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A B S T R A C T   

Objective: This study serves to ascertain trends of space and time for Japanese encephalitis (JE) transmission at 
the township-level and develop an innovative time series predictive model to predict the geographical spread of 
JE in Gansu Province, China. 
Methods: We collected weekly data on JE from 2005 to 2019 at the township-level. Kriging interpolation maps 
were used to visualize the trend of the epidemic spread of JE, and linear regression models were used to calculate 
the monthly changes in minimum longitude and maximum latitude of emerging towns with JE to assess the speed 
of the epidemic’s spread to the northwest. Additionally, we utilized a time series Seasonal Autoregressive In-
tegrated Moving Average (SARIMA) model to dynamically predict the ongoing weekly number of JE emerging 
townships. 
Results: The Kriging difference map revealed a significant trend of JE spread towards the northwest. Our 
regression model indicated that the rate of decrease in minimum longitude was approximately 0.64 km per 
month, while the rate of increase in maximum latitude was approximately 1.00 km per month. Furthermore, the 
SARIMA pattern (2,0,0)(2,0,1)52 exhibited a better goodness-of-fit for predicting JE transmission, with an overall 
agreement of 93.27% to 94.23%. 
Conclusion: Our study highlights the expansion of JE cases towards the northwest of Gansu, indicating the need 
for ongoing surveillance and control efforts. The use of the SARIMA model provides a valuable tool for predicting 
the trend of JE spatial dispersion, thereby improving early warning systems. Our findings suggest that the 
number of emerging townships can be used to predict the trend of JE spatial dispersion, providing crucial insights 
for future research on JE incidence.   

1. Introduction 

JE is a zoonotic illness transmitted by arthropods and caused by the 
Japanese encephalitis virus (JEV). It can result in death or serious 
disability [1,2]. JEV circulates among various hosts, with aquatic wad-
ing birds serving as reservoir hosts, pigs as amplification hosts, and 
humans and equids as terminal hosts. The main vector for JEV is the 
Culex mosquito species [3]. The occurrence of JE is closely tied to the 
natural environment and the distribution of the Culex mosquito vector. 

Children under the age of 15 are primarily affected by JE, with a fatality 
rate of 30–40% [4,5]. Additionally, 30–50% of survivors may experience 
severe neurological and mental sequelae [6,7]. Following the intro-
duction of JE vaccines, the proportion and the absolute number of cases 
among adults increased [8]. 

JE is a significant neurological disease in Asia, causing an estimated 
67,900 cases each year, with approximately 10,000 fatalities worldwide 
and 50% of cases occurring in China [9,10]. The NEPI (National 
Expanded Program on Immunization) has significantly reduced the 
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incidence rate of JE in China. However, in recent years, the incidence 
rate of JE in Gansu Province has dramatically increased, causing it to 
have the highest incidence rate of JE in China. 95% of cases are among 
adults over 15 years old who have not been vaccinated against JE. The 
largest JE outbreak occurred in Gansu in 2018 with over 500 cases. 
Accurately identifying the spatiotemporal transmission of JE is critical 
for government decision-making. In our previous study, we used 
aggregated on 10-year period at country level (1958–2017) to map the 
spatial patterns of historic JE transmission in Gansu Province [11]. 
However, two issues remain to be resolved. First, it is unclear if the 
spatial transmission pattern of JE at country level observed at high 
aggregated data (10-year period) has any changes at finer spatial and 
temporal scales (i.e weekly and township level). Second, it is uncelar if it 
is possible to develop an innovative time series predictive model to 
timely predict the spatial dispersion of JE. Thus, the research aims to 
develop an innovative time series predictive model based on spatial 
disersion to predict future geographical dispersen of JE, using weekly JE 
data at townships. 

2. Materials and methods 

2.1. Study site 

Located in northwestern China, Gansu Province encompasses 86 
counties and has a population of 26.47 million (Gansu yearbook 2020). 
We obtained the town-level geographic vector polygon map from Gansu 
through the China CDC (2012 Edition). There are 1383 townships within 
its jurisdiction, as shown in Fig. 1. 

