyme, 
act in S-protein cleavage, which activates the S-protein 
and results in viral fusion to the host cell membrane (Heu-
rich et al. 2014; Hoffmann et al. 2020). Internalization of 
ACE2 by SARS-CoV-2 would significantly reduce ACE2 
on the cell surface and increase the ratio of Ang II:Ang 1–7 
(South et al. 2020). Moreover, the major sources of ACE2 
are alveolar type 2 pneumocytes (Bombardini and Picano 
2020). Repetitive viral infection of type 2 pneumocytes has 
a cytolytic effect that results in differentiation toward type 1 
pneumocytes and active proliferation of type 1 pneumocytes 
to replace the damaged alveolar type 2 pneumocytes, which 
downregulates ACE2 expression (Delpino and Quarleri 
2020). Downregulation of ACE2 suppresses the downstream 
protective activities of RAS, followed by inflammation and 
pulmonary fibrosis (Wigen et al. 2020).

The plasma level of ACE2 is increased in patients with 
severe COVID-19 (H. Zhang et al. 2020). Soluble ACE2 that 
circulates in the blood has a protective effect by binding the 
virus, disturbing endocytosis (Wigen et al. 2020). Increased 
soluble ACE2 facilitates the downstream action of Ang 1–7 

to counteract inflammation and pulmonary fibrosis, while 
increased membrane-bound ACE2 can function as a viral 
entry receptor (Dalan et al. 2020; Leung et al. 2020).

Ang II is a key effector peptide of the RAS system that 
participates in tissue remodeling and fibrosis by promoting 
the expression of transforming growth factor-β1 (TGF-β1), 
which is a profibrotic cytokine that converts fibroblasts into 
myofibroblasts and deposits collagen (Weber 1997). TGF-
β1 is thought to suppress antioxidant enzymes and thereby 
increase the ROS level, and ROS induce TGF-β1 and its 
fibrogenic effects (Liu and Desai 2015). Both factors are 
highly expressed in fibrotic processes. Thus, Ang II contrib-
utes to the pathogenesis of pulmonary fibrosis. On the other 
hand, ACE2 inhibits fibrosis by decreasing the amounts of 
TGF- β1 and α-smooth muscle actin in human lungs (Wang 
et al. 2015). In addition, levels of VEGF, IL-1, and IL-6 
are increased in COVID-19 patients, just as they are in idi-
opathic pulmonary fibrosis patients (George et al. 2020).

Radiological imaging methods to diagnose 
COVID‑19

A variety of COVID-19 diagnosis methods has been 
reviewed, including real- time reverse transcriptase PCR 
(RT-PCR) used with CRISPR-mediated detection or loop-
mediated isothermal amplification techniques and antibody 
testing Lamb et al. 2020; Li and Ren 2020; Vandenberg et al. 
2020; J. Zhang et al. 2020). We review only radiological 
imaging methods used to diagnose COVID-19.

Many clinicians use radiological imaging methods, espe-
cially for evaluating emergency room patients while wait-
ing for the results of RT-PCR (Cozzi et al. 2020). The two 
major radiological techniques are CXR and CT. In many 
study cases, both are used for observing fibrotic changes in 
COVID-19-induced pulmonary fibrosis (Ojo et al. 2020).

Computed tomography

The reference standard for COVID-19 diagnosis is RT-PCR. 
According to the recent COVID-19 literature, CT is primar-
ily being used to address the limitations of RT-PCR. For 
example, RT-PCR results require 5 to 6 h to obtain, whereas 
CT examination results are available much sooner. Moreo-
ver, a CT examination can help in early diagnosis of asymp-
tomatic COVID-19 patients and in diagnosing patients with 
false-negative RT-PCR results. Though RT-PCR is the gold 
standard for COVID-19 diagnosis, false-negative results are 
common (Long et al. 2020). Chest CT has high sensitivity 
for detecting early COVID-19 in patients with later posi-
tive conversion of RT-PCR results versus RT-PCR (98% vs. 
71%, respectively) (Fang et al. 2020). CT examinations can 
be used to evaluate therapeutic efficacy and monitor disease 
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progression (Ye et al. 2020) because COVID-19 patients 
with different disease courses and severity show different 
CT imaging features and patterns. Several COVID-19 case 
studies have reported typical and atypical CT manifestations: 
Typical CT symptoms include GGO, consolidation, a reticu-
lar pattern, and a crazy paving pattern, whereas relatively 
atypical CT symptoms are airway changes, pleural changes, 
a subpleural curvilinear line, fibrosis, vascular enlargement, 
air bubble sign, nodules, halo sign, reversed halo sign or 
atoll sign, lymphadenopathy, and pericardial effusion (Ye 
et al. 2020). Among those symptoms, GGO and consolida-
tion are commonly used for COVID-19 diagnosis, but CT 
manifestations vary and change over the course of the dis-
ease (Okamori et al. 2020).

