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Abstract
The nuclear receptors (NRs) are an evolutionarily related family of transcription factors, which share certain
common structural characteristics and regulate the expressions of various genes by recognizing different response
elements. NRs play important roles in cell differentiation, proliferation, survival and apoptosis, rendering them
indispensable in many physiological activities including growth and metabolism. As a result, dysfunctions of NRs
are closely related to a variety of diseases, such as diabetes, obesity, infertility, inflammation, the Alzheimer′s
disease, cardiovascular diseases, prostate and breast cancers. Meanwhile, small-molecule drugs directly targeting
NRs have beenwidely used in the treatment of above diseases. Here we summarize recent progress in the structural
biology studies of NR family proteins. Compared with the dozens of structures of isolated DNA-binding domains
(DBDs) and the striking more than a thousand of structures of isolated ligand-binding domains (LBDs) accumulated
in the Protein Data Bank (PDB) over thirty years, by now there are only a small number of multi-domain NR complex
structures, which reveal the integration of different NR domains capable of the allosteric signal transduction, or the
detailed interactions between NR and various coregulator proteins. On the other hand, the structural information
about several orphan NRs is still totally unavailable, hindering the further understanding of their functions. The fast
development of new technologies in structural biology will certainly help us gain more comprehensive information
of NR structures, inspiring the discovery of novel NR-targeting drugs with a new binding site beyond the classic LBD
pockets and/or a new mechanism of action.
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Introduction
The study on nuclear receptors (NRs) became a unique research
filed in the middle of 1980s, when the molecular cloning of several
hormone receptors revealed that they share a common architecture
especially in the domain composition [1]. Due to their critical
functions in many physiological processes and direct connections to
a variety of human diseases, NRs have long been exploited as
therapeutic drug targets. By some estimates, NR ligands constitute
about 15%–20% of the small-molecule drugs on the pharmaceutical
market worldwide [2–4]. At present, drugs directly targeting dif-
ferent NRs have been widely used in the treatment of various dis-
eases, such as tamoxifen and evista targeting the estrogen receptor
(ER) used in breast cancer and osteoporosis respectively [5], caso-
dex targeting the androgen receptor (AR) used in prostate cancer

[6,7], targretin targeting the retinoid X receptor (RXR) used in skin
cancer [8,9], and glitazones targeting the peroxisome proliferator-
activated receptor-gamma (PPARγ) used in type II diabetes [5]. In
addition, a large number of compounds with stronger binding affi-
nities and better specificities are currently in the research or de-
velopment stages for new NR-targeting drugs [10,11].
There are totally 48 human NRs, half of which have known

endogenous ligands (Table 1). Based on the protein sequence
homology and functional analysis, a typical NR polypeptide can
be roughly divided into 5 to 6 regions, which are represented by
A-F from the N- to C-terminus respectively (Figure 1) [12,13]. N-
terminal regulatory domain (NTD, i.e. the A/B region) is also
called the ligand-independent transcription activation function-1
(AF-1) domain, which shows a low sequence conservation and a
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Table 1. The number of NR-related structures in PDB database till now

Names Nomenclature Ligand DBD LBD Others LBD-LBD Multi Reference

TRα NR1A1 Thyroid hormones 0 8 1 [14–16]

TRβ NR1A2 Thyroid hormones 1 22 1 [17–20]

RAR-α NR1B1 Retinoic acid 4 6 2 [21–24]

RAR-β NR1B2 Retinoic acid 8 1 1 [24–26]

RAR-γ NR1B3 Retinoic acid 11 [27,28]

PPARα NR1C1 Fatty acids 55 [29–31]

PPARβ NR1C2 Fatty acids 44 [32,33]

PPARγ NR1C3 Fatty acids 238 [34–37]

Rev-erbα NR1D1 Orphan 4 4 [38–40]

Rev-erbβ NR1D2 Orphan 6 [41]

RORα NR1F1 Cholesterol 3 [42–44]

RORβ NR1F2 Retinoic acid 3 [45,46]

RORγ NR1F3 Orphan 141 [47,48]

LXRα NR1H3 Oxysterols 8 3 [49,50]