2.2. Data collection 

To gather data for this study, weekly information on Japanese En-
cephalitis (JE) at the township level was collected from the China In-
formation System for Disease Control and Prevention (CISDCP) between 
2005 and 2019. Nine cases (0.59%) had unknown town-level addresses 
during this period and were therefore excluded from the study. The 
diagnosis of JE cases was based on diagnostic criteria WS-214-2001 
(used from 2005 to 2008) and WS-214-2008 (used from 2009 to the 
present). Confirmed cases, including both clinically diagnosed cases and 

laboratory-confirmed cases, were included in the study from 2005 to 
2019. 

The population proportion of each township within the jurisdiction 
of each county was calculated using LandScan™ data. LandScan™ is 
modelled by the Oak Ridge National Laboratory (ORNL) using space 
information, picture analysis, and a multi-variable asymmetric pattern 
method of disaggregating census counts in administrative boundaries 
(ORNL, 2016) [12,13]. The county population in the “Gansu Statistical 
Yearbook” was multiplied by the township population proportion to 
determine the population of each township. The LandScan™ resolution 
is rough and has a resolution of 1 km. 

District boundary changes for each township in 2005–2019, were 
obtained from the Bureau of Statistics and the Department of Civil Af-
fairs of Gansu. Each township of each year in Gansu corresponds to the 
township in the town-level geographic vector polygon map after 
adjusting for geographical boundary changes. If the administrative di-
vision of one township was split or merged, then the study data of split or 
merged townships for specific years were allocated in proportion to the 
population or summed for specific years. The study data were catego-
rized into three groups: 2005–2009, 2010–2014, and 2015–2019, based 
on changes in the epidemic from the relatively normal epidemic period 
(2005–2009), lower epidemic period (2010–2014), and outbreak period 
(2015–2019). 

2.3. Descriptive analysis 

We used the ggplot2 function in R3.6.1 software to visualize the 
weekly distribution profiles of JE cases number in the heatmap format. 

2.4. Spatial patterns analysis 

We mapped JE incidence at the township level using ArcGIS software 
version 10.2 (ESRI, America) to display its spatial distribution. We used 
administrative divisions to summarize the JE incidence, but the shape 
and scale of administrative divisions could affect the incidence rate and 
cause MAUPs. Therefore, we chose Common Kriging for modelling data 
that exhibit spatial trends [14,15]. This method is widely used to pro-
duce a continuous spatial surface of diseases and can alleviate MAUPs 
[16,17]. We converted the average incidence map of each township into 

Fig. 1. Geographical administrative division at the township level, Gansu Province, China. These research domains as well as the position in Gansu and China. The 
picture was produced by means of ArcGIS software version 10.2 (ESRI, America). 
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an incidence map of the centroid of each township using ArcGIS 10.2 
software and then created Kriging interpolation maps of JE incidence 
over three periods: 2005 to 2009, 2010 to 2014, and 2015 to 2019. 

In addition, the spatial changes in epidemic areas are often as sig-
nificant as the intensity of the epidemic, and this information can aid in 
the development of early warnings. To observe the changes in the 
prevalent areas of JE, we created maps of emerging townships with JE 
cases year by year. A township with the first case of JE during the study 
period is considered to be an emerging township of JE. 

2.5. Dynamic spatial and temporal dispersion 

The latitude and longitude of the centroid of each township were 
directly computed using ArcGIS 10.2 software. We used a linear 
regression model to investigate whether the JE endemic area expanded 
during 2005–2019 by observing changes in the min longitude and max 
latitude of emerging townships. A scatter plot with a regression line was 
used to illustrate the spread of JE at the min longitude and max latitude 
levels and estimate the speed of spread in the west and north. We per-
formed all analyses using IBM SPSS Statistics software, version 25, and 
set statistical significance at P < 0.05. We thoroughly assessed the 
integrity and correctness of the data before conducting the analysis. 

