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Abstract
Dendritic cells (DCs) play an essential role in the induction of adaptive immune
responses against infectious agents and in the generation of tolerance to
self-antigens. In this mini-review, we summarize new evidence suggesting that
the tissue of residence significantly shapes the last developmental steps of
DCs into locally adapted cellular entities, enabling them to perform
tissue-specific tasks while maintaining the core DC properties. We also discuss
recent advances that have highlighted DCs’ rather complex phenotypic and
functional heterogeneity in the tumor microenvironment, based on their physical
characteristics, such as activation status, maturity, and polarization, illustrating
a key role for DCs in the induction of anti-tumor immunity.
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Dendritic cell development
Dendritic cells (DCs) have been progressively recognized as 
a separate hematopoietic lineage of myeloid cells, alongside 
granulocytes, macrophages, and monocytes. DC development is 
dependent on a cascade of bone marrow-resident hematopoietic 
stem cell (HSC)-derived precursor and progenitor cells. The 
first progenitor which has lost the potential to give rise to 
any other cell type except DCs is the common DC progenitor  
(CDP)1–4. The recent development of sophisticated methods5 
combined with the generation of refined mouse models for the 
conditional deletion of genes in DCs or the specific ablation 
of DCs or DC subsets6 has helped to dissect the heterogeneity 
of DCs with respect to their developmental path, phenotype,  
localization, lineages, and function.

CDPs are characterized by high expression of Fms-like tyrosine 
kinase 3 (FLT3) alongside expression of colony-stimulating  
factor 1 receptor (CSF-1R) while retaining only an intermediate  
to low expression of the stem cell antigen kit. Furthermore, 
CDPs express high levels of interferon (IFN) regulatory factor 
8 (IRF8), and their survival and continued development are  
critically dependent on this transcription factor7. Additionally,  
CDPs express certain other stem cell-related transcripts such 
as cbfb and Runx 1 and 3 alongside Krüppel-like factor 
4 (KLF4) and transcription factor 4 (TCF4)8. CDPs gradually 
mature into pre-DCs9. Pre-DCs can be identified by their high 
expression of FLT3 and CD11c and their intermediate to low 
expression of major histocompatibility complex II (MHC II). 
Interestingly, a subset of pre-DCs expresses the transcription  
factor Zbtb4610 and Siglec H11. Further investigation into 
the heterogeneity within the pre-DC fraction leads to the  
identification of DC subset-committed pre-DCs. Subset-committed 
pre-DCs can be separated into four functionally and transcrip-
tomically different subsets by using the surface markers Ly6c 
and Siglec H8 or alternatively CD117 and Zbtb46 expression10. 
Developmentally, four functionally and transcriptionally separate 
maturation stages of pre-DCs can be identified. Siglec H+ 
Ly6c− pre-DCs are the developmentally earliest cells differen-
tiating as CDP progeny. These cells still harbor the potential  
to give rise to conventional DCs (cDCs) that leave the 
bone marrow as precursors and plasmacytoid DCs (pDCs)  
that leave the bone marrow to go to the lymphoid organs and 
peripheral blood upon completing development12. The consensus 
on the three major populations of murine DCs is that they are 
independently controlled by unique masters of transcriptional 
regulation13 and bear these differential markers: conventional 
type 1 DCs (cDC1s) – CD8α+ (lymphoid) and CD103+ (tissue), 
BATF3 and IRF8 dependent; conventional type 2 DCs (cDC2s) 
– CD11b+ and CD172a+, IRF4 dependent; and pDCs –  
IFNα-secreting, E2-2 dependent14.

The potential to give rise to pDC progeny is lost upon  
maturing to the Siglec H+ Ly6c+ stage, as in vitro and in vivo  
differentiation assays clearly indicated only cDC progeny. Siglec 
H+ Ly6c+ pre-DCs differentiate under yet-unknown cues into 
two subsets: pre-cDC1, which specifically give rise to cDC1  
in peripheral tissues, and pre-cDC2, which are dedicated  
precursors to cDC2. The molecular regulation of this subset-
specific specification process is poorly understood. However, it 

seems that, for pre-cDC1 development, sustained and reinforced 
action of IRF8 and basic leucine zipper ATF-like transcription 
factor 3 (BATF3) is necessary, as revealed by sophisticated 
mutation analysis of the BATF3 gene10. Developmental  
specification of pre-cDC2, however, remains enigmatic.  
Pre-cDC1 and pre-cDC2 subsequently leave the bone  
marrow and seed peripheral organs giving rise to cDC1 and cDC2 
under the influence of organ-specific microenvironmental cues, 
respectively.