LXRβ NR1H2 Oxysterols 24 1 [51–53]

FXR NR1H4 Bile acids 82 3 [54,55]

VDR NR1I1 Vitamin D 4 100 [56–59]

PXR NR1I2 Xenobiotics 42 2 [60–62]

CAR NR1I3 Xenobiotics 1 3 [63,64]

HNF4α NR2A1 Orphan 1 5 1 [65–67]

HNF4γ NR2A2 Orphan 1 [68]

RXRα NR2B1 Retinoic acid 18 58 20 [52,64,69–71]

RXRβ NR2B2 Retinoic acid 6 1 [72,73]

RXRγ NR2B3 Retinoic acid 2 [73]

TR2 NR2C1 Orphan

TR4 NR2C2 Orphan 1 [74]

TLL NR2E2 Orphan

PNR NR2E3 Orphan 1 [75]

COUP-TFI NR2F1 Orphan 1

COUP-TFII NR2F2 Orphan 1 [76]

EAR2 NR2F6 Orphan

ERα NR3A1 Estradiol-17-β 2 298 [77–80]

ERβ NR3A2 Estradiol-17-β 36 [81–83]

ERRα NR3B1 Orphan 4 [84]

ERRβ NR3B2 DES 1 2 [85,86]

ERRγ NR3B3 DES 29 [87–89]

GR NR3C1 Cortisol 40 28 [90–93]

MR NR3C2 Aldosterones 2 28 [94,95]

PR NR3C3 Progesterone 1 18 [96–98]

AR NR3C4 Testosterone 1 95 1 [96,99–101]

Nur77 NR4A1 Orphan 4 17 [102–106]

NURR1 NR4A2 Orphan 3 5 [107,108]

NOR1 NR4A3 Orphan

SF1 NR5A1 Orphan 1 8 [109,110]

LRH-1 NR5A2 Orphan 2 21 1 1 [109,111–113]

GCNF NR6A1 Orphan 1 [114]

DAX-1 NR0B1 Orphan 2 [113]

SHP NR0B2 Orphan 7 [115–118]

DBD, DNA-binding domain; LBD, ligand-binding domain; Others, other family proteins; LBD-LBD, homo- or heterodimer of NR LBD; Multi, Multi-domain complex of NRs.
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high conformational flexibility, with no high-resolution structure
available yet [119]. DNA-binding domain (DBD), locating at the C
region, has been well understood as one of the hallmarks of this NR
family of transcription factors. The D region of NRs is a highly
variable and flexible hinge region, which connects DBD and the
ligand-binding domain (LBD). Nuclear localization signals (NLSs)
of some NRs are located in the C and D regions, which affect the
intracellular transport and subcellular distribution of NRs. The E/F
region, i.e. the LBD, is the largest and most targetable domain of
NRs. Transcription activation function-2 (AF-2) domain is also lo-
cated in this region [119].
Over the past 30 years, the structures of a large number of NRs

have been solved, since the cloning of first NR glucocorticoid re-
ceptor (GR/NR3C1) by Ronald Evans and colleagues (Table 1)
[120]. As a result, the basic structural information of NRs is rela-
tively clear, especially for the well-studied DBD and LBD regions. A
systematic summary of the structural information on NRs has been
presented by Fraydoon Rastinejad and colleagues [2,121,122], with
the emphasis that the crystal structures of multi-domain homo- and
hetero-dimeric complexes provide important insights, to fully reveal
the allosteric regulatory mechanisms of NRs.
To date, the majority of NRs have had their structures (at least for