2.6. Time series seasonal decomposition 

Temporal sequences were disintegrated into three parts: trend, sea-
sonal, along with the remainder (residual). Season decomposition of 
time series by Loess decomposition information was shown in pictures 
by four panels: data (weekly JE emerging townships), trend (variance in 
data during the study), seasonal (variance in data during one year), 
together with the remainder (variance which remains behind deleting 
seasonal and trend parts) [18,19]. The season decomposition of tem-
poral sequences with the Loess (STL) function using R 3.6.1 tidyverse 
package [20] during 2005–2019 was performed by us. 

2.7. Time series SARIMA trend analysis 

We utilized the Seasonal Auto-Regressive Integrated Moving Average 
(SARIMA) model to forecast outbreaks of infectious diseases [21,22]. 
This model is particularly suitable for analyzing infectious disease sur-
veillance data with autocorrelation [23,24]. In general, six parameters 
are selected when fitting this model: (p, d, q) (P, D, Q), where p repre-
sents the order of autoregression (AR), d represents the order of inte-
gration, and q represents the order of moving average (MA) [25]. The 
seasonal part has three parameters denoted as P, D, and Q [26]. These 
parameters resemble p, d, and q but are conducted on the scale of 
periodicity (52 weeks). For instance, P = 1 indicates an autoregressive 
term of order 1 on the annual scale, i.e., the value in any week. The 
orders of AR and MA models are determined by analyzing the Auto-
correlation Function (ACF) and Partial Autocorrelation Function 
(PACF). In this research, the goodness-of-fit of the model was evaluated 
by computing autocorrelation for residuals. 

To enhance the forecast model, we used the weekly number of 
emerging townships with JE cases. To improve the fitting effects of the 
model, we first performed a square root conversion of the weekly 
number of emerging townships. Moreover, to examine the model’s 
forecasting capacity, we divided the data into two datasets. Specifically, 
data from January 1, 2005, to December 31, 2017 (a total of 676 weeks) 
were used as the training set to establish a SARIMA model, and data from 
January 1, 2018, to December 31, 2019 (a total of 104 weeks) were used 
as the testing dataset to validate the model. Secondly, we used ongoing 
dynamic weekly predictions for 2018–2019 data. Finally, we defined an 
outbreak when the number of emerging townships exceeded 25%, 50%, 
and 75% of the median number of emerging townships in Gansu over the 
study period and accurately determined the sensitivity and specificity of 
the prediction. IBM SPSS Statistics software version 25 was used for all 

data analysis. Statistical significance was defined at P < 0.05, and the 
integrity and correctness of the data were assessed before analysis. 

3. Results 

3.1. JE epidemics and outbreaks 

Between 2005 and 2019, the distribution range and annual incidence 
of JE in Gansu exhibited an initial decline followed by an increase. Fig. 2 
shows that an outbreak of JE occurred in the province in 2018, with 
cases reported in 290 townships across 55 counties. The incidence rate 
in 2018 was 1.92/100,000, marking the highest value observed in the 
past 15 years. In contrast, 2012 saw the lowest incidence rate of 0.02/ 
100,000, with only six townships in five counties reporting cases of JE. 

3.2. Time pattern of JE cases 

During the study period, the JE epidemic in Gansu Province typically 
occurred between weeks 14–30 and 35–51, with the highest incidence 
rates observed around week 33. A majority (93.35%) of cases were re-
ported between weeks 29–37, as depicted in Fig. 3. 

3.3. Dynamic spatial and temporal dispersion 

The incidence rate of each township in Gansu Province was calcu-
lated in three stages, and Kriging interpolation maps of incidence were 
generated to analyze the trend of JE epidemic ranges. From 2005 to 
2009, 97 townships with high incidence rates (≥2/100,000) were 
identified, all of which were distributed in the southeastern region. From 
2010 to 2014, the number of townships with high incidence rates also 
decreased significantly to 39, still mainly distributed in the southeastern 
region. However, from 2015 to 2019, the number of townships with high 
incidence rates increased significantly to 243, showing a trend of 
expansion from the southeast to the northwest. (shown in Fig. 4). 