In conclusion, cDC1 and cDC2 specification occurs at the pre-DC  
stage and is driven by subset-restricted progenitors locked into 
cDC1 or cDC2 fate. This knowledge now supports the assump-
tion that a core DC subset transcriptome is established within 
the bone marrow environment under yet-unknown cues, allow-
ing the formation of a cDC1 and cDC2 identity. Subsequently, 
within peripheral tissues, pre-cDC1 and pre-cDC2 fully 
develop into functionally mature cDC1 and cDC2, allowing 
the tissue to imprint an additional level of tissue-specific  
regulation on them to enable organ- and niche-specific functional  
adaptation.

Recently, a dedicated DC progenitor lineage has been identified 
in human bone marrow, peripheral blood, spleen, and cord 
blood. Reports by Breton et al.15 and Lee et al.16 first identified  
human CDPs in bone marrow and cord blood alongside a  
circulating pre-DC in peripheral blood. Subsequently, a study 
by See et al. was able to refine the definition of these precursor 
populations and show that DC subset-specific pre-DC subsets  
also exist in human peripheral blood as well as bone marrow  
and blood17.

Early imprinting of conventional dendritic cell identity
With the advent of single-cell transcriptomics and sophisticated 
genomic barcode-tracing strategies, it has become clear that the 
long-curated model of a stepwise hematopoietic development  
process is an oversimplification of myeloid hematopoiesis. 
Along these lines, studies using population-level barcode  
heterogeneity-tracing approaches revealed that a portion of 
HSCs contribute only to the DC repertoire and not to other  
repertoires, such as monocytes, or the lymphoid lineage, revealing  
that already at the HSC level a definitive fate decision can be 
made18.

Furthermore, a single-cell transcriptomics approach, investigating 
the mouse CD117+ lineage marker-negative fraction, revealed 
that within the granulocyte macrophage progenitor (GMP) 
population, a population of transcriptomically pre-committed 
cells exist, showing the potential to give rise exclusively to DCs. 
This early DC progenitor upregulates hallmark transcriptional 
regulators of DCs, such as IRF8, inhibitor of DNA-binding 2  
(ID2), and FLT3 alongside components of the MHC II  
antigen presentation pathway and gives rise preferentially 
to DCs, as shown in transplantation studies19. However, the 
number of cells identified with a DC-specific transcriptomic 
program is small and most probably represents a physiological  
fallback mechanism or transient step toward the common CDP 
or a more committed DC progenitor. Additionally, substantial 
phenotypic overlap between the prior identified macrophage DC  
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progenitor (MDP)20 and this DC-committed GMP can be identified  
and should be investigated further. Taken together, evidence 
suggests that commitment to the DC lineage can be identi-
fied and maintained very early within the hematopoietic cascade  
and is most likely more prevalent than previously thought.

Tissue factors influencing dendritic cell subset identity
Within peripheral tissues, several cues have been identified to 
contribute to the tissue-specific regulation and development of 
cDCs. The transcriptional target of Notch2, recombining binding  
protein suppressor of hairless (Rbpj), has been shown to be 
critical for the development of cDC2 in the spleen and has 
been speculated to be crucial to maintain splenic cDC2s within 
their specific tissue niche21. Similarly, the G-protein-coupled 
receptor Epstein-Barr virus-induced gene 2 (EBI2), which  
recognizes 7α,25-dihydroxycholesterols, has been shown to 
regulate the positioning of cDC2 within the splenic microen-
vironment and its loss resulted in reduced numbers of cDC2, 
further strengthening the assumption that proper positioning 
within the spleen is crucial for cell survival and organ-adapted 
functionality22,23. Alongside these two niche-associated factors, 
V-Rel Avian reticuloendotheliosis viral oncogene homolog B 
(RELB), a component of the nuclear factor kappa B (NFκB)  
signaling network, exhibits crucial functions for splenic cDC2 
development; however, the molecular regulation of this effect 
remains elusive24.

Within peripheral organs such as the lung, granulocyte macrophage  
colony-stimulating factor (GM-CSF) has been explored as a tis-
sue specification factor for cDCs. Indeed, Greter et al. were 
able to show that the maintenance and functional specialization 
of lung cDC1 are dependent on GM-CSF receptor signaling 
and, if perturbed, lead to loss of this subset and absence of  
T-cell responses toward particulate antigens, clearly identifying 
GM-CSF as a factor involved in tissue-specific imprinting of  
cDC development, maintenance, and function25.