Chest X‑ray

Although CT has better sensitivity and specificity than 
CXR, CT has some problems, such as radiation exposure 
and complex scanner disinfection procedures (Cozzi et al. 
2020). On the other hand, CXRs are inexpensive, faster, 
more widespread, and have a low risk of patient exposure 
to radiation (Self et al. 2013; Rubin et al. 2020). Therefore, 
CXR is another useful diagnostic method. The Italian Soci-
ety of Radiology recommended CXR as a first-line imaging 
tool (Giovagnoni 2020; Neri et al. 2020), and the American 
College of Radiologists recommends using portable CXR to 
decrease the risk of cross infection because the COVID-19 
virus has a high infection rate (Rousan et al. 2020).

Many COVID-19 patients show abnormal CXR findings, 
including peripheral GGO in the lower lobes, consolidation, 
septal thickening, lymphadenopathy, bronchiectasis, cavi-
tation, and pleural effusion (Bernheim et al. 2020; Caruso 
et al. 2020; Meng et al. 2020; Salehi et al. 2020; Wong et al. 
2020; Yoon et al. 2020).

CXR findings might not reflect early or mild disease (Kim 
et al. 2020); therefore, normal CXR results do not necessar-
ily rule out COVID-19 infection. Instead, CXR can be used 
to classify the highest risk patients who will most benefit 
from hospitalization in an area that lacks hospital beds due 
to a surging number of patients (Kim et al. 2020).

Therapeutics

Pharmacological approaches with subdivisions

Drugs for lung diseases being tried in clinical trials 
for COVID‑19

Propolis Propolis can be correlated with immune system 
defenses, reduced viral replication, and anti-inflammatory 
action in SARS-CoV-2 (Ansorge et al. 2003; Shimizu et al. 

2011; Machado et al. 2012; Chan et al. 2013; Hori et al. 
2013). Propolis extract and its components can act as an 
anti-COVID-19 drug by reducing TMPRSS2 expression 
and ACE2 anchorage (Kaur et al. 2020a, b). They also 
immunomodulate monocytes and macrophages by reduc-
ing or eliminating IL-1β and IL-6. In addition, they reduce 
transcription factors such as NF-κB and JAK2/STAT3 
(Shimizu et al. 2011; Asgharpour et al. 2019; Güler et al. 
2020; Omar et al. 2020). NF-κB inhibition blocks the pro-
duction of cytokines in T cells and reduces JAK2/STAT3 
signaling, which diminishes inflammation and oxidative 
stress (Ansorge et al. 2003; Fernandes et al. 2015). Sub-
stances found in several types of propolis, caffeine phene-
thyl ester (CAPE), galangin, chrysin, and caffeic acid, have 
been shown to inhibit the 3-chymotrypsin-like cysteine 
enzyme, which is an essential protease for SARS-CoV-2 
(Hashem 2020; Kumar et al. 2020). In addition, the Rac 
protein could be inactivated by CAPE, a component of 
propolis. Rac inactivation leads to PAK1 inhibition, which 
represses B cells and T cells. PAK1 is a kinase that is 
increased during lung inflammation and lung fibrosis (Ber-
retta et al. 2020). PAK1 inhibitors can rescue the immune 
system and help fight against viruses (Xu et al. 2005; Gor-
balenya et al. 2020; Maruta and He 2020). Propolis and its 
components can help prevent immunosuppression during 
the initial phases of the disease and decrease the exces-
sive inflammatory response of the host by blocking excess 
IL-6, IL-2, and JAK signaling in later stages (Nile et al. 
2020). One study reported that the use of propolis water 
extract can reduce the expression of pro-inflammatory 
cytokines such as TNF-α, ICAM-1, IL-6, and IL-8 and 
increase the protective cytokine IL-10 (Qin et al. 2020). 
These benefits of propolis have triggered a clinical trial of 
Brazilian green propolis extract for treatment of COVID-
19 patients in Brazil (https:// clini caltr ials. gov/ ct2/ show/
NCT04480593) (Berretta et al. 2020).