certain domains) published, except for the testicular receptor 2
(TR2/NR2C1), tailless (TLL/NR2E2), V-erbA-related protein 2
(EAR2/NR2F6) and neuron-derived orphan receptor 1 (NOR1/
NR4A3) (Table 1). However, it is worth noting that most of the
structural information available has been heavily concentrated on
several NRs [i.e. PPARγ, retinoid-related orphan receptor-gamma
(RORγ), farnesoid X-activated receptor (FXR), 1,25-dihydrox-
yvitamin D3 receptor (VDR), RXRα, ERα, GR, and AR], whose
functions are very important and well-studied. At present, PPARγ
and ERα have contributed the largest number of NR structures (both
over 200) in PDB, and most of them are LBDs in complex with
synthetic derivatives of endogenous ligands (Table 1). Meanwhile,
there is little information about structures of NRs in complex with
other family of proteins, when excluding the classic LXXLL motif-
containing peptides derived from the steroid receptor coactivator
(SRC) proteins. In recent years, structures of several large com-
plexes containing NRs, SRC and p300 have been visualized using
the cryo-electron microscopy (cryo-EM), although at only very low
resolutions. With the rapid development of cryo-EM technology, the
structural basis of how NRs function in concert with other partner
proteins and in response to various ligands, would be fully illu-
strated soon. In addition, new drug discovery strategies such as
proteolysis targeting chimera (PROTAC) have emerged and en-
riched the approaches to develop novel drugs targeting NRs di-
rectly.

In this review, we present a comprehensive overview of struc-
tures related to NRs in the Protein Data Bank (PDB) database, as
well as some perspectives in the future development of small-mo-
lecule drugs directly targeting NRs.

DBD Structures of NRs
The DBDs of NRs possess highly conserved protein sequences, and
their structures and functions have been extensively studied. The
typical NR DBD structure conforms to a Zn-finger subtype of tran-
scription factors, in which eight highly conserved cysteine residues
coordinate two zinc ions, setting the NRs apart from other DNA-
binding proteins (Figure 2A). In the PDB database, RXR and GR have
contributed the most DBD-DNA complex structures of NRs (Table 1).
RXR can act as the dimer partner for several NRs including itself.
Then these NR dimers bind to different response elements on the
genomic DNA, and regulate transcription in a cell and gene-specific
manner. The number of spacer nucleotides between two NR-bind-
ing half-sites, was initially defined for various RXR heterodimers in
a simplified manner by the ‘DR (direct repeat) 1–5 rule’: i.e. RXR-
RXR, and retinoic acid receptor (RAR)-RXR (DR1), RXR-RAR (DR2),
RXR-VDR (DR3), RXR-TR (DR4) and RXR–RAR (DR5) (Figure 2B–
G) [21,23,59,123–126]. Interestingly, a recent study reported the
structure of RXR DBD homodimer in complex with Hoxb13 DR0
DNA (Figure 2H) [23]. On the contrary, receptors for androgens
(AR), corticosteroids (GR/MR), progesterone (PR) or estrogens (ER)
typically bind DNA sequences configured as inverted repeats of the
half-site sequences AGAACA or AG/AGTCA, respectively (Figure 2I–
J); while the remaining members of the family bind half-sites of the
sequence AGGTCA/AGGCTA, arranged singly (Figure 2K,L) or as
direct repeats [2,127]. The advent of next-generation sequencing, in
combination with chromatin immunoprecipitation (ChIP-seq), has
allowed for the identification of NR-binding sites in a genome-wide
manner and in various cell types under different pathophysiological
conditions [128]. Furthermore, these studies have revealed that NR
response elements can vary from monomeric half-sites to nearly
perfect inverted or direct repeats, and have demonstrated the co-
operation between NRs and other transcription factors, such as the
forkhead box A1 (FOXA1) (for AR and ER), activating protein-1
(AP-1) [for GR and liver X receptor (LXR)], and CCAAT/enhancer-
binding protein (C/EBP) (for PPAR-γ and LXR) [128].

LBD Structures of NRs
The NR LBDs usually show a similar overall conformation, con-
sisting of 11–13 α helices and 1 β-turn that together form a three-
layered helical sandwich (Figure 3A). The typical ligand binding
pocket is embedded in the interior of LBD, with the core position
composed of amino acids derived from the helices H2, H5, H7, H11,
and H12. The volume of pockets can vary from zero to more than
1500 Å3 (Figure 3B) [129]. LBD plays an important role in the
transcriptional regulation of classical NRs, and its mechanism of
action has been clearly revealed. Structural analysis shows that LBD
works like a “mousetrap” and ligand binding can induce the con-
formational change of helix H12 [27]. When ligands bind into
pockets, H12 as the “gate” of the “mousetrap”, will move towards
LBD and fold back to close the entrance of the ligand binding pocket
(Figure 3C,D). Moreover, the H12 adopts different conformations
when the pocket binds agonists or antagonists. For agonists, H12,
H3 and H4 form a hydrophobic coactivator binding surface, where
the LXXLL motif can be well integrated (Figure 3D,E). While for