In the intestine, specifically in the small intestine, transforming  
growth factor-beta (TGF-β) was identified as the major driver 
for the tissue-specific differentiation of CD103+ CD11b+ DCs 
(a subset of cDC2 in the intestinal microenvironment), a subset 
involved in the maintenance of intestinal T helper (Th) type 17 
immunity and in the induction of intestinal Foxp3+ T cells, 
clearly showing the importance of such tissue-restricted  
functional imprinting on DC subsets26.

Furthermore, within the skin, lung, and small intestine, a unique 
subset of CD103− CD11b− DCs exists which depends on the 
transcription factor KLF4 and is crucial for the induction of 
protective Th2 immunity (for example, against parasites such 
as Schistosoma mansoni)27. However, the exact mechanism 
of induction of KLF4 expression within this subset remains 
elusive. Interestingly, in mice devoid of KLF4 within their  
pre-DC compartment, pre-cDC1 and pre-cDC2 develop normally  
and also can be found within the affected tissues but are not  
able to develop further into their mature tissue-adapted  
progeny, indicating that KLF4 is upregulated in response to a local 
tissue-restricted factor.

Overall, ample evidence suggests that the tissue of residence 
significantly shapes the last steps of cDC development toward 
a fully tissue-adapted cDC, enabling it to perform tissue- 
specific tasks while maintaining core DC features such as antigen  
presentation and migration. This realization of a two-step  
differentiation process of cDCs will enable better utilization 
of cDCs in tissue-specific vaccination strategies in humans in  
health and in disease. However, Heidkamp et al. noted that  
phenotypic and transcriptional profiling of cDC and pDC  
subtypes in different human tissues derived from a large 
number of human individuals reveals that DC subpopulations 
in organs of the lymphohematopoietic system (spleen, thymus, 
and blood) are strongly defined by ontogeny rather than by  
signals from the microenvironment28. In contrast, DC subsets 
derived from human lung or skin differed substantially, strongly 
arguing that DCs react toward modulatory signals from tissue 
microenvironments28. In Table 1, we summarize the current  
understanding of human and murine DCs.

Heterogeneity of dendritic cells in the tumor 
microenvironment
DCs are best known for their prominent role in the induction of 
adaptive immune responses against infectious agents and other 
types of “offensive” antigens, including tumor antigens29,30. 
However, recent advances have highlighted DCs’ rather  
complex phenotypic heterogeneity and functional plasticity, based 
on their attributes, such as activation status, maturity, and polari-
zation in the tumor microenvironment (TME)31–33. TME is the  
cellular environment in which tumors coexist with the surrounding  
blood vessels, immune cells, fibroblasts, bone marrow- 
derived inflammatory cells, lymphocytes, and the extracellular 
matrix34,35. Tumors and TME interact constantly. Tumors can 
influence the microenvironment by releasing extracellular  
signals, promoting tumor angiogenesis, and inducing peripheral 
immune tolerance, while the components of TME can also  
affect the growth and evolution of cancerous cells36.

Generally speaking, in TME, mature DCs are considered 
immune stimulatory whereas immature DCs are thought to be 
suppressive and tolerogenic. Tumor-infiltrating DCs (TIDCs) 
have distinguishable markers, such as CD11chigh/MHC IIhigh 
CD11b+ CD103− PD-L1+ IL4Rα+ DCs, found in lung cancer37. 
TIDCs have been found in TME in many cancer types, such as 
breast, colorectal, lung, renal, head and neck, bladder, gastric, 
and ovarian38. Their activities are varied and highly complex.  
Moreover, cancer cells and their secreted immunosuppres-
sive factors can undermine tumor immunity and disrupt  
functional differentiation and activation of DCs through various  
schemes, which are strong focus areas in cancer immunology.

cDC1, cDC2, and monocyte-derived dendritic cells
Analyses of murine and human cancers have shown that tumor-
resident DCs consist mainly of three developmentally distinct 
subsets based on their expression of the CD64, MerTK, CD11b,  
XCR1, signal regulatory protein a (Sirpa), and CD103 surface 
markers: cDC1, cDC2, and monocyte-derived DCs (Mo-DCs)39. 
Mo-DCs differentiate from Ly6C+ or CD14hi monocytes in 
mice and humans, respectively40. Tumor-resident Mo-DCs 
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are characterized by their high expression of CD11b, CD64, 
and MerTK and are predominantly considered suppressors of 
anti-tumor immunity. Mouse cDCs can be classified into two  
functionally distinct lineages: the XCR1+ IRF8+ cDC1 lineage 
and the CD11b+ IRF4+ cDC2 lineage. Siglec-H and Ly6C were  
identified as lineage markers that distinguished pre-DC sub-
populations committed to the cDC1 lineage (Siglec-H− Ly6C−  
pre-DCs) or cDC2 lineage (Siglec-H− Ly6C+ pre-DCs)8,10. cDC1s 
are also characterized by their high expression of XCR1 and 
have been reported to play predominantly an anti-tumor role. 
The cDC2s, in contrast, are characterized mainly by their high  
expression of CD11b and Sirpa and have been implicated in  
both anti- and pro-tumor mechanisms41.