CD147 inhibitor CD147 is a receptor for SARS-CoV-2 
host cell invasion (K. Wang et al. 2020; Yan et al. 2020). 
Therefore, a phase 2 clinical trial to prevent COVID-19 by 
blocking CD147, and thereby entry of the virus, is under-
way in China (Ulrich and Pillat 2020). The study is test-
ing a humanized form of anti-CD147, Meplazumab, which 
is specific for CD147, suggesting that CD147 could be a 
target for preventing COVID-19 (K. Wang et al. 2020). 
A relationship has been reported between CD147 upreg-
ulation and conditions such as diabetes and asthma, so 
Meplazumab might also prevent diabetes and its compli-
cations (Bao et al. 2010; Moheimani et al. 2018). CD147 
exists in several types of pulmonary cells, including type 
2 pneumocytes and macrophages at the edge of fibrotic 
regions. Anti-CD147 antibodies block the differentia-
tion and proliferation of fibroblasts into myofibroblasts 
that are induced by TGF-β1 (Guillot et al. 2006). Thus, 

https://clinicaltrials.gov/ct2/


504 J. Yim et al.

1 3

blocking CD147 could prevent pulmonary fibrosis caused 
by COVID-19 (Ulrich and Pillat 2020).

Low‑molecular weight heparin (LMWH)  LMWH 
treatment for COVID-19 is in randomized clinical trials 
(NCT04366960). Coagulation and D-dimers can determine 
the severity of the pulmonary diseases that follow COVID-
19 infection (Di Perri 2020). In some studies, patients tak-
ing heparin had lower mortality rates and higher level of 
D-dimer than control patients (Beigel et al. 2020). Heparin 
also blocks SARS-CoV-2 from binding to the ACE2 recep-
tor and downregulates IL-6, which can trigger the cytokine 
storm (Mummery and Rider 2000; Atallah et al. 2020; 
Kaur et al. 2020a). Dosing and timing are controversial, 
but the clinical trials currently underway might clarify 
these aspects (Di Perri 2020).

Montelukast Montelukast, which strongly antagonizes 
the cysteinyl leukotriene receptor, is in clinical trial for 
COVID-19 treatment (NCT04389411). It has anti-inflam-
matory effects and can block the function of cysLT, such 
as the cytokine production that is one of the main fea-
tures of COVID-19 infection (Fidan and Aydoğdu 2020). 
Some montelukast results (high doses, i.v. administration) 
show a decrease in protein expression of cysteinyl leu-
kotriene, IL-4, IL-5, and IL-13 in the lungs and an anti-
inflammatory effect caused by down-regulation of T-helper 
2 cytokines. The anti-inflammatory effect of high-dose 
montelukast has been demonstrated in asthma (Wu et al. 
2003). Montelukast also blocks bradykinin-induced airway 
hypersensitivity, which causes a cough associated with 
ACE inhibition. The mechanism remains uncertain, but 
it is thought to affect the production of the ACE receptor, 
which is a receptor for SARS-CoV-2 (Bisgaard et al. 2008; 
Noor et al. 2011; Kaur et al. 2020a). Therefore, montelu-
kast could be an effective therapeutic for COVID-19.

Phosphodiesterase (PDE) inhibitors  PDE5 inhibi-
tors such as sildenafil could be a targeted treatment for 
COVID-19 and other lung diseases. PDE5 is primarily 
expressed in the lungs (Giorgi et al. 2020; Isidori et al. 
2020). PDE5 inhibition can reduce the cytokine storm 
by reducing the release of pro-inflammatory cytokines 
because it can downregulate angiotensin II receptor type 
1 (AT-1) receptor (Isidori et al. 2020). PDE5 inhibitors 
are safe and have some benefits in type 2 diabetes patients, 
such as reducing disease-related mortality (Giannetta et al. 
2014). Sildenafil can prevent clotting and thrombotic com-
plications by blocking the transformation of endothelial 
and smooth muscles into mesenchymal cells in pulmonary 
arteries (Isidori et al. 2020). The clinical trial process for 
the use of PDE5 inhibitors in COVID-19 treatment could 
be facilitated by the various clinical trials already con-
ducted for PDE5 inhibitors in a variety of diseases (Phil-
lips 2020).