3.4. JE emerging-township analysis 

From 2005 to 2019, JE cases were reported in 529 out of the 1383 
townships in Gansu Province, accounting for 38.25% of all townships. 
The cases were concentrated in the region between 32.70◦N, 100.45◦E 
and 38.70◦N, 108.54◦E. Emerging epidemic areas were observed each 
year from 2005 to 2019, with new townships mainly distributed in the 
southeastern region of Gansu Province from 2006 to 2009, with 93, 26, 
22, and 21 townships each year, respectively. The number of new 
townships in this region decreased from 2010 to 2014, with 11, 6, 2, 14, 
and 4 townships reported each year, respectively. However, in the past 
five years (2015–2019), there has been a trend of spreading from the 
southeast to the northwest, with 2, 34, 139, 106, and 11 new townships 
reported each year. Cases have also been reported in the previously non- 
infected Hexi Corridor, with an epidemic occurring in Ganzhou District 
of Zhangye Municipality in 2009. In 2017, epidemics occurred in Minqin 
County, Gulang County, and Tianzhu County of Wuwei Municipality, 
and in 2018, epidemics occurred in Jinchuan District and Yongchang 
County of Jinchang Municipality. In addition, an epidemic occurred in 
Liangzhou District of Wuwei Municipality in 2019. (SeeFig. 5 for a visual 
representation of the data). 

According to Supplementary Fig. 1, the min longitude of JE emerging 
townships displayed a decreasing trend of 0.007 per month (P = 0.034), 
while the max latitude of JE emerging townships exhibited an increasing 
trend of 0.009 per month (P = 0.012). To evaluate the distance between 
the changes in min longitude and max latitude, we made a rough 
calculation, which suggests that the min longitude decreases at a rate of 
0.64 km per month, whereas the max latitude increases at a rate of 1.00 
km per month. 
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3.5. Time series seasonal decomposition 

The weekly number of JE emerging townships, trend, seasonal and 
residual (remainder) parts were analyzed using STL decomposition, as 
shown in Supplementary Fig. 2. The results indicated that seasonality 
was the most prominent factor throughout the study period. Notably, the 
peak number of emerging towns was observed in 2017, which was 
earlier than the peak incidence rate observed in 2018. 

3.6. Time series trend analysis 

Supplementary Fig. 3 demonstrates that the SARIMA model (2,0,0) 
(2,0,1)52 had a better goodness of fit for predicting JE transmission, with 
a statistical R2 value of 74.5%. The parameter assessments and trial 
consequences for this pattern are presented in Supplementary table. The 
forecast curves corresponded well with the actual values, as seen in 
Fig. 6. When defining an outbreak as 25% above the median or 50% 
above the median, validation analyses revealed an overall agreement of 
predicted outbreaks at 93.27% (sensitivity: 7/10 = 70.00%, specificity: 
90/94 = 95.74%, and crude agreement, (7 + 90)/104 = 93.27%), as 
shown in Table. 1. When stating an outbreak to be 75% above the me-
dian, validation analyses indicated an overall agreement of predicted 
outbreaks at 94.23% (sensitivity: 7/9 = 77.78%, specificity: 91/95 =
95.79%, and crude agreement, (7 + 91)/104 = 94.23%). 

4. Discussion 

In recent years, there has been a growing concern over the JE 
epidemic in Gansu, a province in northwest China [27]. Wu Dan et al. 
found that the recent outbreak of JE in Gansu was due to the onset of the 
disease in unvaccinated adults, with a different time and space distri-
bution than that observed in children in the past [8]. Our study aimed to 
document the spatiotemporal distribution and spreading trend of JE in 
Gansu Province over the past 15 years, since the implementation of an 
internet-based JE reporting system in 2004 and the incorporation of the 
JE vaccine into the EPI in 2008. Our results indicate that the incidence of 
JE in Gansu first declined, but then increased after more than ten years 
of vaccination. Spatial analysis at the township level revealed that the 
pandemic range of JE has enlarged, with more towns in the northwest 
becoming new epidemic areas, while cases remain clustered in the 
southeast. This emerging epidemic presents a new challenge for the 
prevention and control of JE. 

