

Article A Genomics-Based Model for Prediction of Severe Bioprosthetic Mitral Valve Calcification

Anastasia V. Ponasenko¹, Maria V. Khutornaya¹, Anton G. Kutikhin^{1,*}, Natalia V. Rutkovskaya¹, Anna V. Tsepokina¹, Natalia V. Kondyukova¹, Arseniy E. Yuzhalin^{1,2} and Leonid S. Barbarash¹

- Research Institute for Complex Issues of Cardiovascular Diseases, Sosnovy Boulvevard 6, Kemerovo 650002, Russia; ponaav@kemcardio.ru (A.V.P.); masha_hut@mail.ru (M.V.K.); rutknv@kemcardio.ru (N.V.R.); annacepokina@mail.ru (A.V.T.); kondnv@kemcardio.ru (N.V.K.); arseniy.yuzhalin@oncology.ox.ac.uk (A.E.Y.); reception@kemcardio.ru (L.S.B.)
- ² Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
- * Correspondence: antonkutikhin@gmail.com; Tel.: +7-960-907-70-67

Academic Editor: Emil Alexov

Received: 23 June 2016; Accepted: 19 August 2016; Published: 31 August 2016

Abstract: Severe bioprosthetic mitral valve calcification is a significant problem in cardiovascular surgery. Unfortunately, clinical markers did not demonstrate efficacy in prediction of severe bioprosthetic mitral valve calcification. Here, we examined whether a genomics-based approach is efficient in predicting the risk of severe bioprosthetic mitral valve calcification. A total of 124 consecutive Russian patients who underwent mitral valve replacement surgery were recruited. We investigated the associations of the inherited variation in innate immunity, lipid metabolism and calcium metabolism genes with severe bioprosthetic mitral valve calcification. Genotyping was conducted utilizing the TaqMan assay. Eight gene polymorphisms were significantly associated with severe bioprosthetic mitral valve calcification and were therefore included into stepwise logistic regression which identified male gender, the T/T genotype of the rs3775073 polymorphism within the *TLR6* gene, the C/T genotype of the rs2229238 polymorphism within the *IL6R* gene, and the A/A genotype of the rs10455872 polymorphism within the LPA gene as independent predictors of severe bioprosthetic mitral valve calcification. The developed genomics-based model had fair predictive value with area under the receiver operating characteristic (ROC) curve of 0.73. In conclusion, our genomics-based approach is efficient for the prediction of severe bioprosthetic mitral valve calcification.

Keywords: bioprosthetic heart valve; calcification; interleukin-6; genetic association; predictive model

1. Introduction

Mitral valve calcification, accompanied by inflammation and lipid deposition, is associated with common cardiovascular risk factors and represents an important risk factor of mitral valve disease [1,2]. Currently, there is no efficient approach for the prevention of mitral valve disease progression, with valve replacement being the only treatment option [1]. However, bioprosthetic mitral valves also frequently undergo severe calcification which is able to cause bioprosthetic valve failure and may require repeated valve replacement surgery, a major clinical intervention [1]. Even the widely established Carpentier-Edwards Perimount and Medtronic Mosaic bioprosthetic mitral valves undergo severe calcification in up to 20% of patients <60 years [3,4].

Unfortunately, there is still no clinical model for the prediction of severe bioprosthetic mitral valve calcification. A previous study by our research group did not reveal any significant clinical predictors of

this condition [5]. Mitral valve calcification is frequent among family members [6] but genomic markers of native and bioprosthetic mitral valve calcification are still almost unknown [7]. Nevertheless, their identification may assist in revealing the underlying mechanisms of these conditions. This, in turn, may improve treatment of mitral valve disease.

Progress in genotyping technologies resulted in many studies on the association of single nucleotide polymorphisms (SNPs) with human diseases [8]. SNPs can lead to a number of consequences depending on their location in the genome [9]. As known, SNPs within the noncoding regions are able to affect mRNA splicing or even transcription initiation, while SNPs within the coding regions may alter protein folding, stability, and expression, or influence posttranslational modifications [9]. Here, we investigated whether SNPs within innate immunity, lipid metabolism and calcium metabolism genes are significant predictors of severe bioprosthetic mitral valve calcification.

2. Results

We identified eight SNPs being significantly associated with severe bioprosthetic mitral valve calcification (Table 1).

Model	Genotype	Without Severe Bioprosthetic Mitral Valve Calcification	With Severe Bioprosthetic Mitral Valve Calcification	OR (95% CI)	p-Value	AIC	HWE
		TLI	R1 rs5743551				
Codominant	T/T C/T C/C	31 (50%) 30 (48.4%) 1 (1.6%)	35 (56.5%) 25 (40.3%) 2 (3.2%)	1.00 0.69 (0.32–1.45) 2.71 (0.22–33.36)	0.39	171.7	
Dominant	T/T C/T-C/C	31 (50%) 31 (50%)	35 (56.5%) 27 (43.5%)	1.00 0.74 (0.36–1.54)	0.42	170.9	- 0.06
Recessive	T/T-C/T C/C	61 (98.4%) 1 (1.6%)	60 (96.8%) 2 (3.2%)	1.00 3.17 (0.26–38.23)	0.35	170.7	_
Overdominant	T/T-C/C C/T	32 (51.6%) 30 (48.4%)	37 (59.7%) 25 (40.3%)	1.00 0.66 (0.31–1.39)	0.27	170.4	_
Log-additive	_		_	0.85 (0.44-1.67)	0.64	171.4	
-		TLI	R1 rs5743611				
Codominant	C/C C/G G/G	38 (61.3%) 21 (33.9%) 3 (4.8%)	36 (58.1%) 21 (33.9%) 5 (8.1%)	1.00 1.00 (0.46–2.19) 1.74 (0.38–7.96)	0.76	173	
Dominant	C/C C/G-G/G	38 (61.3%) 24 (38.7%)	36 (58.1%) 26 (41.9%)	1.00 1.10 (0.52–2.30)	0.81	171.5	- 0.61
Recessive	C/C-C/G G/G	59 (95.2%) 3 (4.8%)	57 (91.9%) 5 (8.1%)	1.00 1.74 (0.39–7.75)	0.46	171	_
Overdominant	C/C-G/G C/G	41 (66.1%) 21 (33.9%)	41 (66.1%) 21 (33.9%)	1.00 0.94 (0.44–2.04)	0.89	171.6	_
Log-additive	_	_	_	1.16 (0.64–2.09)	0.62	171.3	_
- -		TLI	R2 rs5743708				
	G/G A/G	57 (91.9%) 5 (8.1%)	56 (90.3%) 6 (9.7%)	1.00 1.33 (0.36–4.92)	0.67	171.4	0.99
		TLI	R2 rs3804099				
Codominant	T/T C/T C/C	23 (37.1%) 33 (53.2%) 6 (9.7%)	18 (29%) 37 (59.7%) 7 (11.3%)	1.00 1.80 (0.79–4.13) 1.35 (0.36–5.06)	0.37	171.6	
Dominant	T/T C/T-C/C	23 (37.1%) 39 (62.9%)	18 (29%) 44 (71%)	1.00 1.72 (0.77–3.82)	0.18	169.8	- 0.06
Recessive	T/T-C/T C/C	56 (90.3%) 6 (9.7%)	55 (88.7%) 7 (11.3%)	1.00 0.94 (0.28–3.17)	0.93	171.6	-
Overdominant	T/T-C/C C/T	29 (46.8%) 33 (53.2%)	25 (40.3%) 37 (59.7%)	1.00 1.68 (0.78–3.60)	0.18	169.8	_
Log-additive		_	_	1.34 (0.73–2.46)	0.33	170.6	_

Table 1. Association of the polymorphisms within innate immunity genes, genes of lipid metabolism, and genes of calcium metabolism with severe bioprosthetic mitral valve calcification.

Model	Genotype	Without Severe Bioprosthetic Mitral Valve Calcification	With Severe Bioprosthetic Mitral Valve Calcification	OR (95% CI)	<i>p</i> -Value	AIC	нw
		TLF	R4 rs4986790				
Codominant	A/A A/G G/G	53 (85.5%) 8 (12.9%) 1 (1.6%)	53 (85.5%) 9 (14.5%) 0 (0%)	1.00 1.19 (0.41–3.45) 0.00 (0.00–0.00)	0.46	172	
Dominant	A/A A/G-G/G	53 (85.5%) 9 (14.5%)	53 (85.5%) 9 (14.5%)	1.00 1.03 (0.37–2.91)	0.95	171.6	_
Recessive	A/A-A/G G/G	61 (98.4%) 1 (1.6%)	62 (100%) 0 (0%)	1.00 0.00 (0.00–0.00)	0.23	170.1	- 0.53
Overdominant	A/A-G/G A/G	54 (87.1%) 8 (12.9%)	53 (85.5%) 9 (14.5%)	1.00 1.20 (0.41–3.50)	0.73	171.5	_
Log-additive	_	_	_	0.91 (0.35–2.35)	0.85	171.5	
			84 rs4986791				
Codominant	C/C C/T T/T	53 (85.5%) 8 (12.9%) 1 (1.6%)	53 (85.5%) 8 (12.9%) 1 (1.6%)	1.00 1.00 (0.33–2.97) 1.36 (0.08–23.62)	0.98	173.5	
Dominant	C/C C/T-T/T	53 (85.5%) 9 (14.5%)	53 (85.5%) 9 (14.5%)	1.00 1.03 (0.37–2.91)	0.95	171.6	_
Recessive	C/C-C/T T/T	61 (98.4%) 1 (1.6%)	61 (98.4%) 1 (1.6%)	1.00 1.36 (0.08–23.58)	0.83	171.5	- 0.1
Overdominant	C/C-T/T C/T	54 (87.1%) 8 (12.9%)	54 (87.1%) 8 (12.9%)	1.00 0.99 (0.33–2.95)	0.99	171.6	_
Log-additive	_	—	—	1.05 (0.43–2.56)	0.91	171.6	
			R6 rs3775073				
Codominant	T/T T/C C/C	12 (19.4%) 32 (51.6%) 18 (29%)	20 (32.3%) 33 (53.2%) 9 (14.5%)	1.00 0.71 (0.29–1.75) 0.31 (0.10–0.94)	0.092	168.8	
Dominant	T/T T/C-C/C	12 (19.4%) 50 (80.7%)	20 (32.3%) 42 (67.7%)	1.00 0.56 (0.24–1.32)	0.18	169.8	0.72
Recessive	T/T-T/C C/C	44 (71%) 18 (29%)	53 (85.5%) 9 (14.5%)	1.00 0.39 (0.15–0.98)	0.04	167.4	
Overdominant	T/T-C/C T/C	30 (48.4%) 32 (51.6%)	29 (46.8%) 33 (53.2%)	1.00 1.22 (0.58–2.55)	0.59	171.3	_
Log-additive	_	_	_	0.56 (0.32–0.98)	0.037	167.2	
			R6 rs5743810				
Codominant	G/G A/G A/A	35 (56.5%) 25 (40.3%) 2 (3.2%)	24 (38.7%) 30 (48.4%) 8 (12.9%)	1.00 1.57 (0.73–3.38) 5.19 (0.97–27.93)	0.09	168.8	
Dominant	G/G A/G-A/A	35 (56.5%) 27 (43.5%)	24 (38.7%) 38 (61.3%)	1.00 1.83 (0.87–3.84)	0.11	169	_
Recessive	G/G-A/G A/A	60 (96.8%) 2 (3.2%)	54 (87.1%) 8 (12.9%)	1.00 4.17 (0.81–21.53)	0.062	168.1	- 0.6
Overdominant	G/G-A/A A/G	37 (59.7%) 25 (40.3%)	32 (51.6%) 30 (48.4%)	1.00 1.26 (0.61–2.64)	0.53	171.2	_
Log-additive	_	_	_	1.87 (1.02–3.44)	0.039	167.3	
			M1 rs2234246				
Codominant	C/C C/T T/T	15 (24.2%) 29 (46.8%) 18 (29%)	18 (29%) 33 (53.2%) 11 (17.7%)	1.00 1.05 (0.43–2.52) 0.63 (0.22–1.81)	0.54	172.3	
Dominant	C/C C/T-T/T	15 (24.2%) 47 (75.8%)	18 (29%) 44 (71%)	1.00 0.90 (0.39–2.07)	0.8	171.5	_
Recessive	C/C-C/T T/T	44 (71%) 18 (29%)	51 (82.3%) 11 (17.7%)	1.00 0.61 (0.25–1.47)	0.27	170.3	- 0.9
Overdominant	C/C-T/T C/T	33 (53.2%) 29 (46.8%)	29 (46.8%) 33 (53.2%)	1.00 1.30 (0.63–2.70)	0.48	171.1	_
Log-additive	_	_	_	0.80 (0.47-1.36)	0.41	170.9	_
		TRE	M1 rs4711668				
Codominant	C/C T/C T/T	26 (41.9%) 30 (48.4%) 6 (9.7%)	21 (33.9%) 30 (48.4%) 11 (17.7%)	1.00 1.29 (0.58–2.85)	0.46	172	0.8