Drugs for other diseases being tired in clinical trials 
of COVID‑19

Novavax A phase III trial of NVX-CoV2373 (Novavax), a 
recombinant SARS-CoV-2 nanoparticle vaccine, recently 
has started in the UK (Du et al. 2009; Keech et al. 2020; Tai 
et al. 2020). Novavax contains the trimeric full-length spike 
glycoproteins of SARS-CoV-2 and the adjuvant Matrix-
M1 (Du et al. 2009; Giannetta et al. 2014; Bengtsson et al. 
2016; Chen et al. 2020; Giorgi et al. 2020; Isidori et al. 
2020; Keech et al. 2020; Phillips 2020; Tai et al. 2020). 
Novavax blocks SARS-CoV-2 infection in rodent and other 
non-human models by inducing a high titer of antibody IgG, 
which inhibits binding to human ACE2 and neutralizes the 
virus (Kaur et al. 2020a). It also produces multifunctional 
CD4 + and CD8 + T cell responses, mainly with the T helper 
phenotype (Mandolesi et al. 2020; Tian et al. 2020). The 
protective mechanism against COVID-19 is not clear, but 
the neutralizing antibodies appear to be related to the protec-
tion (Mulligan et al. 2020). During phase I and II trials, no 
critical side effects were observed, indicating the safety of 
Novavax (Keech et al. 2020). Although the previous trials 
were small and had short follow-up periods, Novavax could 
be an effective vaccine against COVID-19.

Melatonin Many studies suggest that melatonin could 
be an effective treatment for COVID-19. Recently, a 
clinical trial has started in ICU patients with COVID-19 
(NCT04568863) (Acuña-Castroviejo et  al. 2020). The 
cytokine storm of COVID-19 is associated with activation of 
the NF-κB pathway and release of cytokines such as IL-1β 
(Merad and Martin 2020; Tay et al. 2020). Melatonin can 
act as an anti-inflammatory molecule because it can block 
NF-κB activation and the positive feedback of IL-1β. Studies 
also found that the main target of melatonin is mitochondria, 
and that melatonin can maintain mitochondria and homeo-
stasis in all organs and tissues of mice with sepsis (Martín 
et al. 2000; Escames et al. 2003). Moreover, it can rescue 
the lungs from oxidative damage caused by age (Acuña-
Castroviejo et al. 2012). Because the inflammatory response 
of sepsis is similar to that of COVID-19, melatonin could 
be an effective treatment for COVID-19 (Keech et al. 2020).

Remdesivir Remdesivir is a promising drug for COVID-
19. Remdesivir, an adenosine analog, is changed to its 
active form (GS-443,902) and selectively blocks the viral 
RNA-dependent RNA polymerase (Lo et al. 2017; Shea-
han et al. 2017; Agostini et al. 2018; Agency 2020). This 
drug has effects in many diseases, including SARS-CoV-1 
and MERS-CoV infections (Sheahan et al. 2017, 2020; de 
Wit et al. 2020; Gordon et al. 2020). Some reports discuss 
the anti-viral and clinical effects of remdesivir (Singh et al. 
2020). In addition, remdesivir can inhibit epithelial cells in 
human nasal and bronchial airways (Pizzorno 2020). Due to 
its many effects and efficacy, the United States Food Drug 
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Administration has granted an Emergency Use Authoriza-
tion to remdesivir for COVID-19 treatment (Singh et al. 
2020). However, many clinical trials are ongoing, and its 
safety must be validated.

Chloroquine and hydroxychloroquine Chloroquine and 
hydroxychloroquine can be used to treat COVID-19 (Meo 
et  al. 2020). Chloroquine increases endosomal pH and 
inhibits virus-cell fusion and viral infection. It also blocks 
virus-cell binding by inhibiting glycosylation of SARS-CoV 
receptors (Vincent et al. 2005). Many clinical trials have 
examined their safety and efficacy. Chloroquine can shorten 
disease progression by blocking degeneration to pneumo-
nia, enhancing lung imaging findings, and accelerating 
virus-negative conversion (Gao et al. 2020). However, in 
vitro studies have shown that hydroxychloroquine is more 
effective than chloroquine at inhibiting SARS-CoV-2 (Yao 
et al. 2020). The United States Food Drug Administration 
permits the use of hydroxychloroquine and chloroquine to 
treat COVID-19 (Diamond 2020).

