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Abstract: Airway wall remodeling is a pathology occurring in chronic inflammatory lung diseases
including asthma, chronic obstructive pulmonary disease, and fibrosis. In 2017, the American
Thoracic Society released a research statement highlighting the gaps in knowledge and understanding
of airway wall remodeling. The four major challenges addressed in this statement were: (i) the lack
of consensus to define “airway wall remodeling” in different diseases, (ii) methodologic limitations
and inappropriate models, (iii) the lack of anti-remodeling therapies, and (iv) the difficulty to
define endpoints and outcomes in relevant studies. This review focuses on the importance of cell-
cell interaction, especially the bronchial epithelium, in asthma-associated airway wall remodeling.
The pathology of “airway wall remodeling” summarizes all structural changes of the airway wall
without differentiating between different pheno- or endo-types of asthma. Indicators of airway wall
remodeling have been reported in childhood asthma in the absence of any sign of inflammation; thus,
the initiation event remains unknown. Recent studies have implied that the interaction between the
epithelium with immune cells and sub-epithelial mesenchymal cells is modified in asthma by a yet
unknown epigenetic mechanism during early childhood.

Keywords: airway wall remodeling; asthma; epigenetic; bronchial epithelium; cell-cell interaction;
inflammation; extracellular matrix; bio-markers

1. Introduction

Airway wall remodeling is a persistent pathology in asthma, which is resistance to
treatment. Tissue remodeling in the airways is the result of epithelial cell derangement,
goblet cell hyperplasia, increased airway smooth muscle cells, thickening of the basal
membrane, increased neovascularization in the sub-epithelial cell layers, and increased de-
position of various extracellular matrix components [1]. It is currently unknown if specific
structural changes characterize asthma pheno- and endo-types [2,3]. Moreover, none of the
drugs used for asthma therapy show any reducing effect on airway wall remodeling [4]. In
adult asthma patients, bronchial thermoplasty is the only therapy reducing airway wall
remodeling in some patients with severe asthma, but not all [5]. The reason why some
patients respond to heat therapy and others do not remains unknown; furthermore, this
therapy cannot be applied to children. The cause of airway wall remodeling is not well un-
derstood, and most studies have investigated this pathology in adult asthma. Furthermore,
the structure of airway wall remodeling might be divided into pheno- and endo-types,
which may characterize specific asthma types.

In 2017, the American Thoracic Society stated that the role of airway wall remodeling
in asthma is insufficiently understood and needs to be further investigated [6]. Neither its
origin nor its contribution to asthma is known, and the hypothesis that chronic inflamma-
tion is the only cause of airway wall remodeling has been challenged in recent years [7–11].
In an official workshop report of the American Thoracic Society, it was concluded that air
pollution is most likely to pre-condition a child’s lungs to develop asthma or COPD later
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in life. Long-term exposure to fine particulate matter (PM) and ozone initiated airway wall
remodeling, which can either lead to asthma or COPD [12].

It has been long hypothesized that airway wall remodeling in childhood asthma
is progressing over the duration of the disease and is caused by chronic inflammation.
Referring to some studies on the causes of airway wall remodeling during embryogenesis
and early childhood [10–12], this hypothesis has been challenged [13–17]. The earlier
assumption that asthma, atopy, and bronchial hyper-reactivity are caused by genetic modi-
fications of immune regulatory proteins was not confirmed [13,18]. Nearly twenty years
ago, the significantly increased thickness of the lamina reticularis due to increased collagen
deposition correlated with the expression of the epidermal growth factor receptor, but
without eosinophilic infiltration in children with asthma [14]. In a primate model, it has
been reported that post-natal exposure to ozone or house dust mite allergens resulted in
a lasting modification of the airway structure including epithelial hyperplasia, increased
goblet cell number, increased size of smooth muscle bundles, reduced differentiation of
the basement membrane, and hyper-reactivity. Furthermore, the distribution of nerve
cells within the epithelium was modified and the airway vascularization, as well as the
immune response, were altered [15]. The thickening of the lamina reticularis in asthma
was later linked to the disturbed communication between epithelium and sub-epithelial
mesenchymal cells [16]. As reviewed by Veres et al. [19], airway inflammation and re-
modeling involved the communication between immune cells and tissue forming cell
types including the epithelium, neurons, and sub-epithelial cells through neuropeptides
(Figure 1). The release of neuropeptides may occur through epigenetic events triggered
by environmental factors during embryogenesis and early childhood, which may trigger
airway wall remodeling [10,12]. Importantly, such events can be inherited and, thus, mimic
genetic traits [18].
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Figure 1. The interactions between the epithelium and neurons with sub-epithelial mesenchymal
cells (airway smooth muscle cells, fibroblasts, myo-fibroblasts) and immune cells have to be seen as
a unit, which regulates its function by secreted interleukins, growth factors, secondary messenger
peptides, and the local composition of the extracellular matrix.