Model	Genotype	Without Severe Bioprosthetic Mitral Valve Calcification	With Severe Bioprosthetic Mitral Valve Calcification	OR (95% CI)	<i>p</i> -Value	AIC	HWE
		TRE	M1 rs4711668				
Dominant	C/C T/C-T/T	26 (41.9%) 36 (58.1%)	21 (33.9%) 41 (66.1%)	1.00 1.43 (0.67–3.04)	0.35	170.7	
Recessive	C/C-T/C T/T	56 (90.3%) 6 (9.7%)	51 (82.3%) 11 (17.7%)	1.00 1.80 (0.60–5.37)	0.29	170.4	- 0.85
Overdominant	C/C-T/T T/C	32 (51.6%) 30 (48.4%)	32 (51.6%) 30 (48.4%)	1.00 1.07 (0.51–2.21)	0.87	171.5	_
Log-additive		_	_	1.40 (0.81–2.41)	0.23	170.1	_
		TRE	M1 rs3804277				
Codominant	C/C C/T T/T	16 (25.8%) 28 (45.2%) 18 (29%)	18 (29%) 33 (53.2%) 11 (17.7%)	1.00 1.13 (0.47–2.69) 0.66 (0.23–1.89)	0.52	172.3	
Dominant	C/C C/T-T/T	16 (25.8%) 46 (74.2%)	18 (29%) 44 (71%)	1.00 0.96 (0.42–2.18)	0.92	171.6	_
Recessive	C/C-C/T T/T	44 (71%) 18 (29%)	51 (82.3%) 11 (17.7%)	1.00 0.61 (0.25–1.47)	0.27	170.3	- 0.86
Overdominant	C/C-T/T C/T	34 (54.8%) 28 (45.2%)	29 (46.8%) 33 (53.2%)	1.00 1.36 (0.66–2.83)	0.41	170.9	_
Log-additive		_		0.82 (0.49–1.39)	0.47	171	_
		TRE	M1 rs2234237				
Codominant	T/T A/T A/A	49 (79%) 13 (21%) 0 (0%)	50 (80.7%) 11 (17.7%) 1 (1.6%)	1.00 0.69 (0.27–1.79) 0.00 (0.00–0.00)	0.39	171.7	
Dominant	T/T A/T-A/A	49 (79%) 13 (21%)	50 (80.7%) 12 (19.4%)	1.00 0.76 (0.30–1.92)	0.55	171.2	_
Recessive	T/T-A/T A/A	62 (100%) 0 (0%)	61 (98.4%) 1 (1.6%)	1.00 0.00 (0.00–0.00)	0.26	170.3	- 0.99 -
Overdominant	T/T-A/A A/T	49 (79%) 13 (21%)	51 (82.3%) 11 (17.7%)	1.00 0.67 (0.26–1.74)	0.41	170.9	
Log-additive	-	_	_	0.86 (0.36-2.05)	0.73	171.5	_
		TRE	M1 rs6910730				
Codominant	A/A A/G G/G	49 (79%) 13 (21%) 0 (0%)	48 (77.4%) 13 (21%) 1 (1.6%)	1.00 0.84 (0.34–2.10) 0.00 (0.00–0.00))	0.49	172.2	
Dominant	A/A A/G-G/G	49 (79%) 13 (21%)	48 (77.4%) 14 (22.6%)	1.00 0.91 (0.37–2.24)	0.83	171.5	_
Recessive	A/A-A/G G/G	62 (100%) 0 (0%)	61 (98.4%) 1 (1.6%)	1.00 0.00 (0.00–0.00)	0.26	170.3	- 0.99
Overdominant	A/A-G/G A/G	49 (79%) 13 (21%)	49 (79%) 13 (21%)	1.00 0.82 (0.33–2.05)	0.67	171.4	
Log-additive	_	_	_	1.00 (0.43-2.34)	1	171.6	_
		TRE	M1 rs1817537				
Codominant	C/C C/G G/G	16 (25.8%) 28 (45.2%) 18 (29%)	18 (29%) 33 (53.2%) 11 (17.7%)	1.00 1.13 (0.47–2.69) 0.66 (0.23–1.89)	0.52	172.3	
Dominant	C/C C/G-G/G	16 (25.8%) 46 (74.2%)	18 (29%) 44 (71%)	1.00 0.96 (0.42–2.18)	0.92	171.6	-
Recessive	C/C-C/G G/G	44 (71%) 18 (29%)	51 (82.3%) 11 (17.7%)	1.00 0.61 (0.25–1.47)	0.27	170.3	- 0.86
Overdominant	C/C-G/G C/G	34 (54.8%) 28 (45.2%)	29 (46.8%) 33 (53.2%)	1.00 1.36 (0.66–2.83)	0.41	170.9	-
Log-additive	_	_	_	0.82 (0.49–1.39)	0.47	171	_
		TRE	M1 rs9471535				
Codominant	T/T C/T C/C	49 (79%) 13 (21%) 0 (0%)	50 (80.7%) 11 (17.7%) 1 (1.6%)	1.00 0.69 (0.27–1.79) 0.00 (0.00–0.00)	0.39	171.7	0 99
							0.99

Model	Genotype	Without Severe Bioprosthetic Mitral Valve Calcification	With Severe Bioprosthetic Mitral Valve Calcification	OR (95% CI)	<i>p-</i> Value	AIC	HWI	
		TRE	M1 rs9471535					
Recessive	T/T-C/T C/C	62 (100%) 0 (0%)	61 (98.4%) 1 (1.6%)	1.00 0.00 (0.00–0.00)	0.26	170.3		
Overdominant	T/T-C/C C/T	49 (79%) 13 (21%)	51 (82.3%) 11 (17.7%)	1.00 0.67 (0.26–1.74)	0.41	170.9	0.99	
Log-additive	_	_	_	0.86 (0.36-2.05)	0.73	171.5	_	
		TRE	M1 rs7768162					
Codominant	G/G A/G A/A	26 (41.9%) 31 (50%) 5 (8.1%)	21 (33.9%) 33 (53.2%) 8 (12.9%)	1.00 1.35 (0.62–2.96) 1.88 (0.51–6.85)	0.57	172.4		
Dominant	G/G A/G-A/A	26 (41.9%) 36 (58.1%)	21 (33.9%) 41 (66.1%)	1.00 1.43 (0.67–3.04)	0.35	170.7	- - 0.25 -	
Recessive	G/G-A/G A/A	57 (91.9%) 5 (8.1%)	54 (87.1%) 8 (12.9%)	1.00 1.58 (0.47–5.29)	0.46	171		
Overdominant	G/G-A/A A/G	31 (50%) 31 (50%)	29 (46.8%) 33 (53.2%)	1.00 1.18 (0.57–2.45)	0.66	171.4		
Log-additive	—	_		1.36 (0.77–2.43)	0.29	170.4		
			1B rs16944					
Codominant	G/G G/A A/A	26 (41.9%) 31 (50%) 5 (8.1%)	25 (40.3%) 30 (48.4%) 7 (11.3%)	1.00 0.92 (0.42–1.99) 1.27 (0.33–4.79)	0.88	173.3	 0.42	
Dominant	G/G G/A-A/A	26 (41.9%) 36 (58.1%)	25 (40.3%) 37 (59.7%)	1.00 0.96 (0.46–2.04)	0.92	171.6		
Recessive	G/G-G/A A/A	57 (91.9%) 5 (8.1%)	55 (88.7%) 7 (11.3%)	1.00 1.33 (0.38–4.66)	0.65	171.4		
Overdominant	G/G-A/A G/A	31 (50%) 31 (50%)	32 (51.6%) 30 (48.4%)	1.00 0.88 (0.42–1.82)	0.72	171.4		
Log-additive	_	_	—	1.04 (0.58–1.86)	0.89	171.6		
			B rs1143634					
Codominant	G/G G/A A/A	30 (48.4%) 27 (43.5%) 5 (8.1%)	40 (64.5%) 17 (27.4%) 5 (8.1%)	1.00 0.48 (0.21–1.06) 0.63 (0.16–2.54)	0.18	170.2		
Dominant	G/G G/A-A/A	30 (48.4%) 32 (51.6%)	40 (64.5%) 22 (35.5%)	1.00 0.50 (0.24–1.07)	0.07	168.3	_	
Recessive	G/G-G/A A/A	57 (91.9%) 5 (8.1%)	57 (91.9%) 5 (8.1%)	1.00 0.83 (0.21–3.24)	0.79	171.5	- 0.48	
Overdominant	G/G-A/A G/A	35 (56.5%) 27 (43.5%)	45 (72.6%) 17 (27.4%)	1.00 0.51 (0.23–1.10)	0.084	168.6	_	
Log-additive	—	_	_	0.64 (0.36–1.15)	0.13	169.3		
		IL1F	9 rs17659543					
Codominant	C/C C/T T/T	49 (79%) 12 (19.4%) 1 (1.6%)	48 (78.7%) 13 (21.3%) 0 (0%)	1.00 1.03 (0.41–2.55) 0.00 (0.00–0.00)	0.65	172		
Dominant	C/C C/T-T/T	49 (79%) 13 (21%)	48 (78.7%) 13 (21.3%)	1.00 0.97 (0.40–2.37)	0.94	170.8		
Recessive	C/C-C/T T/T	61 (98.4%) 1 (1.6%)	61 (100%) 0 (0%)	1.00 0.00 (0.00–0.00)	0.35	170	- 0.99	
Overdominant	C/C-T/T C/T	50 (80.7%) 12 (19.4%)	48 (78.7%) 13 (21.3%)	1.00 1.04 (0.42–2.59)	0.93	170.8	_	
Log-additive	_			0.91 (0.39–2.13)	0.83	170.8		
			5 rs1554606	1.00				
Codominant	T/T G/T G/G	17 (27.4%) 30 (48.4%) 15 (24.2%)	13 (21%) 37 (59.7%) 12 (19.4%)	1.00 1.43 (0.58–3.52) 0.94 (0.32–2.82)	0.59	172.5	_	
Dominant	T/T G/T-G/G	17 (27.4%) 45 (72.6%)	13 (21%) 49 (79%)	1.00 1.27 (0.54–3.02)	0.58	171.3	0.47	
	T/T-G/T	47 (75.8%)	50 (80.7%)	1.00			-	