BTK/ITK dual inhibitors Bruton’s tyrosine kinase (BTK)/
inducible T-cell kinase (ITK) dual inhibitors can treat 
COVID-19 (McGee et al. 2020). COVID-19 patients have 
elevated levels of blood neutrophils and cytokines, and inhib-
iting that immune response can be therapeutic (D. Wang 
et al. 2020). BTK, which is prevalent in B cells, elevates 
proinflammatory cytokines, including IFN-β, by means of 
various signaling pathways for TLRs, macrophages, and 
dendritic cells (Weber et al. 2017). In patients with severe 
COVID-19, NF-κB is elevated, which mediates the TLR/
BTK signaling pathway (Liao et al. 2020). BTK also is asso-
ciated with production of inflammatory cytokines, such as 
active pro-IL-1β (Weber et al. 2017). Therefore, the BTK 
inhibitors acalabrutinib, zanubrutinib, and ibrutinib are in 
clinical trials as treatments for COVID-19. Also, ITK, which 
is prevalent in T cells, modulates activation of CD4 + and 
CD8 + T cells and production of cytokines (Solouki et al. 
2019). Some studies suggest that the Th1 response is impor-
tant in regulating respiratory coronaviruses because Th1-
polarized SARS-CoV-2-specific memory T cell responses 
are observed in COVID-19 patients (Dong et al. 2020; Gri-
foni et al. 2020; Neidleman et al. 2020; Weiskopf 2020). 
ITK signaling results in elevation of the Fas ligand (FasL), 
which leads to activation-induced T cell death (Long et al. 
2017). Inhibition of ITK signaling elevates the level of 
CD4 + T cells and is effective for treating COVID-19 (Sun 
et al. 2015).

Potential drugs for COVID‑19 not yet in clinical trials

Galectin‑3 (Gal3) inhibitors One of the principle phases of 
COVID-19 is the hyperinflammatory phase, during which 
immune cells release gal3 (Burguillos et al. 2015; Boza-
Serrano et al. 2019). There have been reports of elevated 

gal3 level in proliferative T cells in patients with COVID-
19 (Liao et al. 2020). Gal3 is a carbohydrate-binding pro-
tein expressed by macrophages and epithelial and alveolar 
cells in the lungs (Reyfman et al. 2019). Gal3 binds to and 
activates TLR4 and TREM2, reflecting its association with 
lung diseases and fibrosis (Burguillos et al. 2015; Boza-Ser-
rano et al. 2019). TREM2, expressed by macrophages, is a 
marker related to the fibrotic process (Liao et al. 2020), and 
TLR, which is critical for antiviral response, leads to strong 
inflammation associated with interferon-related genes, 
interleukins, chemokines, and gal3 expression (Guo et al. 
2020). Some gal3 inhibitors have been shown to suppress 
the release of IL-1, IL-6, and TNF-α, which are related to 
the inflammatory phase of COVID-19 (Boza-Serrano et al. 
2014, 2019). Gal3 shares an extracellular domain with 
ACE2, the receptor for SARS-CoV-2 infection, indicat-
ing that gal3 inhibitors bind to ACE2 (Clarke and Turner 
2012; Kovak et al. 2014; Kaur et al. 2020a). TD139, a gal3 
inhibitor provided by Galecto Biotech, has been shown 
to be safe and effective against idiopathic lung fibrosis 
(NCT04473053), and clinical trials could be performed in 
the presence of a clinically tolerable gal3 inhibitor (Garcia-
Revilla et al. 2020).

Poly‑(ADP‑ribose) polymerase inhibitor (PARPi) PARPi 
could be an effective treatment for COVID-19 because it 
can prevent cytokine storms (macrophage overactivation) 
and protect cells against death (Curtin et al. 2020). Previous 
studies have suggested that SARS-CoV-2 infection induces 
PARP activation, which is increased in the lung tissue of 
asthmatic patients, and different preclinical animal models 
have indicated that PARPi could reduce the lung fibrosis 
induced by SARS-CoV-2 lung inflammation (Ghonim, 
Pyakurel, Ibba, Al-Khami, et al. 2015; Carlile et al. 2016). 
The cytokine storm, a major reason for mortality in COVID-
19, results in multi-organ failure (Mehta et al. 2020). Many 
studies in animal models suggest that PARPi, including 
olaparib, can reduce IL-6 and IL-1β expression in many 
organs, including the lungs (Mabley et al. 2001; Liaudet 
et al. 2002; Pagano et al. 2007; Kim et al. 2008; Ghonim, 
Pyakurel, Ibba, Wang, et al. 2015; Sethi et al. 2019; Sahu 
et al. 2020). Moreover, olaparib has been shown to reduce 
the level of TNF-α in the lungs in animal models of lung 
inflammation (Cuzzocrea et al. 2002; Liaudet et al. 2002; 
Virág et al. 2004; Kim et al. 2008; Sahu et al. 2020). These 
preclinical studies and results show that PARPi has potential 
for human applications as a notable potential treatment for 
COVID-19.