This review summarizes the current knowledge on airway wall remodeling in asthma
with a specific focus on childhood asthma. The objective of this review is to highlight
the gaps of knowledge for understanding airway remodeling in childhood asthma, and
thereby stimulate future studies in this important topic. Asthma cannot be cured unless
the cause and the mechanisms of airway remodeling are understood.

2. Early Events Leading to Asthma and Airway Wall Remodeling in Children

Over the past decades, despite the decline in asthma mortality, asthma morbidity
is on the rise significantly without a clear reason. In a longitudinal study following
180 children from birth to the age of 36 years, it was indicated that asthma was initiated
during embryogenesis and presents as a deficit of lung function [20]. Furthermore, the
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nerve density and airway reactivity in adult age was linked to IL-5 exposure during
embryogenesis [21,22].

Today, it is widely assumed that poor indoor air quality and exposure to allergens are
the main reasons for developing childhood asthma [23–28]. Rhinovirus infection at a young
age presents another risk factor to develop asthma later in life [29]. Interestingly, rhinovirus
infection significantly upregulated proteins that are known to regulate extracellular matrix
(ECM) degradation, while proteins that stimulate de novo synthesis of the ECM were less
affected. It should be noted that preterm born children were even more affected [29]. In
atopic children, respiratory syncytial virus (RSV) infection resulted in altered interferon
synthesis by nasal epithelial cells, but not by tracheal epithelial cells [30]. Rhinovirus
infection upregulated the expression of the epithelial cell protein, CDHR3 (cadherin-related
family member 3), and thereby altered the integrity and function of ciliated epithelial
cells [31]. CDHR3 was associated with remodeling of epithelial cells by a large-scale
genome-wide study comparing 1173 severe asthmatic to 2522 non-asthmatic children [32].

Other studies suggested that the many pathologies that characterized asthma might
be explained by epigenetic imprinting of the developing lung during embryogenesis and
early childhood [17,18]. The best studied epigenetic mechanisms related to asthma are
histone modification, DNA methylation, and altered expression of specific micro RNAs
(Figure 2). These epigenetic events occur in a cell type-specific manner and may not be
presented in all cell types forming the airways. Moreover, the mechanisms of how such
epigenetic events become permanent and even inheritable are not clear.
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Figure 2. The sequence of known epigenetic events during embryogenesis and childhood predispos-
ing the lung to develop chronic inflammatory lung diseases later in life. Today, it is unknown if the
modification of specific genes leads to specific diseases, or if it is the nature of the second exposure to
risk factors that is decisive for the development of asthma or COPD.

Exposure to allergens and air pollution early in life correlated with an increased
susceptibility to develop asthma and chronic obstructive pulmonary disease (COPD)
later in life [33]. Volatile organic compounds such as propylene glycol contained in wall
paint, cosmetics, and e-cigarettes have been reported to cause airway wall remodeling
in children [27]. Comparing the airway wall structure between 39 children with allergic
asthma to 21 children with allergic rhinitis and 20 healthy controls indicated a disease-
specific type of tissue remodeling in the upper airways in asthmatic children [34]. In a
retrospective study collecting data over 10 years, inner city children with asthma were
grouped according to lung function [28]. The data analysis suggested that forced expiratory
volume in 1 s predicted (FEV1) and forced vital capacity (FVC) <80% at young age indicated
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long-term reduced lung function. Additional risk factors were African American ethnicity
and male gender. The authors concluded that the current asthma therapies do not affect
airway wall remodeling in children with asthma. In another study, structural changes of
the airways were investigated in biopsies obtained from 53 children with wheezing and
compared to 45 children without wheezing [26]. Prolonged exposure to PM10 (10 microns)
resulted in increased thickness of the basement membrane and eosinophilic inflammation in
wheezing children. Increased thickness of the basal membrane was linked to airway smooth
muscle cell remodeling and mitochondria mass/activity in pre-school children, who later
developed asthma [35]. In addition, this study linked the mitochondria pathology and
proliferation to increased intracellular calcium levels in regard to airway wall remodeling.