Mo-DCs are adept at tumor antigen uptake but lack strong  
T-cell stimulatory capacity because of nitric oxide-mediated 
immunosuppression and poor ability to migrate to tumor-draining 
lymph nodes39. Flies et al. observed that CD11c+ CD11b− 
CD103+ cDC1s were absent in the peritoneal cavity of healthy 
mice but comprise up to 40% of DCs in ovarian tumor-bearing 
mice and retained T-cell stimulatory capacity in advanced  
disease42. Monocytes exposed to the appropriate conditions such  
as treatment with the immunostimulatory agents monosodium 

urate crystals and Mycobacterium smegmatis can become  
Mo-DCs and powerful activators of tumor-specific CD8+ T cells 
and anti-tumor immunity43,44. Among CD11c+ CD11b+ cDC2s, 
Lair-1 expression further distinguishes stimulatory and  
immunoregulatory DC subsets, which are also enriched in 
TME. Interestingly, programmed death-ligand 1 (PD-L1) 
is expressed by Lair-1(hi) immunoregulatory DCs and may  
contribute to local tumor antigen-specific T-cell dysfunction42.  
Like Mo-DCs, cDC2s were found to suppress cytotoxic T lym-
phocyte (CTL) function in tumor-bearing mice via L-arginine 
metabolism, among other potential modes of action45, which is 
consistent with a previous finding that increased breakdown of 
the amino acids arginine and tryptophan in tumor-associated  
DCs negatively impacts T-cell effector function46.

Using an in vitro culture model that produces human  
Mo-DCs and monocyte-derived macrophages (Mo-macrophages) 
closely resembling those found in vivo in ascites, Goudot et al. 
showed that the transcription factors IRF4 and MAFB were  
critical regulators of monocyte differentiation into Mo-DCs and  
Mo-macrophages, respectively47. Furthermore, activation of 
the aryl hydrocarbon receptor (AHR) promoted Mo-DC differ-
entiation through the induction of positive regulatory domain  

Table 1. Characteristics of human and mouse dendritic cells.

Classification Main surface markers Pathogen sensors Major lineage TFs Major cytokines

Murine Human Murine Human Murine Human Murine Human

Plasmacytoid DC CD45R 
CD45RA 
CD317 

Siglec-H

CD123/IL-3R 
CD45RA 

CD303/CLEC4C 
CD304/BDCA-4 

CD85κ/ILT3 
CD85g/ILT7 

FCεR1 
BTLA  

DR6/TNFRSF21 
CD300A

TLR7 
TLR9 
TLR12 
RLR 

STING

TLR7 
TLR9 
RLR 

STING

TCF4/E2-2 
IRF7

IFN-α 
IFN-β 
IFN-λ 
IDO

IFN-α 
TNF 
IL-6 
IDO

Myeloid cDC1 DEC205 
CLEC9A 

XCR1

CD141/BDCA-3 
CD13 
CD33 

CLEC9A 
CADM1/NECL2 

BTLA 
XCR1

TLR2,3,4,9 
11,12,13 
STING

TLR1,3 
TLR6,8 
TLR10 
STING

BATF3 
IRF8 
ID2 

BLC6

TGFβ 
IL-12 
IFN-λ

IFN-λ 
TNF-α 
IL-12 

CXCL9 
CXCL10

Myeloid cDC2 CD11b 
SIRPα

CD1c 
CD2 

FCεR1 
SIRPA 
CD11b 
CD11c 
CD1a* 

Langerin* 
CLEC10A/CD301a

All TLR except 
TLR3,11,12 

RLR 
NLR 

STING

TLR2,4 
TLR5,6 
TLR8,9 

RLR 
NLR 

STING

IRF4 
KLF4 

NOTCH2 
RBPJ

IFN-α/β 
IL-1 
IL-12 
IL-23 
TGFβ

IL-8 
IL-1 
IL-12 
IL-23 
TNF-α 
IL-10

DC, dendritic cell; TF, transcription factor; cDC, conventional dendritic cell; * inducible.
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zinc finger protein 1 (BLIMP-1) while impairing differen-
tiation into Mo-macrophages47, demonstrating a critical role of 
AHR as a molecular switch for monocyte fate specification in 
response to TME-derived signals. These findings were further 
supported by Sander et al.48, who demonstrated that in vitro  
generated Mo-DCs resemble monocyte-derived antigen-presenting 
cells (APCs) found in ovarian cancer-associated ascites49.