Model	Genotype	Without Severe Bioprosthetic Mitral Valve Calcification	With Severe Bioprosthetic Mitral Valve Calcification	OR (95% CI)	<i>p-</i> Value	AIC	HWE	
		ILe	5 rs1554606					
Overdominant	T/T-G/G G/T	32 (51.6%) 30 (48.4%)	25 (40.3%) 37 (59.7%)	1.00 1.47 (0.70–3.07)	0.3	170.5	0.47	
Log-additive	—	_	—	0.98 (0.57–1.69)	0.94	171.6		
		ILe	5 rs1800796					
Codominant	G/G C/G C/C	53 (85.5%) 8 (12.9%) 1 (1.6%)	49 (79%) 11 (17.7%) 2 (3.2%)	1.00 1.51 (0.54–4.24) 1.66 (0.14–20.27)	0.69	172.8		
Dominant	G/G C/G-C/C	53 (85.5%) 9 (14.5%)	49 (79%) 13 (21%)	1.00 1.53 (0.58–4.06)	0.39	170.8	_	
Recessive	G/G-C/G C/C	61 (98.4%) 1 (1.6%)	60 (96.8%) 2 (3.2%)	1.00 1.54 (0.13–18.69)	0.73	171.5	- 0.10	
Overdominant	G/G-C/C C/G	54 (87.1%) 8 (12.9%)	51 (82.3%) 11 (17.7%)	1.00 1.49 (0.53–4.17)	0.44	171	_	
Log-additive	—	_	—	1.42 (0.62–3.26)	0.4	170.9		
		ILe	5 rs2069827					
Codominant	G/G G/T T/T	48 (77.4%) 13 (21%) 1 (1.6%)	51 (82.3%) 10 (16.1%) 1 (1.6%)	1.00 0.66 (0.26–1.69) 0.87 (0.05–15.09)	0.68	172.8		
Dominant	G/G G/T-T/T	48 (77.4%) 14 (22.6%)	51 (82.3%) 11 (17.7%)	1.00 0.67 (0.27–1.68)	0.39	170.8	- - 0.63 -	
Recessive	G/G-G/T T/T	61 (98.4%) 1 (1.6%)	61 (98.4%) 1 (1.6%)	1.00 0.95 (0.06–16.33)	0.97	171.6		
Overdominant	G/G-T/T G/T	49 (79%) 13 (21%)	52 (83.9%) 10 (16.1%)	1.00 0.66 (0.26–1.69)	0.39	170.8		
Log-additive	_	—	—	0.73 (0.32–1.64)	0.44	171		
		IL6	R rs2228145					
Codominant	A/A C/A C/C	25 (40.3%) 29 (46.8%) 8 (12.9%)	28 (45.2%) 28 (45.2%) 6 (9.7%)	1.00 1.00 (0.46–2.18) 0.68 (0.20–2.34)	0.81	173.2		
Dominant	A/A C/A-C/C	25 (40.3%) 37 (59.7%)	28 (45.2%) 34 (54.8%)	1.00 0.93 (0.44–1.94)	0.84	171.5	_	
Recessive	A/A-C/A C/C	54 (87.1%) 8 (12.9%)	56 (90.3%) 6 (9.7%)	1.00 0.68 (0.21–2.20)	0.52	171.2	- 0.99 -	
Overdominant	A/A-C/C C/A	33 (53.2%) 29 (46.8%)	34 (54.8%) 28 (45.2%)	1.00 1.08 (0.52–2.27)	0.83	171.5	_	
Log-additive	_	_	_	0.88 (0.51-1.53)	0.65	171.4		
		IL6	R rs2229238					
Codominant	C/C C/T T/T	42 (67.7%) 14 (22.6%) 6 (9.7%)	35 (56.5%) 25 (40.3%) 2 (3.2%)	1.00 2.48 (1.07–5.73) 0.40 (0.07–2.25)	0.03	166.6		
Dominant	C/C C/T-T/T	42 (67.7%) 20 (32.3%)	35 (56.5%) 27 (43.5%)	1.00 1.83 (0.84–3.96)	0.12	169.2	- 0.20	
Recessive	C/C-C/T T/T	56 (90.3%) 6 (9.7%)	60 (96.8%) 2 (3.2%)	1.00 0.30 (0.05–1.59)	0.13	169.3	- 0.30 _	
Overdominant	C/C-T/T C/T	48 (77.4%) 14 (22.6%)	37 (59.7%) 25 (40.3%)	1.00 2.70 (1.18–6.16)	0.016	165.8	_	
Log-additive				1.21 (0.66–2.21)	0.54	171.2		
	C/C	20 (32.3%)	20 (32.3%)	1.00				
Codominant	C/T T/T	20 (32.378) 29 (46.8%) 13 (21%)	20 (32.3%) 30 (48.4%) 12 (19.4%)	1.05 (0.45–2.43) 0.92 (0.33–2.61)	0.97	173.5	_	
Dominant	C/C C/T-T/T	20 (32.3%) 42 (67.7%)	20 (32.3%) 42 (67.7%)	1.00 1.01 (0.46–2.22)	0.99	171.6	- 0.72	
Recessive	C/C-C/T T/T	49 (79%) 13 (21%)	50 (80.7%) 12 (19.4%)	1.00 0.90 (0.36–2.23)	0.82	171.5		
Overdominant	C/C-T/T C/T	33 (53.2%) 29 (46.8%)	32 (51.6%) 30 (48.4%)	1.00 1.08 (0.52–2.26)	0.84	171.5	_	
Log-additive	_	_	_	0.97(0.58 - 1.62)	0.9	171.6		

Model	Genotype	Without Severe Bioprosthetic Mitral Valve Calcification	With Severe Bioprosthetic Mitral Valve Calcification	OR (95% CI)	<i>p</i> -Value	AIC	HWE
		IL1	0 rs1800871				
Codominant	G/G A/G A/A	34 (54.8%) 24 (38.7%) 4 (6.5%)	31 (50%) 31 (50%) 0 (0%)	1.00 1.81 (0.83–3.95) 0.00 (0.00–0.00)	0.029	166.5	
Dominant	G/G A/G-A/A	34 (54.8%) 28 (45.2%)	31 (50%) 31 (50%)	1.00 1.55 (0.72–3.32)	0.26	170.3	_ 0.00
Recessive	G/G-A/G A/A	58 (93.5%) 4 (6.5%)	62 (100%) 0 (0%)	1.00 0.00 (0.00–0.00)	0.029	166.8	- 0.09
Overdominant	G/G-A/A A/G	38 (61.3%) 24 (38.7%)	31 (50%) 31 (50%)	1.00 2.02 (0.93–4.38)	0.07	168.3	_
Log-additive	_	_	—	1.15 (0.59–2.24)	0.68	171.4	
		IL1	0 rs1800872				
Codominant	G/G T/G T/T	34 (54.8%) 24 (38.7%) 4 (6.5%)	30 (49.2%) 31 (50.8%) 0 (0%)	1.00 1.84 (0.84–4.00) 0.00 (0.00–0.00)	0.028	165.7	
Dominant	G/G T/G-T/T	34 (54.8%) 28 (45.2%)	30 (49.2%) 31 (50.8%)	1.00 1.57 (0.73–3.36)	0.24	169.5	_
Recessive	G/G-T/G T/T	58 (93.5%) 4 (6.5%)	61 (100%) 0 (0%)	1.00 0.00 (0.00–0.00)	0.029	166.1	- 0.09
Overdominant	G/G-T/T T/G	38 (61.3%) 24 (38.7%)	30 (49.2%) 31 (50.8%)	1.00 2.05 (0.95–4.44)	0.065	167.4	_
Log-additive	—	—	—	1.17 (0.60–2.27)	0.65	170.6	
		IL1	0 rs1800896				
Codominant	T/T T/C C/C	17 (27.4%) 30 (48.4%) 15 (24.2%)	16 (25.8%) 34 (54.8%) 12 (19.4%)	1.00 1.41 (0.58–3.41) 0.79 (0.27–2.34)	0.46	172	
Dominant	T/T T/C-C/C	17 (27.4%) 45 (72.6%)	16 (25.8%) 46 (74.2%)	1.00 1.19 (0.52–2.74)	0.68	171.4	_
Recessive	T/T-T/C C/C	47 (75.8%) 15 (24.2%)	50 (80.7%) 12 (19.4%)	1.00 0.64 (0.26–1.58)	0.33	170.6	- 0.86
Overdominant	T/T-C/C T/C	32 (51.6%) 30 (48.4%)	28 (45.2%) 34 (54.8%)	1.00 1.56 (0.74–3.29)	0.24	170.2	
Log-additive	_	_	_	0.92 (0.54–1.56)	0.75	171.5	
		IL12	2B rs3212227				
Codominant	T/T G/T G/G	38 (61.3%) 21 (33.9%) 3 (4.8%)	36 (58.1%) 22 (35.5%) 4 (6.5%)	1.00 1.30 (0.59–2.85) 1.42 (0.28–7.32)	0.77	173	
Dominant	T/T G/T-G/G	38 (61.3%) 24 (38.7%)	36 (58.1%) 26 (41.9%)	1.00 1.32 (0.62–2.79)	0.47	171.1	_
Recessive	T/T-G/T G/G	59 (95.2%) 3 (4.8%)	58 (93.5%) 4 (6.5%)	1.00 1.29 (0.26–6.47)	0.75	171.5	- 0.80
Overdominant	T/T-G/G G/T	41 (66.1%) 21 (33.9%)	40 (64.5%) 22 (35.5%)	1.00 1.26 (0.58–2.73)	0.55	171.2	_
Log-additive	_	_	_	1.25 (0.67–2.31)	0.48	171.1	
		IL12	2RB rs375947				
Codominant	A/A A/G G/G	27 (43.5%) 26 (41.9%) 9 (14.5%)	26 (41.9%) 29 (46.8%) 7 (11.3%)	1.00 1.21 (0.56–2.66) 0.82 (0.25–2.67)	0.77	173.1	
Dominant	A/A A/G-G/G	27 (43.5%) 35 (56.5%)	26 (41.9%) 36 (58.1%)	1.00 1.11 (0.53–2.33)	0.77	171.5	- - 0.84 -
Recessive	A/A-A/G G/G	53 (85.5%) 9 (14.5%)	55 (88.7%) 7 (11.3%)	1.00 0.74 (0.25–2.26)	0.6	171.3	
Overdominant	A/A-G/G A/G	36 (58.1%) 26 (41.9%)	33 (53.2%) 29 (46.8%)	1.00 1.27 (0.61–2.65)	0.52	171.2	
Log-additive	_			0.99 (0.58–1.69)	0.96	171.6	
		TN	VF rs361525				
	G/G A/G	56 (90.3%) 6 (9.7%)	60 (96.8%) 2 (3.2%)	1.00 0.25 (0.04–1.41)	0.092	168.7	0.99

Model	Genotype	Without Severe Bioprosthetic Mitral Valve Calcification	With Severe Bioprosthetic Mitral Valve Calcification	OR (95% CI)	<i>p</i> -Value	AIC	HW
		TN	F rs1800629				
Codominant	G/G A/G A/A	48 (77.4%) 11 (17.7%) 3 (4.8%)	54 (87.1%) 7 (11.3%) 1 (1.6%)	1.00 0.60 (0.21–1.73) 0.31 (0.03–3.19)	0.39	171.7	
Dominant	G/G A/G-A/A	48 (77.4%) 14 (22.6%)	54 (87.1%) 8 (12.9%)	1.00 0.53 (0.20–1.42)	0.2	170	_
Recessive	G/G-A/G A/A	59 (95.2%) 3 (4.8%)	61 (98.4%) 1 (1.6%)	1.00 0.34 (0.03–3.42)	0.32	170.6	- 0.06
Overdominant	G/G-A/A A/G	51 (82.3%) 11 (17.7%)	55 (88.7%) 7 (11.3%)	1.00 0.62 (0.21–1.80)	0.38	170.8	_
Log-additive	—	_	_	0.58 (0.26–1.29)	0.17	169.7	
		TN	F rs1799964				
Codominant	T/T C/T C/C	41 (66.1%) 17 (27.4%) 4 (6.5%)	41 (66.1%) 18 (29%) 3 (4.8%)	1.00 0.95 (0.42–2.16) 0.65 (0.13–3.35)	0.87	173.3	
Dominant	T/T C/T-C/C	41 (66.1%) 21 (33.9%)	41 (66.1%) 21 (33.9%)	1.00 0.90 (0.41–1.94)	0.78	171.5	-
Recessive	T/T-C/T C/C	58 (93.5%) 4 (6.5%)	59 (95.2%) 3 (4.8%)	1.00 0.66 (0.13–3.33)	0.61	171.3	- 0.25
Overdominant	T/T-C/C C/T	45 (72.6%) 17 (27.4%)	44 (71%) 18 (29%)	1.00 0.99 (0.44–2.21)	0.97	171.6	-
Log-additive	_	_		0.88 (0.47–1.63)	0.68	171.4	
		CR	P rs3093077				
_	C/C A/C	55 (88.7%) 7 (11.3%)	56 (90.3%) 6 (9.7%)	1.00 1.11 (0.34–3.70)	0.86	171.5	0.99
		CR	P rs1130864				
Codominant	G/G A/G A/A	33 (53.2%) 24 (38.7%) 5 (8.1%)	22 (35.5%) 31 (50%) 9 (14.5%)	1.00 1.98 (0.90–4.34) 2.72 (0.77–9.59)	0.13	169.4	_
Dominant	G/G A/G-A/A	33 (53.2%) 29 (46.8%)	22 (35.5%) 40 (64.5%)	1.00 2.10 (1.00–4.45)	0.053	167.7	
Recessive	G/G-A/G A/A	57 (91.9%) 5 (8.1%)	53 (85.5%) 9 (14.5%)	1.00 1.93 (0.58–6.36)	0.27	170.4	- 0.99
Overdominant	G/G-A/A A/G	38 (61.3%) 24 (38.7%)	31 (50%) 31 (50%)	1.00 1.61 (0.77–3.38)	0.2	170	_
Log-additive	_	—	—	1.76 (1.00–3.09)	0.051	167.6	
		С	RP rs1205				
Codominant	C/C C/T T/T	19 (30.6%) 32 (51.6%) 11 (17.7%)	28 (45.2%) 27 (43.5%) 7 (11.3%)	1.00 0.42 (0.18–0.98) 0.41 (0.13–1.30)	0.09	168.8	
Dominant	C/C C/T-T/T	19 (30.6%) 43 (69.3%)	28 (45.2%) 34 (54.8%)	1.00 0.42 (0.19–0.93)	0.028	166.8	_
Recessive	C/C-C/T T/T	51 (82.3%) 11 (17.7%)	55 (88.7%) 7 (11.3%)	1.00 0.66 (0.23–1.87)	0.43	170.9	- 0.99
Overdominant	C/C-T/T C/T	30 (48.4%) 32 (51.6%)	35 (56.5%) 27 (43.5%)	1.00 0.55 (0.25–1.17)	0.12	169.1	_
Log-additive	_	_	_	0.58 (0.34–1.02)	0.052	167.8	
Codominant	C/C C/T T/T	APC 43 (71.7%) 16 (26.7%) 1 (1.7%)	0B rs1042031 42 (70%) 16 (26.7%) 2 (3.3%)	1.00 1.14 (0.48–2.67) 1.94 (0.15–24.67)	0.84	168.2	
Dominant	C/C C/T-T/T	43 (71.7%) 17 (28.3%)	42 (70%) 18 (30%)	1.00 1.19 (0.52–2.72)	0.68	166.3	_
Recessive	C/C-C/T T/T	59 (98.3%) 1 (1.7%)	58 (96.7%) 2 (3.3%)	1.00 1.89 (0.15–23.70)	0.62	166.3	- 0.99
Overdominant	C/C-T/T C/T	44 (73.3%) 16 (26.7%)	44 (73.3%) 16 (26.7%)	1.00 1.12 (0.48–2.62)	0.8	166.4	-
Log-additive	_	_	_	1.21 (0.58-2.51)	0.61	166.2	_