Figure 1. Structural organization of nuclear receptors Typical NRs
can be roughly divided into five to six functional regions from N-
terminus to C-terminus, designated as A–F respectively. A/B domain
containing activation function-1 (AF-1) is a regulatory domain; C re-
gion is the DNA-binding domain; D is the hinge area; and E/F is the
ligand-binding domain containing AF-2.
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Figure 2. Interactions of DBDs with different response elements (A) The typical structure of NR DBD (PDB code: 4CN5). (B–H) Homo- or hetero-
dimers of NR DBD complexes with DR0 to DR5 response elements (PDB codes: 4CN5, 1DSZ, 1GA5, 1KB2, 1YNW, 6XWG, and 6XWH, respectively).
(I,J) Homodimers of GR and ERα bound to inverted repeats of the half-site sequences (PDB codes: 5CBX, 4AA6). (K,L) NGFI-B and hLRH-1 bound to
single half-sites of DNA sequence (PDB codes: 1CIT, 5L0M).

Figure 3. Structural characteristics and classical transcriptional regulation mechanisms of NR LBDs (A) Overall conformation of Nur77 LBD shown
as cartoon in cyan (PDB code: 3V3E). (B) Ligand binding pocket of Nur77 is occupied by several hydrophobic amino acids. (C) Inactive state of the
apo-LBD, H12 color in red (PDB code: 6HN6). (D) Active state of RARγ holo-LBD, agonist shown as sticks in yellow, hydrophobic amino acids
(shown as sticks in green) in H3, H4, H5 forming a hydrophobic interaction surface (PDB code: 2LBD). (E) Active state of ERα holo-LBD, agonist
shown as sticks in yellow, coactivator GRIP1 with the LXXLL motif color in green (PDB code: 3ERD). (F) ERα LBD bound with antagonist and H12
color in red occupying the co-activator binding site (PDB code: 3ERT).
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antagonists, H12 moves away from the excited position, masks or
destroys the binding sites of coactivators, and forms the binding
interface for corepressors (Figure 3F) [130]. Under different signal
stimulations, NRs interact with different coregulators and conduct
different functions, activating or repressing the expression of
downstream genes. However, there are also several NRs not con-
forming to the above mechanism. For example, RORγ, immediate-
early response protein NOT (Nurr1) and nuclear hormone receptor
Nur77 are in the transcriptionally activated conformation in-
dependent of ligands (Figure 3A). Especially, the pockets of three
members of the NR4A subfamily (Table 1) are completely occupied
by hydrophobic amino acids, and the hydrophobic binding regions
of co-regulators are also occupied by some polar amino acids
(Figure 3B). As a result, the transcriptional regulation mechanism of
this type of NRs is still unclear.
As mentioned earlier, most of NR structures reported in PDB are

the complexes of LBDs with endogenous ligands and their deriva-
tives. By now, the numbers of LBD structures for PPARγ and ERα
have reached 238 and 298, respectively (Table 1). Rosiglitazone is
one of the thiazolidinedione (TZD) drugs for diabetes treatment,
and it is an insulin sensitizer with a high affinity and specificity to
activate PPARγ. However, TZDs also display severe adverse effects,
giving rise to fluid retention, weight gain, liver toxicity and cardi-
ovascular diseases, which are prevalent among diabetic patients
[131–133]. Based on the structure of PPARγ LBD in complex with
rosiglitazone, researchers designed and discovered more effective
agonists. Ionomycin interacts with the PPARγ LBD in a unique
binding mode (Figure 4A) and effectively improves hyperglycaemia
and insulin resistance, with reduced side effects compared with
TZDs in the mouse model of diabetes [133]. Another example
among NR drugs is raloxifene, which is a selective ERα modulator
used in osteoporosis. The crystal structures of ERα LBD in complex
with the endogenous estrogen, 17β-oestradiol, and the selective
antagonist raloxifene, indicate that agonist and antagonist bind at
the same site within the core pocket of LBD, but demonstrate dif-
ferent binding modes (Figure 4B) [134]. These small-molecule
bound complex structures not only help reveal their mechanisms of