Plasmacytoid dendritic cells
pDCs are found in small numbers throughout the periphery and 
are recognized by their expression of B220, Ly6C, and PDCA.1 
in mice and CD123, CD303/BDCA2, and CD304/BDCA4 
in humans. Expression of SiglecH and Ly6D defined pDC  
lineage commitment along the lymphoid branch50. pDCs selec-
tively express Toll-like receptor 7 (TLR7) and TLR9, and their 
most important function is thought to be producing significant  
quantities of type 1 IFN in response to single-stranded viral 
RNA and DNA51. pDCs also have the potential to act as APCs, 
as they express MHC II and co-stimulatory molecules; however, 
the ability of pDCs to phagocytose dead cells and present  
cell-associated antigen has not been clearly established nor has 
their ability to cross-present exogenous antigen on MHC class I12. 
In human blood, single-cell RNA-sequencing analysis of blood 
DCs coupled with functional characterization has indicated 
that human pre-DCs contaminated the traditionally defined  
pDC gate and that this contamination is likely responsible for 
the previous misrepresentation of pDCs’ “T cell-activating” 
property52. In tumors, the presence of pDCs seems to corre-
late with poor prognosis in both breast and ovarian cancers53,54, 
but pDCs can also act as therapeutic targets to elicit IFN-α  
release and antigen presentation by cDCs55,56. In mouse mod-
els of breast cancer, Wu et al. showed that activated pDCs can 
directly kill tumor cells through tumor necrosis factor-related 
apoptosis-inducing ligand (TRAIL) and granzyme B57. Fur-
thermore, pDCs initiated the sequential activation of natural  
killer cells and CD8+ T cells, which also contributed to inhibition 
of tumor growth57.

Inflammatory dendritic cells
New evidence suggests that tumors can convert TIDCs into 
immunosuppressive regulatory cells. A population of inflamma-
tory DCs (inf-DCs) with a suppressive phenotype was described 
in the TME of different transplantable and autochthonous mod-
els of ovarian cancer58. Inf-DCs originate from circulating 
Ly6Chigh monocytes as a consequence of inflammation, cancer, or  
infection59–62 and are generally absent under steady-state con-
ditions. In mice, inf-DCs are identified as MHC II+ CD11b+ 
CD11c+ F4/80+ Ly6c+ and express CD206, CD115/M-CSFR, 
Mac-3/CD107b, FcεRI, and CD64 as well as the transcrip-
tion factor zinc finger and BTB domain-containing 46 (Zbtb46). 
FcεRI appears to be a useful marker to distinguish inf-DCs 
from cDCs and macrophages. Several studies have shown that  
inf-DCs can activate antigen-specific CD4+ T-cell responses  

ex vivo. Inf-DCs can also cross-present exogenous antigens 
in different models, including Lewis lung carcinoma, HSV-1  
reactivation, experimental autoimmune encephalomyelitis, and  
allograft rejection models63,64.

In conclusion, DCs of a heterologous nature are frequently 
recruited to tumor sites by specific tumor-derived and stroma-
derived factors, which may impair DC maturation, differentiation, 
and function in TME, resulting in the deficient formation of  
anti-tumor immune response or development of DC-mediated  
tolerance and immune suppression65,66. These factors include, 
but are not limited to, growth factors such as vascular endothe-
lium growth factor (VEGF), TGF-β, and growth/differentiation  
factor 15 (GDF-15)67–69; cytokines such as interleukin-6 (IL-6),  
IL-10, CSF1, and receptor activator of nuclear factor kappa-Β 
ligand (RANKL)70–76; and chemokines such as CCL2, mono-
cyte inhibitory protein-3a (MIP-3a), stem cell factor-1 (SDF-1),  
mucin 1 (MUC1)77–80, and others such as prostaglandin E

2
 

(PGE
2
)81,82 and PD-L131. The tumor-derived immunoevasive 

and suppressive mechanisms constitute a major obstacle to the  
generation of effective anti-tumor immunity. Therefore, under-
standing the intercellular and intracellular circuits that modulate 
the immunogenic and tolerogenic phenotype of DCs in cancer 
may provide crucial insights for developing adjuvant treatments 
to alleviate immunosuppression in the TME and improve the  
clinical efficacies of cancer vaccines and immunotherapies.
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