Model	Genotype	Without Severe Bioprosthetic Mitral Valve Calcification	With Severe Bioprosthetic Mitral Valve Calcification	OR (95% CI)	<i>p-</i> Value	AIC	HWE
		APC	DB rs6725189				
Codominant	G/G G/T T/T	41 (68.3%) 17 (28.3%) 2 (3.3%)	39 (65%) 18 (30%) 3 (5%)	1.00 1.25 (0.55–2.88) 1.53 (0.23–10.15)	0.81	168.1	
Dominant	G/G G/T-T/T	41 (68.3%) 19 (31.7%)	39 (65%) 21 (35%)	1.00 1.29 (0.58–2.84)	0.53	166.1	_
Recessive	G/G-G/T T/T	58 (96.7%) 2 (3.3%)	57 (95%) 3 (5%)	1.00 1.43 (0.22–9.29)	0.71	166.4	- 0.56
Overdominant	G/G-T/T G/T	43 (71.7%) 17 (28.3%)	42 (70%) 18 (30%)	1.00 1.22 (0.54–2.78)	0.63	166.3	_
Log-additive	_	_	—	1.25 (0.64–2.42)	0.51	166.1	
			POE rs7412				
—	C/C C/T	50 (80.7%) 12 (19.4%)	54 (87.1%) 8 (12.9%)	1.00 0.73 (0.27–2.00)	0.54	171.2	0.99
		AP	OE rs429358	· · ·			
—	T/T C/T	51 (82.3%) 11 (17.7%)	46 (74.2%) 16 (25.8%)	1.00 1.45 (0.59–3.57)	0.42	170.9	0.36
		LIP	C rs1800588				
Codominant	C/C C/T T/T	38 (61.3%) 22 (35.5%) 2 (3.2%)	37 (60.7%) 18 (29.5%) 6 (9.8%)	1.00 0.86 (0.39–1.92) 3.43 (0.62–19.08)	0.27	169.6	-
Dominant	C/C C/T-T/T	38 (61.3%) 24 (38.7%)	37 (60.7%) 24 (39.3%)	1.00 1.07 (0.50–2.26)	0.87	170.2	
Recessive	C/C-C/T T/T	60 (96.8%) 2 (3.2%)	55 (90.2%) 6 (9.8%)	1.00 3.61 (0.66–19.64)	0.11	167.7	- 0.44
Overdominant	C/C-T/T C/T	40 (64.5%) 22 (35.5%)	43 (70.5%) 18 (29.5%)	1.00 0.77 (0.35–1.69)	0.52	169.8	_
Log-additive		_		1.26 (0.69–2.30)	0.45	169.6	
_	A/A A/G	52 (83.9%) 10 (16.1%)	59 (96.7%) 2 (3.3%)	1.00 0.18 (0.04–0.91)	0.019	165.3	0.99
		NOTC	CH1 rs13290979				
Codominant	A/A A/G G/G	26 (41.9%) 28 (45.2%) 8 (12.9%)	20 (32.8%) 26 (42.6%) 15 (24.6%)	1.00 1.28 (0.56–2.93) 3.15 (1.05–9.46)	0.1	168.3	
Dominant	A/A A/G-G/G	26 (41.9%) 36 (58.1%)	20 (32.8%) 41 (67.2%)	1.00 1.65 (0.76–3.57)	0.2	169.2	_
Recessive	A/A-A/G G/G	54 (87.1%) 8 (12.9%)	46 (75.4%) 15 (24.6%)	1.00 2.75 (1.02–7.43)	0.04	166.6	- 0.35
Overdominant	A/A-G/G A/G	34 (54.8%) 28 (45.2%)	35 (57.4%) 26 (42.6%)	1.00 0.87 (0.42–1.82)	0.72	170.7	_
Log-additive	_	_	_	1.68 (0.99–2.85)	0.05	167	
			DR rs731236				
Codominant	A/A A/G G/G	32 (51.6%) 26 (41.9%) 4 (6.5%)	29 (47.5%) 24 (39.3%) 8 (13.1%)	1.00 1.04 (0.48–2.27) 2.07 (0.55–7.81)	0.54	171.6	
Dominant	A/A A/G-G/G	32 (51.6%) 30 (48.4%)	29 (47.5%) 32 (52.5%)	1.00 1.19 (0.57–2.48)	0.64	170.6	_
Recessive	A/A-A/G G/G	58 (93.5%) 4 (6.5%)	53 (86.9%) 8 (13.1%)	1.00 2.03 (0.56–7.32)	0.27	169.6	- 0.67
Overdominant	A/A-G/G A/G	36 (58.1%) 26 (41.9%)	37 (60.7%) 24 (39.3%)	1.00 0.93 (0.44–1.96)	0.85	170.8	_
Log-additive	_			1.27 (0.73–2.22)	0.39	170.1	
		VD	R rs2228570				
Codominant	G/G A/G A/A	16 (25.8%) 36 (58.1%) 10 (16.1%)	19 (31.1%) 29 (47.5%) 13 (21.3%)	1.00 0.70 (0.30–1.64) 1.02 (0.34–3.07)	0.62	171.9	0.58