action, but also provide valuable information for the structure-
based drug design targeting NRs.
For the majority of NRs, their activations and functions depend

on the dimerization. Generally, NRs possess two dimerization sites,
one in DBD and the other in LBD. LBD is considered as the major
dimerization site for NRs [22]. Ligand binding not only changes the
conformation of LBDs to coordinate with the coregulator proteins,
but also promotes the dimerization of NRs [22]. According to the
analysis of LBD structures in the PDB database, most of the NRs
utilize the classical dimerization sites (H10 and H9 or even Loops 8-
9 and H7) to form dimers (Figure 5A–C). The size of dimerization
interface of ERα homodimer is about 1700 Å2, while those for the
RXRα homodimer and its heterodimer with RARα LBD are only
950 Å2 and 970 Å2, respectively (Figure 5A,B) [135]. The smaller
dimerization interface of RXRα is related to its biological function,
making RXRα relatively easy to depolymerize and form new homo-
or heterodimers with other NRs [136]. The heterodimerization of
RXR with RAR, TR and VDR via LBDs mainly depends on the I-box

Figure 4. NR LBD structures in complex with different small mole-
cules (A) Superimposition of PPARγ LBD in complex with ionomycin
(stick in yellow) and rosiglitazone (stick in green) (PDB codes: 4FGY,
2PRG). (B) Superimposition of ERα LBD in complex with endogenous
agonist, 17β-oestradiol (stick in yellow) and antagonist raloxifene
(stick in green), related H12 shown as cartoon color in yellow and
green respectively (PDB codes: 1ERE, 1ERR).

Figure 5. Different dimerization interfaces of NR LBDs (A–C) Homo- or hetero-dimers through H9 and H10. The I-box of RXRα and RARα colored in
red (PDB codes: 1ERR, 1DKF, 3UVV, respectively). (D) Homodimer interface of GR (PDB code: 6DXK). (E,F) Homodimers of PR and Nur77 through
H11 and H12 (PDB codes: 1ZUC, 3V3E).
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located in H9-H10 region, as shown by their dimeric crystal struc-
tures (Figure 5B,C) [22,137–139]. However, not all NRs dimerize in
this way. GR homodimerizes through the hydrophobic interactions
of some hydrophobic amino acids in the H2-H3 loop region, with a
dimerization area of 623 Å2 (Figure 5D) [140]. PR homodimerizes
through hydrogen bonds and salt bridges formed in the H11-H12
region, and the dimerization surface area is about 600 Å2, which is
much smaller than those of classical NRs (Figure 5E) [97]. Another
NR with a small dimer interface is Nur77, whose asymmetry in-
terface is mediated by hydrogen bonds and salt bonds in the H11-
H12 region with a surface area of only about 590 Å2 (Figure 5F)
[105,106].

Structures of Full-length and Multi-domain Receptor
Complexes
NRs are multi-domain transcription factors that bind to specific
DNA elements and regulate the expressions of downstream genes.
How DNA binding influences the NR conformation, and how the
conformations of DBD and LBD change collaboratively in the pro-
cess of transcriptional regulation, are still poorly understood. Pre-
vious structural studies have mainly focused on the isolated DNA or
ligand-binding segments, i.e. DBDs and LBDs. To date, only 4
crystal structures of full-length or multi-domain NR complexes
bound to DNA have been reported, with 3 of them by Fraydoon
Rastinejad and colleagues.
The structure of PPARγ and RXRα, published in 2008 as a het-

erodimer bound to DNA, ligands and coactivator peptides, is the
first structure of multi-domain NR complex, in which PPARγ-RXRα
polypeptides reside in a polar arrangement set by the 5′ extension of
the DR1 and the lone spacer base pair [70]. PPARγ occupies most of
the DR1 including its specific 5′ element. Three interfaces link
PPARγ and RXRα, including those that are DNA-dependent. The
PPARγ LBD cooperates with both DBDs to enhance the response-
element binding (Figure 6A).
HNF-4α is the most abundant DNA-binding protein in liver,