Cobra venom and NNAV Cobrotoxin and α-neurotoxin 
from Naja naja atra venom (NNAV) can be used to pre-
vent and relieve symptoms of COVID-19. Cobrotoxin and 
α-neurotoxin have many pharmacodynamic actions through 
their binding to nicotinic acetylcholine receptors, which are 
widely distributed throughout the body (Kuo et al. 1995; 
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Lin et al. 2020). NNAV and α-neurotoxins can inhibit the 
cytokine storm through their strong inhibitory effects on 
inflammation (Lin et al. 2020; L. Zhang et al. 2020). NNAV 
and cobrotoxin also have immunoprotective activity. CD8 
T cells are increased in COVID-19 patients and their prolif-
eration can be blocked by NNAV and cobrotoxin more than 
they affect CD4 T cells. NNAV and cobrotoxin also restore 
the CD4/CD8 ratio (Ganji et al. 2020; Lin et al. 2020). can 
inhibit lung inflammation, improve lung gas exchange func-
tion, and reduce the development of fibrotic lesions in the 
lung (George et al. 2020; Polak et al. 2020). Cobra venoms 
were first approved for use by the US Food and Drug Admin-
istration in the 1940 s (Lin et al. 2020).

Tetracyclines Tetracyclines, which are lipophilic antibiot-
ics, may be effective for treating COVID-19. Tetracyclines 
can permeate lung tissue and might block SARS-CoV-2 rep-
lication in the lungs through their anti-inflammatory effects 
(Sodhi and Etminan 2020). Chemically modified tetracy-
clines are used to prevent septic shock caused by ARDS, 
which is a main complication in COVID-19 patients (Griffin 
et al. 2010). Also, the host matrix metalloproteinase (MMP) 
complex, which includes zinc, plays an important role in 
coronavirus survival and cell penetration, adherence, and 
replication (Humar et al. 2004; Phillips et al. 2017). Tetra-
cyclines can chelate the zinc compounds on MMPs, which 
can inhibit SARS-CoV-2 replication in the host (Zakeri and 
Wright 2008). Furthermore, inflammatory cytokines such 
as TNF-α, IL-1β, and IL-6 are increased in patients with 
severe SARS-CoV-2 (Yoshikawa et al. 2009). The elevation 
of those cytokines can be inhibited by tetracyclines through 
NF-κB pathway suppression, so they can be therapeutics for 
COVID-19 (Henehan et al. 2017).

Saikosaponins Saikosaponins, especially saikosaponin 
A, saikosaponin B, and saikosaponin D, are potential treat-
ments for COVID-19 (Bahbah et al. 2020). Saikosaponins 
have antiviral effects on various viruses. Saikosaponin A 
decreases the immunopathology of the lung, and saikosapo-
nin B blocks HCoV-229E infection in vitro by inhibiting 
viral adherence and invasion into cells (Cheng et al. 2006). 
The immunomodulatory and anti-inflammatory activities 
of saikosaponin A might block increases in inflammatory 
mediators and cytokines, such as TNF-α, COX-2, and inter-
leukins, which are found in patients with severe COVID-19 
(Yuan et al. 2017). Moreover, saikosaponin A binds highly 
to the ACE-2 receptor, which is the main receptor for SARS-
CoV-2 infection (Kaur et al. 2020a; Yan et al. 2020).