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Model	Genotype	Without Severe Bioprosthetic Mitral Valve Calcification	With Severe Bioprosthetic Mitral Valve Calcification	OR (95% CI)	<i>p-</i> Value	AIC	HWE
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$			VD	R rs2228570				
$\begin{array}{c cccccc} Recessive A/A & 10 (16.1\%) & 13 (21.3\%) & 1.29 (0.59-3.3) & 0.59 & 170.6 \\ \hline Overdominant A/C & 26 (41.9\%) & 32 (52.5\%) & 1.00 \\ A/G & 36 (83.1\%) & 29 (47.5\%) & 0.09 (0.33-1.44) & 0.33 & 169.9 \\ \hline Log-additive & - & - & - & 0.07 (0.57-1.67) & 0.91 & 170.8 \\ \hline CASR rs1042636 & & & & & & & & & & & & & & & & & & $	Dominant	,	· /	· ,		0.53	170.4	
$\begin{array}{c c} Overdominant \\ A/G \\ log-additive \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	Recessive		()	· ,		0.59	170.6	- 0.58
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Overdominant		· /	· ,		0.33	169.9	_
	Log-additive	_			0.97 (0.57–1.67)	0.91	170.8	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-		CAS	SR rs1042636				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Codominant	A/G	14 (22.6%)	8 (13.1%)	0.51 (0.19–1.38)	0.25	170.1	_
Recessive G/G 1 (1.6%) 3 (4.9%) 3.04 (0.29-32.42) 0.33 169'9 Overdominant A/AC/G 48 (77.4%) 53 (86.9%) 1.00 0.50 (0.19-1.35) 0.16 168.9 Log-additive — — 0.87 (0.42-1.80) 0.7 170.7 Codominant A/A 49 (79%) 52 (85.2%) 1.00 0.56 170.5 Codominant A/A 49 (79%) 52 (85.2%) 1.00 0.56 170.5 Dominant A/A 49 (79%) 52 (85.2%) 1.00 0.66 170.5 Recessive A/A-A/C 61 (98.4%) 61 (100%) 0.00 (0.00-0.00) 0.35 170 Overdominant A/AC 50 (80.7%) 52 (85.2%) 1.00 0.68 170.7 Log-additive — — — 0.72 (0.29-1.80) 0.48 170.3 Overdominant C/G 15 (24.2%) 12 (19.7%) 1.10 0.68 172.5 Codominant C/G 15 (24.2%) 12 (19.7%)<	Dominant		()	. ,		0.38	170.1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Recessive		()	. ,		0.33	169.9	- 0.08
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Overdominant		· /	(/		0.16	168.9	_
$ \begin{array}{c c} Codominant & A/A & 49 (79\%) & 52 (85.2\%) & 1.00 \\ A/C & 12 (19.4\%) & 9 (14.8\%) & 0.80 (0.30-2.12) \\ C/C & 11 (.5\%) & 0 (0\%) & 0.00 (0.00-0.00) & 0.59 & 171.8 \\ \hline \\ Dominant & A/A & 49 (79\%) & 52 (85.2\%) & 1.00 \\ A/C-C/C & 13 (21\%) & 9 (14.8\%) & 0.75 (0.29-1.97) & 0.56 & 170.5 \\ \hline \\ Recessive & A/A-A/C & 16 (98.4\%) & 61 (100\%) & 1.00 \\ C/C & 11 (1.6\%) & 0 (0\%) & 0.00 (0.00-0.00) & 0.35 & 170 \\ \hline \\ Overdominant & A/C & 12 (19.4\%) & 52 (85.2\%) & 1.00 \\ A/C & 12 (19.4\%) & 9 (14.8\%) & 0.81 (0.31-2.16) & 0.68 & 170.7 \\ \hline \\ Log-additive & - & - & - & 0.72 (0.29-1.80) & 0.48 & 170.3 \\ \hline \\ Codominant & C/G & 35 (65.5\%) & 37 (60.7\%) & 1.29 (0.51-3.27) & 0.85 & 172.5 \\ C/C & 12 (19.4\%) & 12 (19.7\%) & 1.10 & 0.65 & 172.5 \\ \hline \\ Codominant & C/G & 35 (65.5\%) & 37 (60.7\%) & 1.29 (0.51-3.27) & 0.85 & 172.5 \\ \hline \\ Codominant & C/G & 50 (80.7\%) & 49 (80.3\%) & 1.00 & 0.62 & 170.6 \\ \hline \\ Recessive & C/C & 15 (24.2\%) & 12 (19.7\%) & 1.00 & 0.62 & 170.6 \\ \hline \\ Recessive & C/C & 15 (24.2\%) & 12 (19.7\%) & 1.00 & 0.68 & 170.8 \\ \hline \\ C/G & 35 (56.5\%) & 37 (60.7\%) & 1.00 & 0.68 & 170.8 \\ \hline \\ Overdominant & C/G & 50 (80.7\%) & 49 (80.3\%) & 1.00 & 0.62 & 170.6 \\ \hline \\ Log-additive & - & - & - & 1.07 (0.60-1.91) & 0.82 & 170.8 \\ \hline \\ Codominant & C/G & 35 (56.5\%) & 37 (60.7\%) & 1.00 & 0.6 & 170.6 \\ \hline \\ Log-additive & - & - & - & 1.07 (0.60-1.91) & 0.82 & 170.8 \\ \hline \\ Ccdominant & C/T & 19 (30.6\%) & 14 (22.9\%) & 0.66 (0.30-1.61) & 0.39 & 171 \\ \hline \\ Codominant & C/T & 19 (30.6\%) & 14 (22.9\%) & 0.60 (0.30-1.61) & 0.39 & 171 \\ \hline \\ Codominant & T/T & 58 (93.5\%) & 60 (98.4\%) & 1.00 & 0.28 & 169.7 \\ \hline \\ Cverdominant & T/T-C/T & 58 (93.5\%) & 60 (98.4\%) & 1.00 & 0.28 & 169.7 \\ \hline \\ Cverdominant & T/T-C/T & 43 (69.3\%) & 47 (77\%) & 1.00 & 0.48 & 170.3 \\ \hline \\ Codominant & T/T-C/T & 49 (9.03\%) & 14 (22.9\%) & 0.74 (0.32-1.70) & 0.48 & 170.3 \\ \hline \\ Codominant & T/T-C/T & 49 (6.93\%) & 47 (77\%) & 1.00 & 0.64 & 170.3 \\ \hline \\ Codominant & A/A & 32 (51.6\%) & 37 (60.7\%) & 1.00 & 0.64 & 0.29-1.39 & 0.48 & 171.4 \\ \hline \\ Codominant & A/A & 32 (51.6\%) & 37 (60.7\%) & 1.00 &$	Log-additive	—		—	0.87 (0.42–1.80)	0.7	170.7	_
$\begin{array}{c ccccc} Codominant & A/C & 12 (19.4\%) & 9 (14.8\%) & 0.80 (0.30-2.12) & 0.59 & 171.8 \\ \hline A/A & 49 (79\%) & 52 (85.2\%) & 1.00 \\ A/C-C/C & 13 (21\%) & 9 (14.8\%) & 0.75 (0.29-1.97) & 0.56 & 170.5 \\ \hline Recessive & A/A-A/C & 61 (98.4\%) & 61 (100\%) & 1.00 \\ C/C & 1 (1.6\%) & 0 (0\%) & 0.00 (0.00-0.00) & 0.35 & 170 \\ \hline Overdominant & A/A-C/C & 50 (80.7\%) & 52 (85.2\%) & 1.00 \\ A/C & 12 (19.4\%) & 9 (14.8\%) & 0.81 (0.31-2.16) & 0.68 & 170.7 \\ \hline A/C & 12 (19.4\%) & 9 (14.8\%) & 0.81 (0.31-2.16) & 0.68 & 170.7 \\ \hline Overdominant & A/A & C/C & 35 (56.5\%) & 37 (60.7\%) & 1.29 (0.51-3.27) & 0.85 & 172.5 \\ \hline Codominant & C/G & 15 (24.2\%) & 12 (19.7\%) & 1.00 \\ C/G & 15 (24.2\%) & 12 (19.7\%) & 1.00 \\ C/G & 15 (24.2\%) & 12 (19.7\%) & 1.00 \\ C/G & 15 (24.2\%) & 12 (19.7\%) & 1.00 \\ C/G & 15 (24.2\%) & 12 (19.7\%) & 1.00 \\ C/G & 15 (24.2\%) & 12 (19.7\%) & 1.00 \\ C/G & 15 (24.2\%) & 12 (19.7\%) & 1.00 \\ C/G & 15 (24.2\%) & 12 (19.7\%) & 1.00 \\ C/G & 15 (24.2\%) & 12 (19.7\%) & 1.00 \\ C/G & 15 (56.5\%) & 37 (60.7\%) & 1.22 (0.51-3.08) & 0.62 & 170.6 \\ \hline Recessive & C/C & 12 (19.4\%) & 12 (19.7\%) & 0.30 (3.7-2.37) & 0.88 & 170.8 \\ \hline Overdominant & C/G & 50 (80.7\%) & 49 (80.3\%) & 1.00 \\ C/G & 35 (56.5\%) & 37 (60.7\%) & 1.22 (0.58-2.57) & 0.6 & 170.6 \\ \hline Overdominant & C/G & 35 (56.5\%) & 37 (60.7\%) & 1.20 \\ \hline Overdominant & C/G & 15 (24.2\%) & 16 (07.5\%) & 1.00 \\ C/G & 15 (56.5\%) & 11 (16.7\%) & 0.00 \\ C/G & 15 (56.5\%) & 11 (16.7\%) & 0.00 \\ C/G & 10 (10.7\%) & 1.00 \\ C/G & 10 (10.7\%) & 1.00 \\ C/G & 10 (10.7\%) & 1.00 \\ C/T & 19 (30.6\%) & 14 (22.9\%) & 0.69 (0.30-1.61) & 0.39 & 171 \\ \hline Codominant & C/T & 19 (30.6\%) & 14 (22.9\%) & 0.63 (0.28-1.41) & 0.26 \\ Recessive & T/T & 99 (62.9\%) & 46 (75.4\%) & 1.00 \\ C/T & 4 (6.5\%) & 1 (1.6\%) & 0.32 (0.03-3.08) & 0.28 & 169.7 \\ \hline Overdominant & C/T & 4 (6.5\%) & 1 (16.\%) & 0.30 (0.33-1.46) & 0.48 & 170.3 \\ \hline Dominant & T/T & C/C & 4 (6.5\%) & 1 (16.\%) & 0.30 (0.32-1.60) & 0.48 & 170.3 \\ \hline Dominant & C/G & 3 (4.8\%) & 4 (6.6\%) & 1.19 (0.24-5.98) & 0.48 & 171.4 \\ \hline Dominant & A/A & 32 (51.6\%) & 37 (60.7\%) & 1.00 \\ \hline Overdominant & $			OP	G rs3134069				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Codominant	A/C	12 (19.4%)	9 (14.8%)	0.80 (0.30-2.12)	0.59	171.8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dominant		()	. ,		0.56	170.5	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Recessive		()	· · ·		0.35	170	- 0.99
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Overdominant		()	. ,		0.68	170.7	_
$\begin{array}{c ccccc} Codominant & C/G & 15 (24.2\%) & 12 (19.7\%) & 1.00 \\ C/G & 35 (56.5\%) & 37 (60.7\%) & 1.29 (0.51-3.27) \\ C/C & 12 (19.4\%) & 12 (19.7\%) & 1.13 (0.35-3.61) & 0.85 & 172.5 \\ \hline \\ \hline \\ Dominant & C/G-C/C & 15 (24.2\%) & 12 (19.7\%) & 1.00 \\ C/G-C/C & 47 (75.8\%) & 49 (80.3\%) & 1.25 (0.51-3.08) & 0.62 & 170.6 \\ \hline \\ \hline \\ Recessive & C/G & 50 (80.7\%) & 49 (80.3\%) & 1.00 \\ C/C & 12 (19.4\%) & 12 (19.7\%) & 0.93 (0.37-2.37) & 0.88 & 170.8 \\ \hline \\ \hline \\ Overdominant & C/G & 35 (56.5\%) & 37 (60.7\%) & 1.22 (0.58-2.57) & 0.6 & 170.6 \\ \hline \\ Log-additive & - & - & - & 1.07 (0.60-1.91) & 0.82 & 170.8 \\ \hline \\ \hline \\ Codominant & C/T & 19 (30.6\%) & 14 (22.9\%) & 0.69 (0.30-1.61) & 0.39 & 171 \\ C/C & 4 (6.5\%) & 1 (1.6\%) & 0.29 (0.03-2.80) & 0.61 \\ \hline \\ \hline \\ Recessive & T/T & 39 (62.9\%) & 46 (75.4\%) & 1.00 & 0.26 & 169.6 \\ \hline \\ Recessive & C/C & 4 (6.5\%) & 1 (1.6\%) & 0.22 (0.03-3.08) & 0.28 & 169.7 \\ \hline \\ Recessive & C/C & 4 (6.5\%) & 1 (1.6\%) & 0.32 (0.03-3.08) & 0.28 & 169.7 \\ \hline \\ \hline \\ Recessive & C/C & 4 (6.5\%) & 1 (1.6\%) & 0.32 (0.03-3.08) & 0.28 & 169.7 \\ \hline \\ \hline \\ Recessive & T/T-C/T & 58 (93.5\%) & 60 (98.4\%) & 1.00 & 0.28 & 169.7 \\ \hline \\ \hline \\ Recessive & C/C & 4 (6.5\%) & 1 (1.6\%) & 0.32 (0.03-3.08) & 0.28 & 169.7 \\ \hline \\ \hline \\ \hline \\ Recessive & C/C & 4 (6.5\%) & 1 (1.6\%) & 0.32 (0.03-3.08) & 0.28 & 169.7 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ Recessive & T/T-C/C & 43 (69.3\%) & 47 (77\%) & 1.00 & 0.48 & 170.3 \\ \hline \\ $	Log-additive	_		-	0.72 (0.29–1.80)	0.48	170.3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C/C			1.00			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Codominant	C/G	35 (56.5%)	37 (60.7%)	1.29 (0.51–3.27)	0.85	172.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dominant		()	. ,		0.62	170.6	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Recessive	616				0.88	170.8	- 0.07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Overdominant					0.6	170.6	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Log-additive	—	—	—	1.07 (0.60–1.91)	0.82	170.8	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			OP	G rs3102735				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Codominant	C/T	19 (30.6%)	14 (22.9%)	0.69 (0.30-1.61)	0.39	171	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dominant			. ,		0.26	169.6	_
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Recessive	T/T-C/T	()	. ,		0.28	169.7	- 0.53
CALCR rs1801197 Codominant A/A 32 (51.6%) 37 (60.7%) 1.00 A/G 27 (43.5%) 20 (32.8%) 0.64 (0.29–1.39) 0.48 171.4 G/G 3 (4.8%) 4 (6.6%) 1.19 (0.24–5.98) 0.48 171.4 Dominant A/A 32 (51.6%) 37 (60.7%) 1.00 0.34 169.9	Overdominant	T/T-C/C	· /	· · ·		0.48	170.3	_
$ \begin{array}{c ccccc} A/A & 32 (51.6\%) & 37 (60.7\%) & 1.00 \\ A/G & 27 (43.5\%) & 20 (32.8\%) & 0.64 (0.29-1.39) \\ G/G & 3 (4.8\%) & 4 (6.6\%) & 1.19 (0.24-5.98) \end{array} & 171.4 \\ \hline \\ \hline \\ Dominant & A/A & 32 (51.6\%) & 37 (60.7\%) & 1.00 \\ A/G-G/G & 30 (48.4\%) & 24 (39.3\%) & 0.69 (0.33-1.46) \end{array} & 0.34 169.9 \end{array} $	Log-additive	_	—	_	0.63 (0.32–1.26)	0.19	169.1	_
CodominantA/G G/G27 (43.5%) 3 (4.8%)20 (32.8%) 4 (6.6%)0.64 (0.29-1.39) 1.19 (0.24-5.98)0.48171.4DominantA/A A/G-G/G32 (51.6%) 30 (48.4%)37 (60.7%) 24 (39.3%)1.00 0.69 (0.33-1.46)0.34169.9			CAL	CR rs1801197				
Dominant A/G-G/G 30 (48.4%) 24 (39.3%) 0.69 (0.33–1.46) 0.34 169.9	Codominant	A/G	27 (43.5%)	20 (32.8%)	0.64 (0.29–1.39)	0.48	171.4	
	Dominant		()	. ,		0.34	169.9	0.99
Recessive $A/A-A/G$ 59 (95.2%) 57 (93.4%) 1.00 0.65 170.6 G/G 3 (4.8%) 4 (6.6%) 1.43 (0.29-6.99) 0.65 170.6	Recessive	A/A-A/G G/G	59 (95.2%) 3 (4.8%)	57 (93.4%) 4 (6.6%)	1.00 1.43 (0.29–6.99)	0.65	170.6	_