where about 40% of the actively transcribed genes have at least one
HNF-4α response element [141,142]. To understand the extent of
domain integration of HNF-4α, Rastinejad group solved and ana-
lyzed the crystal structure of HNF-4α, an obligate homodimer,
bound to its DNA element and coactivator-derived peptides in 2013
(Figure 6B) [65]. The LBD and DBD portions match their previously
determined isolated structures. Both DBDs are in register with their
half-sites, interacting with the major grooves. The DBD of the up-
stream subunit and the hinge region of the downstream subunit,
form an important domain-domain interface of the complex, which
is similar to the one in the PPARγ-RXRα complex. The manner in
which the two LBDs cooperate to interact with the upstream DBD
suggests that the physical integration of all three domains may be
required for a high-affinity DNA binding, as further proved by the
physiological and biochemical experiments [143].
The LXRs are physiologically important oxysterol-dependent

NRs. LXRs are master regulators of lipid and cholesterol metabolism
[144,145], inflammation [146], neural development [147], cancer
[148,149], and other physiological processes. Furthermore, LXRβ
has protective effects upon dopamine neurons [150,151] and
modulates the cytotoxic functions of microglia [152]. Thus, LXRs
are key pharmaceutical targets in a variety of diseases. Gustafsson
group reported the crystal structure of the RXRα-LXRβ heterodimer
on its cognate element, an AGGTCA direct repeat spaced by 4 nt

(DR4) in 2014 (Figure 6C) [52]. This complex shows an extended X-
shaped arrangement, with DBD and LBD crossed, which is different
from the other 3 multi-domain complexes (Figure 6C). Compared
with previous NR structures, it reveals the flexibility in NR organi-
zation and suggests a role for RXRα in the adaptation of hetero-
dimeric complexes to DNA.
The RAR and RXR proteins are among the most intensively stu-

died NRs for their structural properties, but most structural char-
acterizations to date have focused on the isolated LBD domains
(Table 1). In 2017, Rastinejad group reported the crystal structure of
the multi-domain RARβ-RXRα heterodimer bound to DR1 DNA, li-
gands and coactivator peptides [26]. The DBD and LBD of RARβ are
physically connected. However, the corresponding two domains of
RXRα are spatially displaced from each other without any physical
contacts, and each of them locates on the opposite side of the
double-strand DNA. Both RXRα and RARβ adopt the active con-
formation at their LBDs. This conformation is defined by both re-
ceptors having their H12 appropriately positioned by ligands to
facilitate the recruitment of coactivator LXXLL motifs (Figure 6D).
By analyzing the structures of 4 multi-domain complexes and

comparing with the structures of their individual LBDs and DBDs,
we found that they are essentially identical at the single domain
level. These observations suggest that none of these domains un-
dergoes major internal distortions in adopting the quaternary state
of the multi-domain heterodimers. Through structural comparison
and analysis, we can also learn the following lessons. (1) The
flexible hinge region not only physically connects DBD and LBD,
but also plays important regulatory roles in the interactions between

Figure 6. Four multi-domain complex structures of NRs (A) The
PPARγ-RXRα (colored in red and blue, respectively) heterodimer on
DNA response element with DR1 (PDB code: 3E00). (B) The HNF-4α
homodimer bound to DR1 (PDB code: 4IQR). (C) The LXRβ-RXRα (co-
lored in yellow and magenta, respectively) heterodimer on DR4 (PDB
code: 4NQA). (D) The RARβ-RXRα (colored in orange and purple, re-
spectively) heterodimer bond to DR1 (PDB code: 5UAN). The key DBD-
interacting region at the H9 and H10 of LBD is marked with capital
letters.
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LBD and DBD, as well as those between DBD and DNA. In addition,
the hinge region can interact with DNA directly and play special
roles in stabilizing the formation of the whole complex. (2) Specific
response elements, proper ligands and coactivators are needed to
obtain a stable complex crystal structure. Therefore, the success of
future crystallization efforts on new multi-domain NR complexes
would require a lot of trial and error in the combination of these
three NR partners above. (3) LBD plays key roles in the formation of
homodimers or heterodimers, including the formation of its various
interfaces with DBD (Figure 6). These unique interfaces may offer
new opportunities for the discovery of NR-targeting drugs with a
novel mechanism of action. (4) At present, there is still no clear
structural information for the NTD region, which is very flexible and
not conserved among NRs.