Non‑pharmacological approaches

Extracorporeal membrane oxygenation (ECMO) A case 
report described how a 31-year-old pregnant woman at 
35 weeks of gestation received ECMO treatment and was 
cured of COVID-19 infection (Hou et al. 2020). ECMO 

improves gas exchange and relieves ventilator-associated 
lung injury in acute respiratory distress syndrome (ARDS) 
treatment, so use of ECMO can temporarily restore pul-
monary function (Davies et al. 2009). However, the role 
of ECMO in COVID-19 patients with respiratory failure 
remains unclear. Many COVID-19 patients who were 
treated with ECMO have died (X. Li et al. 2020). The 
leading causes of death in COVID-19 patients are bleeding 
and infection, which lead to lymphocyte and IL-6 elevation 
(Henry 2020; Henry and Lippi 2020). Although ECMO 
has some safety issues, it can ameliorate lung dysfunc-
tion, and one case report shows its potential for treating 
COVID-19 patients.

Stem cells Stem cell therapy, especially mesenchymal 
stem cell (MSC)-related therapy, could be a treatment for 
COVID-19. MSCs have anti-inflammatory signaling and 
immunomodulatory properties, making them effective 
against diseases such as COVID-19 (Z. Li et al. 2020). 
The immunomodulatory ability of MSCs can reduce the 
cytokine storm and prevent the T cell imbalance caused 
by COVID-19 infection (Uccelli and de Rosbo 2015; 
Fayyad-Kazan et al. 2016; Leng et al. 2020). MSCs also 
act on antigen-presenting cells such as dendritic cells and 
macrophages, modulating ARDS, anti-viral immunity, and 
tissue healing in COVID-19 patients (Z. Li et al. 2020; 
Merad and Martin 2020; Zhou et al. 2020). Clinical trials 
of stem cell therapies for COVID-19 are ongoing in many 
countries. The results from preclinical and early clinical 
studies have demonstrated their efficacy and direct MSC 
relocation to the lungs, which could help treat pulmonary 
diseases in patients with COVID-19. However, the safety 
and efficacy of stem cell therapy should be further dem-
onstrated through continuing clinical studies (Z. Li et al. 
2020).

Clustered regularly interspaced short palindromic 
repeats (CRISPR) CRISPR, which is a tool for gene edit-
ing, can be used as a COVID-19 treatment (Straiton 2020). 
Its editing tool can be applied to block SARS-CoV-2 rep-
lication and induce damage to the viral RNA. Also, pro-
phylactic antiviral CRISPR in human cells (PAC-MAN) 
contains a gRNA strand that is particular to SARS-CoV-2 
genome nucleotide sequences (Abbott et al. 2020). Still, 
there are many problems to solve, the most challenging of 
which is delivery of its bulky components into cells (Kobie 
2020). Synthetic, nontoxic peptide lipitoids are a possible 
solution to this because they can encapsulate nucleotides 
as nanoparticles. When lipitoids and PAC-MAN technol-
ogy were combined, they decreased the SARS-CoV-2 level 
in a sample of human epithelial lung cells by more than 
90% (Laboratory 2020). More studies are required, but 
existing results reflect the potential of CRISPR as a treat-
ment for COVID-19.
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Conclusions

COVID-19 is an unprecedented disease that spreads rapidly 
and has caused many infections and deaths worldwide. Many 
COVID-19 patients suffer lung damage, including pulmo-
nary fibrosis in severe cases. We described the causes and 
molecular mechanisms of pulmonary fibrosis and compared 
them with reports about SARS-CoV-2 patients. We specifi-
cally focused on the relationship between ACE2 and pul-
monary fibrosis in COVID-19 patients. In many COVID-19 
patients, decreased ACE2 expression is observed, which 
leads to decreased Ang 1–7 levels and increased Ang II 
activity, which can produce pulmonary fibrosis (Delpino 
and Quarleri 2020). Although the molecular mechanisms 
of pulmonary fibrosis in COVID-19 patients remain unclear, 
the involvement of ACE2 is promising.

We reviewed the use of radiological imaging methods 
CT and CXR to show the pathophysiology of patient lungs, 
and we inferred that they can be used for diagnosing lung 
diseases in COVID-19 patients.

We also provided an overview of some therapeutics for 
COVID-19 patients. We classified treatments as those related 
or unrelated to lung diseases and those that have or have not 
entered clinical trials. Many therapeutics are in clinical trials 
and showing good potential as COVID-19 treatments, and 
many of those are used to treat other diseases. However, 
even in previously approved treatments, dosing, safety, and 
efficacy for COVID-19 patients should be clearly identified. 
Clinical trials with larger populations and longer periods 
are needed to verify effectiveness and safety. A great deal 
of further research is needed, but we expect the detailed 
mechanisms of SARS-CoV-2 to be elucidated soon.
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