Model	Genotype	Without Severe Bioprosthetic Mitral Valve Calcification	With Severe Bioprosthetic Mitral Valve Calcification	OR (95% CI)	<i>p</i> -Value	AIC	HWE	
		CAL	CR rs1801197					
Overdominant	A/A-G/G A/G	35 (56.5%) 27 (43.5%)	41 (67.2%) 20 (32.8%)	1.00 0.63 (0.29–1.35)	0.23	169.4	0.99	
Log-additive	_	_	_	0.82 (0.45-1.52)	0.54	170.5	_	
		F2	2 rs1799963					
_	G/G A/G	59 (98.3%) 1 (1.7%)	58 (98.3%) 1 (1.7%)	1.00 0.64 (0.04–11.58)	0.77	164.3	0.99	
		-	F5 rs6025					
_	C/C C/T	55 (91.7%) 5 (8.3%)	57 (96.6%) 2 (3.4%)	1.00 0.31 (0.05–1.84)	0.18	162.5	0.99	
			F5 rs6027	, , , , , , , , , , , , , , , , , , ,				
	T/T	47 (78.3%)	46 (78%)	1.00				
Codominant	C/T	11 (18.3%)	11 (18.6%)	0.86 (0.33-2.29)	0.92	166.2		
	C/C	2 (3.3%)	2 (3.4%)	1.33 (0.17–10.31)			_	
Dominant	T/T	47 (78.3%)	46 (78%)	1.00	0.87	164.3		
	C/T-C/C	13 (21.7%)	13 (22%)	0.92 (0.37–2.29)			- 0.09	
Recessive	T/T-C/T C/C	58 (96.7%) 2 (3.3%)	57 (96.6%) 2 (3.4%)	1.00 1.36 (0.18–10.49)	0.77	164.3	_	
Overdominant	T/T-C/C C/T	49 (81.7%) 11 (18.3%)	48 (81.4%) 11 (18.6%)	1.00 0.85 (0.32–2.25)	0.75	164.3	_	
Log-additive		_	_	0.99 (0.47-2.07)	0.97	164.4		
			F7 rs6046					
	G/G	52 (86.7%)	42 (71.2%)	1.00				
Codominant	A/G	7 (11.7%)	15 (25.4%)	2.55 (0.91–7.16)	0.15	162.5		
	A/A	1 (1.7%)	2 (3.4%)	2.94 (0.25–35.06)			_	
Dominant	G/G A/G-A/A	52 (86.7%) 8 (13.3%)	42 (71.2%) 17 (28.8%)	1.00 2.59 (0.98–6.90)	0.052	160.5		
Recessive	G/G-A/G A/A	59 (98.3%) 1 (1.7%)	57 (96.6%) 2 (3.4%)	1.00 2.48 (0.21–29.33)	0.46	163.8	- 0.20	
Orrenteminent	G/G-A/A	53 (88.3%)	44 (74.6%)	1.00	0.09	161.2	_	
Overdominant	A/G	7 (11.7%)	15 (25.4%)	2.45 (0.88-6.87)	0.08	161.3	_	
Log-additive			_	2.19 (0.94–5.11)	0.058	160.8		
		F1	3A1 rs5985					
	C/C	39 (65%)	37 (62.7%)	1.00	0.55			
Codominant	A/C A/A	15 (25%) 6 (10%)	19 (32.2%) 3 (5.1%)	1.74 (0.72–4.21) 0.66 (0.15–2.91)	0.33	164.1		
	C/C	39 (65%)	37 (62.7%)	1.00			_	
Dominant	A/C-A/A	21 (35%)	22 (37.3%)	1.41 (0.63–3.14)	0.4	163.7		
Recessive	C/C-A/C A/A	54 (90%) 6 (10%)	56 (94.9%) 3 (5.1%)	1.00 0.55 (0.13–2.37)	0.41	163.7	- 0.10	
Overdominant	C/C-A/A A/C	45 (75%) 15 (25%)	40 (67.8%) 19 (32.2%)	1.00 1.83 (0.77–4.36)	0.17	162.5	_	
Log-additive				1.09 (0.60–1.98)	0.78	164.3	_	
		IT	GB3 rs5918	1.05 (0.00 1.50)	0.70	101.0		
	T/T	45 (75%)	42 (71.2%)	1.00				
Codominant	C/T C/C	12 (20%) 3 (5%)	42 (71.27%) 14 (23.7%) 3 (5.1%)	1.11 (0.45–2.77) 0.83 (0.15–4.65)	0.95	166.3		
Dominant	T/T C/T-C/C	45 (75%) 15 (25%)	42 (71.2%) 17 (28.8%)	1.00 1.05 (0.45–2.46)	0.9	164.4	-	
	Т/Т-С/Т	57 (95%)	56 (94.9%)	1.00			- 0.08	
Recessive	C/C	3 (5%)	3 (5.1%)	0.81 (0.15-4.46)	0.81	164.3	_	
Overdominant	T/T-C/C C/T	48 (80%) 12 (20%)	45 (76.3%) 14 (23.7%)	1.00 1.13 (0.46–2.79)	0.8	164.3	_	
Log-additive	_	_	_	1.00 (0.51-1.95)	1	164.4		

Table 1. Cont.

Here and below: TLR is for Toll-like receptor, TREM is for triggering receptor expressed on myeloid cells, IL is for interleukin, TNF is for tumor necrosis factor, CRP is for C-reactive protein, APO is for apolipoprotein, LIPC is for hepatic lipase, LPA is for lipoprotein (a), VDR is for vitamin D receptor, CASR is for calcium-sensing receptor, OPG is for osteoprotegerin, CALCR is for calcitonin receptor, ITGB is for integrin beta, OR is for odds ratio, CI is for confidence interval, AIC is for Akaike information criterion, and HWE is for Hardy–Weinberg equilibrium.

The C allele of the rs1800796 polymorphism within the *TLR6* gene, the T allele of the rs1205 polymorphism within the *CRP* gene, and the G allele of the rs10455872 polymorphism within the *LPA* gene were associated with decreased risk of severe bioprosthetic mitral valve calcification. In contrast, the A allele of the rs5743810 polymorphism within the *TLR6* gene, the C/T genotype of the rs2229238 polymorphism within the *IL6R* gene, the A/G genotype of the rs1800871 polymorphism and the T/G genotype of the rs1800872 polymorphism within the *IL10* gene, and the G/G genotype of the rs12200070 polymorphism within the *NOTCH1* gene were associated with interacted risk of severe

rs13290979 polymorphism within the *NOTCH1* gene were associated with increased risk of severe bioprosthetic mitral valve calcification. To perform an additional quality control step, we tested six non-relevant SNPs within the genes encoding coagulation factors and integrin beta 3, a protein responsible for platelet aggregation. Expectedly, we did not find any significant associations with severe bioprosthetic mitral valve calcification.

We then carried out a stepwise logistic regression to reveal independent predictive markers of severe bioprosthetic mitral valve calcification. Out of eight markers revealed by genetic association analysis, only three remained significant (Table 2).

	Clinical Markers
Gender	Male gender OR = 2.80 (95% CI = 1.23–6.38)
Age	No statistically significant association
Coronary artery disease	No statistically significant association
Peripheral artery disease	No statistically significant association
Arterial hypertension	No statistically significant association
Diabetes mellitus	No statistically significant association
	Genomic Markers
rs3775073 (TLR6)	Carriers of T/T genotype: OR = 3.33 (95% CI = 1.14–9.75)
rs2229238 (IL6R)	Carriers of C/T genotype: OR = 3.70 (95% CI = 1.48–9.22
rs10455872 (LPA)	Carriers of A/A genotype: OR = 5.67 (95% CI = 1.19–27.09
rs5743810 (TLR6)	No statistically significant association
rs1800871 (IL10)	No statistically significant association
rs1800872 (IL10)	No statistically significant association
rs1205 (CRP)	No statistically significant association
rs13290979 (NOTCH1)	No statistically significant association
	General Evaluation
Sensitivity	59.68% (37 true; 25 false-negatives)
Specificity	74.19% (46 true; 16 false-positives)
Percent of cases correctly classified	66.94%
Area under the ROC curve	0.73 (95% CI = 0.64–0.81)
Standard error	0.045

Table 2. Brief description of the model predicting the risk of severe bioprosthetic mitral valve calcification after mitral valve replacement surgery, calculated by stepwise logistic regression.

Here and below: ROC is for receiver operating characteristic.

A final model for prediction of severe bioprosthetic mitral valve calcification included male gender, the T/T genotype of the rs3775073 polymorphism within the *TLR6* gene, the C/T genotype of the rs2229238 polymorphism within the *IL6R* gene, and the A/A genotype of the rs10455872 polymorphism within the *LPA* gene. The area under the ROC curve of 0.73 demonstrated the fair predictive value of the model.

3. Discussion

Previous studies vaguely uncovered the genetic susceptibility to mitral annular calcification. Novaro et al. [10] and Tangri et al. [11] did not detect significant associations between polymorphisms within *apoE* (gene encoding apolipoprotein E), *Klotho*, β -*Klotho*, and *FGF*-23 (genes encoding proteins constituting one of the calcium phosphate homeostasis pathways) genes and mitral annular calcification. Davutoglu and Nacak [12] reported that the I allele of the rs4340 polymorphism within the *ACE* gene (encoding angiotensin-converting enzyme) correlated with a higher risk of mitral annular calcification. Moreover, a study by Thanassoulis et al. [13] revealed two *IL1F9* (gene encoding IL- 36γ /IL-1F9 protein) gene polymorphisms, rs17659543 and rs13415097, being significantly associated with higher risk of mitral annular calcification.

However, there are no published data on genetic susceptibility to bioprosthetic mitral valve calcification. In addition, there is no any model for the prediction of bioprosthetic mitral valve calcification. Here we identified the T/T genotype of the rs3775073 polymorphism within the *TLR6* gene, the C/T genotype of the rs2229238 polymorphism within the *IL6R* gene, and the A/A genotype of the rs10455872 polymorphism within the *LPA* gene as the independent predictive markers of severe bioprosthetic mitral valve calcification. Moreover, we developed a predictive model with the fair discriminative power. Nevertheless, area under the receiver operating characteristic (ROC) curve of 0.73 indicates a number of other relevant predictive markers to be discovered.

A previous study by our research group found that the C/T genotype of the rs2229238 polymorphism within the *IL6R* gene is significantly associated with a higher IL-6 plasma level compared to the C/C and T/T genotypes [14]. It is worth noting that IL-6 is associated with heart valve calcification in general and with mitral annular calcification in particular [15,16]. Therefore, we hypothesize that the C/T genotype of the rs2229238 polymorphism within the *IL6R* gene may increase IL-6 plasma level and may thus promote bioprosthetic mitral valve calcification.

Our study had a considerable shortcoming: we recruited a relatively small sample due to a limited number of mitral valve replacements. However, we tested six irrelevant SNPs for the occasional associations, expectedly with a negative result. This approach was used to increase statistical confidence when using a small sample size.

Our findings may have clinical applications. A genomics-based model for the prediction of severe bioprosthetic mitral valve calcification can be used in choosing between mechanical and bioprosthetic mitral valves for mitral valve replacement surgery. For carriers of the high risk genotypes, mechanical heart valves which are resistant to calcification may be an appropriate option (reviewed by Bre et al. [17]). Further investigations on larger samples are necessary to confirm our results.

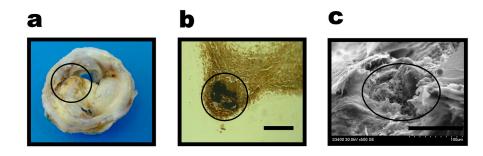
4. Materials and Methods

4.1. Population

Inclusion criteria were: (1) living in Kemerovo Region for ≥ 2 generations; (2) Russian ethnicity; (3) mitral valve replacement surgery due to mitral valve disease; and (4) written informed consent. Exclusion criteria were: (1) belonging to the immigrant or aboriginal populations; (2) previous cancer diagnosis; (3) concomitant mental disorders and/or autoimmune diseases; and (4) refusal to sign a written informed consent.

We recruited 140 patients admitted to our Research Institute who underwent mitral valve replacement surgery due to mitral valve disease in 2006–2007. After exclusion of 16 patients due to the above-mentioned criteria, the study group finally included 124 patients (Table 3).