Structure of NRs in Complex with Other Family
Proteins
The homo- or hetero-dimerization of certain NRs is one of the key
steps in their transcriptional regulation of downstream genes.
Meanwhile, cofactor recruitment also plays important roles in the
regulatory function of NRs. For example, the N-terminal AF-1 region
of Nur77 can enhance the ability of transcriptional activation by
recruiting coactivators such as SRCs, P300, P300/CBP-associated
factor (PCAF) [153]. Protein arginine methyltransferases 1 (PRMT1)
can enhance the transcriptional activation of Nur77 by cooperating
with SRC2 [154]. Nur77 and Nurr1 can also inhibit the transcription
of downstream genes by recruiting the repressor FHL2 (four and a
half LIM domains protein-2) [155] or repressor cofactor complexes
[156,157]. However, the detailed recognition mechanism during the
recruitment process is still missing, due to the lack of structures of
protein-protein complex between cofactors and NRs.
In addition to the transcriptional regulation, in specific cell lines,

NRs can also play other roles through protein-protein interactions.
Nur77 directly associates with p65 to block its binding to the κB
element [105]. However, this function of Nur77 is countered by the
LPS-activated p38a phosphorylation of Nur77. In this process,
Nur77 regulates the inflammatory response through direct interac-
tions with p65 and p38a [105]. The direct interaction between 1-
(3,4,5-trihydroxyphenyl)nonan-1-one (THPN) and Nur77-LBD
helps form a suitable surface that can bind to mitochondria outer
protein Nix, and then triggers autophagy in the human melanoma
Mel-11, ME4405 and MM200 cells [104]. Therefore, analyzing the
complex structures of NRs and other family proteins (especially
those identified outside of the classical NR pathways), may provide
a new angle for the drug design targeting NRs.
At present, the β-catenin armadillo repeat in complex with the

liver receptor homolog-1 (LRH-1) LBD is the only complex structure
between NRs and other family proteins that has been solved [112].
As the principal agent of Wnt-dependent effects on cell adhesion,
differentiation and cancer, β-catenin engages in multiple protein–
protein contacts [158,159], some of which are understood with
atomic details [160]. β-Catenin is comprised of a central association
region, the armadillo-repeat region (ARM), and N- and C-terminal
transactivation domains [161], whereas the N- and C-terminal re-
gions are both intrinsically unstructured [162]. The interaction
modes between NRs and β-catenin are complex, but there is evi-
dence that NR LBDs are indispensable for the contact in some cases.
Biochemical and genetic evidence reveals that both LRH-1 and AR
LBDs bind to the ARM, with AR exhibiting a strong dependence on

the ARM-5 and ARM-6 segments (Figure 7) [163–165]. In this
complex structure, the LRH-1 LBD utilizes a novel interaction sur-
face to dock into the positively charged groove at a site that partially
overlaps the binding surface for T-cell factor 4 (Tcf-4) and lymphoid
enhancer-binding factor 1 (Lef-1) (Figure 7) [166,167]. This struc-
ture suggests an interesting mechanism for the assembly of mul-
tifactor transcription complexes. NR LBDs are known to engage in
multiple protein–protein contacts with co-regulators [168,169],
and β-catenin is shown to bind many proteins including a wide
variety of transcription factors [164]. The structural information of
this complex indicates the possibility to develop new compounds
that inhibit NR functions, by binding directly or impacting allos-
terically towards key protein interaction surfaces. Thus, the β-ca-
tenin binding site of LRH-1 (the H9–H10 of LBD) and other NRs
could be a new targeting spot for the future drug discovery.
Moreover, it is very interesting that NR LBDs use exactly the same
“patch” region (H9–H10) to interact with DBDs, as shown in the
four multi-domain NR structures (Figure 5) [26]. These findings
suggest a potential common mechanism for NR LBDs to mediate
the protein-protein interactions.