The use of administrative divisions as geographic units to report 
incidence data may overestimate differences in incidence levels in 
border areas and lead to MAUPs. To alleviate this issue, we utilized 
Kriging interpolation techniques to better show the trend of disease 
distribution, while recognizing that such techniques may have a 
smoothing effect and under-appreciate high local worth or overrate low 
local worth. We produced a Kriging interpolation map based on 

Fig. 2. JE incidence in Gansu Province, 2005–2019. A: Annual incidence as well as moving average of JE incidence from Gansu Province, 2005–2019. B: The number 
of counties as well as townships with JE cases of Gansu Province, 2005–2019. 

Fig. 3. Heatmap representing the weekly number of JE cases of each year in Gansu Province. The horizontal dimension indicates the weekly JE infection, while the 
ordinate represents the year. The color of the cells represents the magnitude of the number of JE cases in that cell. 
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Fig. 4. Maps of JE annual incidence and Kriging interpolation of incidence in town-standard in Gansu Province. A: Maps of JE annual incidence at the township in 
Gansu Province for the periods of 2005–2009 (Fig. A1), 2010–2014 (Fig. A2), and 2015–2019 (Fig. A3); B: Kriging interpolation maps of JE incidence at the township 
in Gansu Province for the periods of 2005–2009 (Fig. B1), 2010–2014 (Fig. B2), and 2015–2019 (Fig. B3). This picture was produced by means of ArcGIS software 
version 10.2 (ESRI, America). 
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Fig. 5. Emerging townships maps of JE epidemic in Gansu Province. Emerging townships map of JE epidemic in Gansu Province for the periods of 2005–2009 
(Fig. 5A), 2010–2014 (Fig. 5B) and 2015–2019 (Fig. 5C). The data was produced by means of ArcGIS software version 10.2 (ESRI, America). 
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incidence rates at the township level to observe changes in JE incidence 
trends during three stages of the study period. 

Our previous research identified an extension of the JE pandemic, 
but did not provide a detailed description of its gradual extension over 
the past 15 years [11]. By analyzing data at the township level over the 
last 15 years, we found the range and intensity of JE has continued to 
expand in last five years, especially during outbreak years (2017–2018), 
with a clear trend of spreading to the northwest. From 2005 to 2009, the 
incidence of JE in Gansu Province was at a low to medium level 
nationwide. During this period, Gansu Province had not yet fully 
vaccinated eligible children with the JE vaccine. From 2010 to 2014, 
Gansu Province began universal vaccination of eligible children with the 
JE vaccine, resulting in a significant decrease in the number of emerging 
townships, and an incidence. However, the low prevalence led to a low 
positive rate of serum in the population. From 2015 to 2019, the JE 
incidence rebounded and the area of incidence expanded, with a his-
torical peak in 2017–2018. To combat the disease, Gansu Province 
began vaccinating adults in key areas from 2018 to 2019 and imple-
mented standardized prevention and control measures. As a result, the 
JE incidence dropped to 0.19/100,000 in 2019, with only 11 emerging 
townships. 

We analyzed the geographical change trend of the distribution of 
emerging townships using latitude and longitude as observation in-
dicators. Our study revealed that under the current epidemic trend, the 
epidemic range of JE in Gansu Province is spreading westward at a rate 
of 0.64 km per month and northwards at a rate of 1 km per month. This 

finding is consistent with the result of our Kriging interpolation map 
analysis, further confirming that the JE epidemic in Gansu Province has 
been expanding to the northwest in recent years. This also reminds us 
that without proper prevention and control measures, the epidemic may 
continue to spread to the west and north. Additionally, areas that were 
not previously affected by the epidemic should also be prepared to 
prevent and control new outbreaks. 