Table 3. Clinical features of the particular	ients who underwent mitral	valve replacement surgery.
--	----------------------------	----------------------------


Feature	Value, <i>n</i> (%)	
Male gender	50 (40.32%)	
Age ≥ 50 years	65 (52.42%)	
Mitral stenosis and/or regurgitation with New York Heart Association functional class III-IV symptoms	54 (43.55%)	
Coronary artery disease	14 (11.29%)	
Peripheral artery disease	6 (4.84%)	
Arterial hypertension	38 (30.64%)	
Diabetes mellitus	8 (6.45%)	
Severe bioprosthetic mitral valve calcification within 8 years post-implantation	62 (50.00%)	

Half of them (n = 62) had severe bioprosthetic mitral valve calcification within 8 years post-implantation and therefore represented a case group; remaining subjects (n = 62) without severe bioprosthetic mitral valve calcification were considered as the controls (Table 4). The local ethical committee approved the study protocol. All the participants provided written informed consent after the study was fully explained.

Feature	Without Severe Bioprosthetic Mitral Valve Calcification	With Severe Bioprosthetic Mitral Valve Calcification	Total	p Value
	Bas	ic characteristics		
Sample size Mean age	62 (50.00%) 50.60 (48.12–53.08)	62 (50.00%) 47.81 (45.68–49.94)	124 (100.00%) 49.20 (47.57–50.83)	- 0.09
Standard deviation of mean age	9.76	8.39	9.17	- 0.07
Male gender Female gender	19 (30.64%) 43 (69.36%)	31 (50.00%) 31 (50.00%)	50 (40.32%) 74 (59.68%)	0.03
	Echocardi	ography characteristics		
Left atrial diameter, cm	6.70 (6.43–7.01)	5.51 (5.22-5.69)	6.10 (5.82-6.35)	0.02
Left ventricular end-diastolic diameter, cm	5.42 (5.23–5.56)	5.37 (5.17–5.50)	5.39 (5.20–5.53)	0.81
Left ventricular end-systolic diameter, cm	3.23 (3.05–3.39)	3.41 (3.26–3.51)	3.32 (3.15–3.45)	0.36
Left ventricular end-diastolic volume, cm ³	139.03 (136.12–143.15)	136.56 (134.01–139.76)	137.79 (135.06–141.45)	0.82
Left ventricular end-systolic volume, cm ³	40.23 (38.23–41.98)	45.14 (43.24–47.12)	42.68 (40.73-44.55)	0.03
Interventricular septal thickness, cm	1.04 (0.97–1.12)	1.08 (1.02–1.15)	1.06 (0.99–1.13)	0.89
Left ventricular posterior wall thickness, cm	1.03 (0.95–1.08)	1.11 (1.00–1.18)	1.07 (0.97–1.13)	0.72
Left ventricular ejection fraction, %	71.00 (67.00–74.00)	65.00 (61.00–68.00)	68.00 (64.00–71.00)	0.03
Right atrial diameter, cm	6.00 (5.87-6.16)	4.70 (4.62-4.88)	5.35 (5.24–5.52)	0.03
Right ventricular diameter, cm	<u> </u>		2.06 (1.98–2.15)	0.76
Aortic root diameter, cm	3.30 (3.12–3.49)	3.32 (3.14–3.50)	3.31 (3.13–3.49)	0.93
Mitral valve area, cm ²	1.72 (1.64–1.79)	1.41 (1.35–1.47)	1.56 (1.49–1.63)	0.02

Table 4. Basic and echocardiography characteristics of the study population.

The diagnosis of mitral valve disease and decision on mitral valve replacement surgery were performed in accordance with the respective American guidelines [18]. For the mitral valve replacement, we used KemCor and PeriCor bioprosthetic valves (NeoCor, Russian Federation) crosslinked with ethylene glycol diglycidyl ether for conferring resistance to oxidation and enzymatic degradation [19]. Functional conditions of the bioprosthetic valves were annually assessed by echocardiography. After the explantation of failing bioprosthesis (Figure 1a), bioprosthetic mitral valve calcification was verified by von Kossa staining (Figure 1b) and scanning electron microscopy (Figure 1c).

Figure 1. Bioprosthetic valve calcification: (a) explanted bioprosthetic heart valve; (b) von Kossa staining, scale bar = 50 μ m; (c) scanning electron microscopy. Calcified areas are indicated as black circles.

The study workflow is shown in the Figure 2.

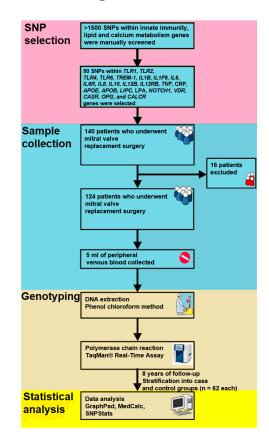


Figure 2. Study workflow.

4.2. SNP Selection and Genotyping

For this study, we defined four main criteria for SNP selection: (1) location within innate immunity, lipid metabolism, or calcium metabolism genes; (2) minor allele frequency \geq 5% for Russian population tested with HapMap; (3) functional consequences; and (4) few or no studies on the role of the SNP in mitral valve calcification. The National Center for Biotechnology Information dbSNP, SNPinfo, and SNPnexus databases were utilized for the SNP selection [20,21]. In total, we selected 50 SNPs within 24 genes (Table 5).

The procedures of DNA extraction and genotyping were the same as previously described [22–24]. Table 5 demonstrates the sequence-specific primers for genotyped SNPs. Laboratory staff was blinded to patient status, and one-tenth of the samples was repeatedly genotyped for quality control.

Single Nucleotide Polymorphism	Nucleotide Substitution	Chromosomal Position	Amino Acid Substitution	Forward 5'-3' and Reverse 3'-5' Polymerase Chain Reaction Primers
		TLR1	gene	
rs5743551	T>C	38807654	5'-upstream	F: agtgggcagggcagtaagggaagct R: ctcagcactctgaattcctgttttt
rs5743611	C>G	38800214	Arg80Thr	F: aacactgatatcaagatactggatt R: tattatgagaaattatcaaaatcct
		TLR2	gene	
rs3804099	T>C	154624656	Asn199Asn	F: caaaaagtttgaagtcaattcagaa R: gtaagtcatctgatccttcatatga
rs5743708	G>A	154626317	Arg753Gln	F: aagccattccccagcgcttctgcaagctgc R: gaagataatgaacaccaagacctacctgga
		TLR4	gene	
rs4986790	A>G	120475302	Asp299Gly	F: gattagcatacttagactactacctcgatg R: attattgacttatttaattgtttgacaaat
rs4986791	C>T	120475602	Thr399Ile	F: gttgctgttctcaaagtgattttgggacaa R: agcctaaagtatttagatctgagcttcaat
		TLR6	gene	
rs3775073	T>C	38829832	Lys421Lys	F: cactatactctcaacccaagtgcagttttc R: ttatgtctaccagattccaaagaattccagc
rs5743810	A>G	38830350	Ser249Pro	F: ttgagggtaaaattcagtaaggttg R: acctctggtgagttctgataaaaat
		TREM-	1 gene	
rs1817537	C>G	41244567	intronic	F: acacagggacagacagatggcaatggaac R: aaggccagatgcagagccagtgctatgca
rs3804277	C>T	41245172	intronic	F: ccagcatctctctcacccctcacatggtgg R: cactcagcatcctcagcatctgccccgatt
rs6910730	A>G	41246633	3'-downstream	F: catggagcaacaccaaggtctaggggcaa R: aatctaggatggattcgtgctgacttccca
rs7768162	A>G	41255511	5'-upstream	F: aaagattcctactgctaaataaacaaaaaa R: taacttggtttcttcaaaggaattgaaata
rs2234246	C>T	41243740	3'-UTR	F: ggaaggtgagacgctgactttagaaatag R: ggtgattacagatttaattcatgttattaa
rs4711668	T>C	41246473	3'-downstream	F: gctagtgtggattccactttccagactgga R: ttggctgaaaggatagttcatattagatga
rs9471535	T>C	41255490	5'-upstream	F: aaaatttttaaatttaaataaaaagattcc R: ctgctaaataaacaaaaaaataacttggtt
rs2234237	T>A	41250466	Thr25Ser	F: gcccctctttcagttcatacttttcctcag R: aatttagttgcagctcggagttctataagc
		IL1B	gene	
rs16944	A>G	113594867	5'-upstream	F: taccttgggtgctgttctctgcctc R: ggagctctctgtcaattgcaggagc
rs1143634	G>A	113590390	Phe105Phe	F: cataagcctcgttatcccatgtgtc R: aagaagataggttctgaaatgtgga
		IL1F9	gene	
rs17659543	C>T	113716306	Not announced	F: tgtacctggacaagaggcataaattgggg R: gtcttaggaaagcagatatacagccatcct
		IL6 g	zene	
rs1554606	T>G	22768707	intronic	F: ttagttcatcctgggaaaggtactc R: cagggccttttccctctcggctgc

Table 5. Features of the genotyped polymorphisms.

Single Nucleotide Polymorphism	Nucleotide Substitution	Chromosomal Position	Amino Acid Substitution	Forward 5′-3′ and Reverse 3′-5′ Polymerase Chain Reaction Primers
		ILe	6 gene	
rs1800796	G>C	22766246	5'-upstream	F: atggccaggcagttctacaacagcc R: ctcacagggagagccagaacacaga
rs2069827	G>T	22765456	5'-upstream	F: gcccaacagaggtcactgttttatc R: atcttgaagagatctcttcttagca
		IL6	R gene	
rs2228145	A>T/C	154426970	Asp358Val/Ala	F: aattttttttttaacctagtgcaag R: ttcttcttcagtaccactgcccaca
rs2229238	T>C	154437896	3'-UTR	F: ccagcagcctggaccctgtggatga R: aaaacacaaacgggctcagcaaaag
		ILa	8 gene	
rs2227306	C>T	74607055	intronic	F: aactctaactctttatataggaagt R: gttcaatgttgtcagttatgactgt
		IL1	0 gene	
rs1800871	A>G	206946634	5'-upstream	F: agtgagcaaactgaggcacagagat R: ttacatcacctgtacaagggtacac
rs1800872	T>G	206946407	5'-upstream	F: ttttactttccagagactggcttcctacag R: acaggcggggtcacaggatgtgttccaggc
rs1800896	T>C	206946897	5'-upstream	F: tcctcttacctatccctacttcccc R: tcccaaagaagccttagtagtgttg
		IL12	2B gene	
rs3212227	T>G	158742950	3'-UTR	F: attgtttcaatgagcatttagcatc R: aactatacaaatacagcaaagatat
		IL12.	RB gene	
rs375947	A>G	18180451	Met365Thr	F: aggetgccattcaatgcaatacgtc R: tgetetgagccegggetggccaata
		TN	F gene	
rs361525	G>A	31543101	5'-upstream	F: ggcccagaagacccccctcggaatc R: gagcagggaggatggggagtgtgag
rs1800629	G>A	31543031	5'-upstream	F: gaggcaataggttttgaggggcatg R: ggacggggttcagcctccagggtcc
rs1799964	T>C	31542308	3'-downstream	F: gcaggggaagcaaaggagaagctgagaag R: gaaggaaaagtcagggtctggaggggggg
		CR	P gene	
rs3093077	A>C	159679636	Not announced	F: ggaatccaggcaagtacgacaaccc R: tctgagactagtgggcagttgtcct
rs1130864	G>A	159683091	3'-UTR	F: cctcaaattctgattcttttggacc R: tttcccagcatagttaacgagctcc
rs1205	C>T	159682233	3'-UTR	F: acttccagtttggcttctgtcctca R: agtctctctccatgtggcaaacaag
		APC	OB gene	
rs1042031	C>T	21225753	Glu4181Lys	F: caatcagatgcttgactttcatatggaatt R: ttgagtaactcgtaccaagccatcaaacac
rs6725189	G>T	21219001	Not announced	F: ttcccagcctcagctcaacagagctatggg R: cagcagtcggccctctctattgttctttcc
		APC	DE gene	
rs7412	C>T	45412079	Arg176Cys	F: ctcctccgcgatgccgatgacctgcagaag R: gcctggcagtgtaccaggccggggcccgcg
rs429358	T>C	45411941	Cys130Arg	F: gcccggctgggcgcggacatggaggacgt R: gcggccgcctggtgcagtaccgcggcgagg

Single Nucleotide

Polymorphism

Nucleotide

Substitution

Cont.	
Amino Acid Substitution	Forward 5'-3' and Reverse 3'-5' Polymerase Chain Reaction Primers
gene	
5'-upstream	F: tctttgcttcttcgtcagctccttttgaca R: gggggtgaagggttttctgcaccacacttt
ene	
-	Ε

Table 5. Cont.