Application of Cro-EM in NR Structure Analysis
While full-length NRs are very difficult to crystallize, the fast de-
veloping cryo-EM technology has also been adopted to unravel the
structural features of the NR signaling scaffold, as well as the critical
roles of inter-domain communications [170]. Orlov et al. [171]
presented the first cryo-EM structure of a 100-kDa complex of VDR-
RXR heterodimer and their cognate DNA response element at the
10–15 Å resolution. Following that, other researchers used cryo-EM
to determine the quaternary structure of an active complex of ERα/
SRC-3/p300 bound to an ERE-DNA fragment at resolution ~25 Å in
2015 (Figure 8A); the structure of ARE DNA-bound full-length AR at
resolution ~12.6 Å, and the structure of ARE DNA-bound AR/SRC-
3/p300 complex at resolution ~20 Å in 2020 (Figure 8B) [172,173].
Both cryo-EM structures of ERα and AR in complex with SRC-3 and
p300 indicate that the AF-1 in NTD plays a key role in the SRC-3 and
p300 recruitment (Figure 8). Especially in the AR complex (Figure
8B), AF-1 in NTD participates in the interactions with SRC-3 and
p300 much more than the AF-2 in LBD, which is consistent with
previous reports [174,175].
Unfortunately, these current cryo-EM NR structures could not

Figure 7. Complex structure of β-catenin and LRH-1 The overall
structure of β-catenin and LRH-1 shown as cartoon in magentas and
cyan colors, respectively. Peptides of Tcf-4 and Lef-1 colored in green
and blue respectively. H9 and H10 of LRH-1 LBD colored in red (PDB
code: 3TX7).
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provide more details at the atom level due to their poor resolutions.
To push the resolution limit, a number of factors have to be con-
sidered and optimized, especially the intrinsic dynamics between
NRs and their co-regulators. For example, the application of specific
antibodies targeting certain components of the large NR complex
may help increase the overall stability. As the crystal structures of
three key components of the NR complex (i.e. LBD, DBD and DNA)
have been well defined with their unique sizes and shapes, the
model building step in solving NR cryo-EM structures would be
relatively straight-forward [170]. With more large NR complex
structures available, the discovery of new mechanism drugs tar-
geting NRs will be further accelerated.

Conclusion and Future Direction
Until recently, all previous structural research efforts on NR pro-
teins were more focused on and successful with individual DBDs
and LBDs, especially for some classic NRs (Table 1). However, the
functions and structures of a considerable number of NRs are still
not very clear, especially for TR2, TLL, EAR2 and NOR1. At present,
the multi-domain crystal structures of PPARγ-RXRα, HNF4α-HNF4α,
LXRβ-RXRα and RARβ-RXRα have been solved. But the structural
information about NRs is still not complete, as the N-terminal region
with a high flexibility and a low homology still has no high-re-
solution structure reported yet. Furthermore, no multi-domain
structure of orphan NRs has been solved. NRs can be con-
ceptualized as highly dynamic scaffold proteins, where binding of
ligand, DNA or transcriptional coregulator proteins can allosteri-
cally change the scaffold structure and direct changes in subsequent
binding events [170]. Therefore, more full-length NR complex
structures are needed to obtain the conformational change in-
formation during the transcriptional regulation, which can surely
provide a new structural basis for designing better small-molecule
drugs. Especially in recent years, a series of major breakthroughs
have been made in the development of cryo-EM. It bypasses mys-
teries in the protein crystallization process, and provides an alter-
native yet powerful technical approach for the structural analysis of
full-length NRs, transcriptional regulatory complexes, as well as the
complexes of NRs with other family proteins.
In the past a few years, the induced and targeted protein de-

gradation, based on the PROTAC concept, has gainedmomentum as
a new small-molecule therapeutic strategy [176]. Till now, a large
number of PROTAC molecules related to AR and ER have been
reported, some of which for the treatment of prostate and breast
cancers have entered the phase II clinical stage [177,178]. This
technology will bring new opportunities for the research of certain

undruggable NRs, especially for some orphan receptors. With the
progress of these technologies, new breakthroughs will be achieved
in the discovery of novel drugs targeting NRs.
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