Furthermore, the STL decomposition showed that the changing trend 
in the number of emerging townships with JE transmission was slightly 
different from that of the incidence rate, and the peak of the emerging 
township numbers occurred earlier than that of incidence. This suggests 
that when studying infectious diseases with low disease intensity but 
more serious disease burden and impact, the number of new regions may 
be more sensitive than other indicators such as the number of cases or 
the incidence rate. 

Infectious disease prediction and early warning systems are crucial 
for effective decision-making and reducing mortality and morbidity. 
Early warning and prediction systems have been established worldwide 
to tackle infectious diseases [25,28–31]. However, the complexity of 
various influencing factors in reality often makes it difficult to use 
multiple regression models to quickly analyze and predict. The accurate 
simulation of models requires high requirements for parameter selec-
tion. In contrast, SARIMA models can fully considered the auto- 
correaltion, trend and seasonality issue in modelling, making short- 
term forecasting easy to implement and highly accurate [32,33]. How-
ever, the accuracy of recent historical data can have a significant impact 
on model extrapolation [34]. To improve prediction accuracy, our study 
used ongoing dynamic strategies by employing different SARIMA 
models at every time step (week) and utilizing the actual data at the 
previous step as input. This approach continuously updated the models, 
improving the prediction effect when rapidly predicting the trend of 
epidemic change. Our results showed that the overall agreement of 
predicted outbreaks was 93.27%–94.23%, which can inform health 
policy-makers for possible intervention (e.g. increasing insecticidal 
spraying, vaccination and community health education during high-risk 
period, improving the disease surveillance system etc.) 

The significance of our study’s results lies in the ability to quickly 
predict spatial dispersion trend and take targeted preventive and control 
measures based on more convenient data, or determine whether the 
actual incidence level fluctuates within the normal range based on 
predicted results. Our SARIMA models fit well, and the sensitivity and 
specificity of detecting abnormal diffusion are high, enabling the quick 
detection of JE trends. However, any SARIMA prediction model has its 
limitations, and the predicted results of our model are mainly intended 

Fig. 6. Reported and Predicted the number of JE emerging townships by Week, 2018–2019.  

Table 1 
Sensitivity and specificity of SARIMA models for the number of JE emerging 
townships.  

Actual Predicted Total 

Occurrence Non-occurrence 

Define an outbreak as 25% above Median 
Occurrence 7 3 10 
Non Occurrence 4 90 94 
Total 11 93 104 

Define an outbreak as 50% above Median 
Occurrence 7 3 10 
Non Occurrence 4 90 94 
Total 11 93 104 

Define an outbreak as 75% above Median 
Occurrence 7 2 9 
Non Occurrence 4 91 95 
Total 11 93 104  
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to judge whether the actual incidence trend fluctuates within the normal 
range, alert the outbreak or epidemic of the epidemic, and are not 
suitable for predicting the specific value of the incidence. Therefore, the 
results should be interpreted with care when used. 

Our study has several strengths, including China’s well-functioning, 
centrally managed, internet-based JE reporting system that involves 
case-by-case management. This allows us to use detailed residential 
addresses in the system to analyze the distribution characteristics of JE 
on a town level. Our study is also the first to use emerging townships in a 
time series forecast study of JE in Gansu Province, providing technical 
support for the development of early warning and forecasting systems. 
This information is valuable to decision-makers in developing suitable 
prevention measures. However, since JE is vulnerable to climate, our 
study’s limitations include not exploring possible menace elements 
associated with clustering. Thus, our next study will focus on JE trans-
mission and related environmental factors, including climatic, ecolog-
ical, and sociodemographic factors in Gansu, and build more 
sophisticated and complex forecasting models. 

5. Conclusion 

Our study’s findings offer more specific evidence for local JE con-
trol’s public health implications, especially in identifying high-risk areas 
at the township level. Moreover, the study illustrates the practicality of 
using the number of emerging townships to detect JE epidemics in real- 
time. This could be seen as a prerequisite for building early warning 
systems that take socio-environmental changes into account. 
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