Chromosomal

Position

J 1				Chain Reaction Primers
		L	IPC gene	
rs1800588	C>T	58723675	5'-upstream	F: tctttgcttcttcgtcagctccttttgaca R: gggggtgaagggttttctgcaccacacttt
		L	.PA gene	
rs10455872	A>G	161010118	intronic	F: tcagacaccttgttctcagaaccca R: tgtgtttatacaggttagaggagaa
		NO	TCH1 gene	
rs13290979	A>G	139425634	intronic	F: ccagcccagcagtgaagaaactgagcccad R: accctcctggcctgacctacactcgggctt
		V	'DR gene	
rs731236	A>G	48238757	Ile352Ile	F: tgtgttggacaggcggtcctggatggcctc R: atcagcgcggcgtcctgcaccccaggacg
rs2228570	A>G	48272895	Met1Thr/Lys/Arg	F: ggcagggaagtgctggccgccattgcctcc R: tccctgtaagaacagcaagcaggccacgg
		C.	ASR gene	
rs1042636	A>G	122003769	Arg990Gly	F: gatgagcctcagaagaacgccatggccca R: ggaattctacgcaccagaactccctggagg
		C	<i>PFG</i> gene	
rs3134069	A>C	119964988	5'-upstream	F: ggagcttcctacgcgctgaacttctggagt R: gcctcctcgaggtctttccactagcctcaa
rs2073618	G>C	119964052	Asn3Lys	F: gggacttaccacgagcgcgcagcacagca R: ttgttcattgtggtccccggaaacctcagg
rs3102735	T>C	119965070	5'-upstream	F: ctttgctctagggttcgctgtctcccccat R: aattccctggtctagaagttagacttgatg
		CA	ALCR gene	
rs1801197	A>G	93055753	Leu481Pro	F: tcgccttggttgttggctggttcattcctc R: gctcctgatggcagatgtaaattgggatgt
			F2 gene	
rs1799963	G>A	46761055	3'-UTR	F: gttcccaataaaagtgactctcagc R: agcctcaatgctcccagtgctattc
			F5 gene	
rs6025	T>C	169519049	Gln534Arg	F: ttacttcaaggacaaaatacctgtattcct R: gcctgtccagggatctgctcttacagatta
rs6027	T>C	169483561	Asp2222Gly	F: gggtttttgaatgttcaattctagtaaata R: cacagccaaagagttccaggcgaagtgca
			F7 gene	
rs6046	G>A	113773159	Arg412Gln/Pro/Leu	F: acagtggaggcccacatgccaccactacc R: gggcacgtggtacctgacgggcatcgtca
		F1	3A1 gene	
rs5985	C>A	6318795	Val35Leu	F: taccttgcaggttgacgccccggggcacca R: gccctgaagctccactgtgggcaggtcatc
		IT	GB3 gene	
rs5918	T>C	45360730	Leu59Pro	F: tttgggctcctgacttacaggccctgcctc R: gggctcacctcgctgtgacctgaaggagaa

The statistical analysis was performed as in [22–24] using the SNPStats software [25]. To further define independent predictors of severe bioprosthetic mitral valve calcification, we carried out stepwise logistic regression with the plotting of the ROC curve and area under the curve.

Acknowledgments: There was no financial assistance with the project.

Author Contributions: Anastasia V. Ponasenko, Maria V. Khutornaya, Anton G. Kutikhin and Leonid S. Barbarash conceived and designed the study; Natalia V. Rutkovskaya and Natalia V. Kondyukova collected the patient data; Anna V. Tsepokina and Maria V. Khutornaya collected the blood specimens, isolated DNA and performed genotyping; Anton G. Kutikhin carried out statistical analysis; Anastasia V. Ponasenko, Maria V. Khutornaya, Anton G. Kutikhin and Arseniy E. Yuzhalin wrote the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Guyton, R.A.; O'Gara, P.T.; Ruiz, C.E.; Skubas, N.J.; Sorajja, P.; et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *J. Am. Coll. Cardiol.* 2014, *63*, 57–185. [CrossRef] [PubMed]
- 2. Roberts, W.C. The senile cardiac calcification syndrome. Am. J. Cardiol. 1986, 58, 572–574. [CrossRef]
- Eric Jamieson, W.R.; Marchand, M.A.; Pelletier, C.L.; Norton, R.; Pellerin, M.; Dubiel, T.W.; Aupart, M.R.; Daenen, W.J.; Holden, M.P.; David, T.E.; et al. Structural valve deterioration in mitral replacement surgery: Comparison of Carpentier-Edwards supra-annular porcine and perimount pericardial bioprostheses. *J. Thorac. Cardiovasc. Surg.* 1999, *118*, 297–304. [CrossRef]
- Jamieson, W.R.; Riess, F.C.; Raudkivi, P.J.; Metras, J.; Busse, E.F.; Goldstein, J.; Fradet, G.J. Medtronic Mosaic porcine bioprosthesis: Assessment of 12-year performance. *J. Thorac. Cardiovasc. Surg.* 2011, 142, 302–307. [CrossRef] [PubMed]
- Barbarash, O.; Rutkovskaya, N.; Hryachkova, O.; Gruzdeva, O.; Uchasova, E.; Ponasenko, A.; Kondyukova, N.; Odarenko, Y.; Barbarash, L. Impact of recipient-related factors on structural dysfunction of xenoaortic bioprosthetic heart valves. *Patient Pref. Adherence* 2015, *9*, 389–399.
- Bella, J.N.; Tang, W.; Kraja, A.; Rao, D.C.; Hunt, S.C.; Miller, M.B.; Palmieri, V.; Roman, M.J.; Kitzman, D.W.; Oberman, A.; et al. Genome-wide linkage mapping for valve calcification susceptibility loci in hypertensive sibships: The Hypertension Genetic Epidemiology Network Study. *Hypertension* 2007, 49, 453–460. [CrossRef] [PubMed]
- Kutikhin, A.G.; Yuzhalin, A.E.; Brusina, E.B.; Ponasenko, A.V.; Golovkin, A.S.; Barbarash, O.L. Genetic predisposition to calcific aortic stenosis and mitral annular calcification. *Mol. Biol. Rep.* 2014, 41, 5645–5663. [CrossRef] [PubMed]
- 8. Yuzhalin, A.E.; Kutikhin, A.G. Integrative systems of genomic risk markers for cancer and other diseases: Future of predictive medicine. *Cancer Manag. Res.* **2012**, *4*, 131–135. [CrossRef] [PubMed]
- Bakhtiar, S.M.; Ali, A.; Baig, S.M.; Barh, D.; Miyoshi, A.; Azevedo, V. Identifying human disease genes: Advances in molecular genetics and computational approaches. *Genet. Mol. Res.* 2014, 13, 5073–5087. [CrossRef] [PubMed]
- 10. Novaro, G.M.; Sachar, R.; Pearce, G.L.; Sprecher, D.L.; Griffin, B.P. Association between apolipoprotein E alleles and calcific valvular heart disease. *Circulation* **2003**, *108*, 1804–1808. [CrossRef] [PubMed]
- 11. Tangri, N.; Alam, A.; Wooten, E.C.; Huggins, G.S. Lack of association of Klotho gene variants with valvular and vascular calcification in Caucasians: A candidate gene study of the Framingham Offspring Cohort. *Nephrol. Dial. Transplant.* **2011**, *26*, 3998–4002. [CrossRef] [PubMed]
- 12. Davutoglu, V.; Nacak, M. Influence of angiotensin-converting enzyme gene insertion/deletion polymorphism on rheumatic valve involvement, valve severity and subsequent valve calcification. *J. Heart Valve Dis.* **2005**, *14*, 277–281. [PubMed]
- Thanassoulis, G.; Campbell, C.Y.; Owens, D.S.; Smith, J.G.; Smith, A.V.; Peloso, G.M.; Kerr, K.F.; Pechlivanis, S.; Budoff, M.J.; Harris, T.B.; et al. Genetic associations with valvular calcification and aortic stenosis. *N. Engl. J. Med.* 2013, *368*, 503–512. [CrossRef] [PubMed]

- Ponasenko, A.V.; Khutornaya, M.V.; Kutikhin, A.G.; Yuzhalin, A.E.; Hryachkova, O.N.; Golovkin, A.S. Toll-like receptor 2 gene polymorphism is associated with risk of mitral valve disease. *Med. Kuzbasse* 2015, 14, 24–32.
- 15. Davutoglu, V.; Celik, A.; Aksoy, M. Contribution of selected serum inflammatory mediators to the progression of chronic rheumatic valve disease, subsequent valve calcification and NYHA functional class. *J. Heart Valve Dis.* **2005**, *14*, 251–256. [PubMed]
- 16. Elmariah, S.; Budoff, M.J.; Delaney, J.A.; Hamirani, Y.; Eng, J.; Fuster, V.; Kronmal, R.A.; Halperin, J.L.; O'Brien, K.D. Risk factors associated with the incidence and progression of mitral annulus calcification: The multi-ethnic study of atherosclerosis. *Am. Heart J.* **2013**, *166*, 904–912. [CrossRef] [PubMed]
- 17. Bre, L.P.; McCarthy, R.; Wang, W. Prevention of bioprosthetic heart valve calcification: Strategies and outcomes. *Curr. Med. Chem.* 2014, 21, 2553–2556. [CrossRef] [PubMed]
- 18. American College of Cardiology; American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease); Society of Cardiovascular Anesthesiologists; Bonow, R.O.; Carabello, B.A.; Chatterjee, K.; de Leon, A.C., Jr.; Faxon, D.P.; Freed, M.D.; Gaasch, W.H.; et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing Committee to Revise the 1998 guidelines for the management of patients with valvular heart disease) developed in collaboration with the Society of Cardiovascular Anesthesiologists endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 2006, 48, 1–148.
- 19. Astapov, D.A.; Karas'kov, A.M.; Semenova, E.I.; Demidov, D.P. The mithral valve replacement with biological prostheses: Early and long-term results. *Khirurgiia* **2013**, *9*, 18–23. [PubMed]
- 20. Xu, Z.; Taylor, J.A. SNPinfo: Integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. *Nucleic Acids Res.* **2009**, *37*, 600–605. [CrossRef] [PubMed]
- 21. Dayem Ullah, A.Z.; Lemoine, N.R.; Chelala, C. SNPnexus: A web server for functional annotation of novel and publicly known genetic variants (2012 update). *Nucleic Acids Res.* **2012**, *40*, 65–70. [CrossRef] [PubMed]
- 22. Golovkin, A.S.; Ponasenko, A.V.; Khutornaya, M.V.; Kutikhin, A.G.; Salakhov, R.R.; Yuzhalin, A.E.; Zhidkova, I.I.; Barbarash, O.L.; Barbarash, L.S. Association of TLR and TREM-1 gene polymorphisms with risk of coronary artery disease in a Russian population. *Gene* **2014**, *550*, 101–109. [CrossRef] [PubMed]
- 23. Golovkin, A.S.; Ponasenko, A.V.; Yuzhalin, A.E.; Salakhov, R.R.; Khutornaya, M.V.; Kutikhin, A.G.; Rutkovskaya, N.V.; Savostyanova, Y.Y.; Barbarash, L.S. An association between single nucleotide polymorphisms within TLR and TREM-1 genes and infective endocarditis. *Cytokine* **2015**, *71*, 16–21. [CrossRef] [PubMed]
- 24. Kutikhin, A.G.; Ponasenko, A.V.; Khutornaya, M.V.; Yuzhalin, A.E.; Zhidkova, I.I.; Salakhov, R.R.; Golovkin, A.S.; Barbarash, O.L.; Barbarash, L.S. Association of TLR and TREM-1 gene polymorphisms with atherosclerosis severity in a Russian population. *Meta Gene* **2016**, *9*, 76–89. [CrossRef] [PubMed]
- 25. Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. *Bioinformatics* **2006**, *22*, 1928–1929. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).