3. The Maturation of the Epithelium and the Basement Membrane in Childhood and
Its Link to Asthma

In adults, Grainge et al. [36] demonstrated that inflammation independent bron-
choconstriction is sufficient to alter the airway structure, suggesting that mechanical forces
might initiate remodeling. This led to the idea that pathologies of singularities such as
the epithelium or airway smooth muscle cells are insufficient to explain what happens in
asthma to the airway tissue structure [9,37]. However, the epithelium seemed to play a
major role as a regulator.

Increased basement membrane thickness is one of the most common pathologies of
asthmatic airway wall remodeling. Biopsy-based studies demonstrated thickened base-
ment membrane in the airways of school children with severe and moderate asthma, and
preschool children with recurrent wheezing [38–40]. Furthermore, a three-year follow-
up study indicated that during infancy, the thickness of the basement membrane corre-
lated with reduced lung function at an older age [41]. In a systematic postmortem study
(47 preterm babies, 40 children, and 23 adults), it was reported that the epithelium and the
basement membrane develop in parallel, being visible after gestation week 30 [16]. The
thickness of the basement membrane increased rapidly until the age of 3 (3.5µm), and then
slowed down until 17 years of age. This then remained stable over several years before
declining after the age of 30. Interestingly, the thickness of the epithelium and the basement
membrane correlated at younger age, and this correlation was lost after the age of 30 [16].
Therefore, it is important for studies on airway wall remodeling to apply age-adjustment
in the analysis.

In addition to this, the airway epithelium may control airway remodeling after me-
chanical stimulation, and it had been suggested that airway wall remodeling might be the
result of frequent bronchial constrictions, which cause mechanical stress to the tissues [9].
This hypothesis suggested that remodeling does not have to occur in the same area where
bronchial constriction took place. In a cohort of 49 children with wheezing and airway
hyper-responsiveness, it was indicated that remodeling was independent from inflamma-
tion [10]. Furthermore, it was suggested in a mouse model that the disruption of the airway
epithelium during embryogenesis is a key event that imprints the lungs to develop asthma
and airway wall remodeling later in life [42].

In children with therapy resistant asthma, bronchoscopic investigation and brushing
suggested that wound repair of the epithelium was delayed compared to pre-school
children with wheezing [43]. Epithelial cells from these patients showed reduced ability to
overcome respiratory syncytial virus infection despite their increased secretion of anti-viral
cytokines. In bronchial tissues, these children showed increased deposition of collagen.
In a mouse model, IL-6 deficiency resulted in dysregulation of the tight junction between
epithelial cells, reduced protection against allergic inflammation, and increased production
of TGF-β, the most powerful stimulator of tissue remodeling [44].

4. Sub-Epithelial Mesenchymal Cells and Their Role in Airway Wall Remodeling

The role of airway smooth muscle cells in asthma-associated airway wall remodeling
has been demonstrated in adults [45,46]. The cause of this pathology remains unclear,
but the increased proliferation of airway smooth muscle cells is maintained in isolated
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cells of asthma patients [47,48]. Despite many studies investigating the reason of this
increased proliferative capacity of airway smooth muscle cells, there has been no concept
of how the different factors are linked to one another. In adult asthma, histones and DNA
methylation have been linked to remodeling [49,50]. These findings might be linked to
the lack of certain transcription factors such as C/EBP-α [51,52]. C/EBPs and methylation
are controlled by a large range of microRNAs [53], which also play a role in asthma [54].
In regard to childhood asthma, there is increasing evidence that epigenetic events during
embryogenesis and early in life lastingly affect DNA and histone methylation, microRNA
expression, and cellular activity [55–57]. Moreover, risk factors in the environment of the
mother during embryogenesis have been shown to initiate epigenetic mechanisms, which
become persistent during later life stages and set the lung to develop chronic inflammatory
diseases [57,58].

During early childhood, breast feeding transfers beneficial factors, but also risk factors,
from mother to child. Overall, it can be concluded that breast feeding has more beneficial
effects and reduces the risk of childhood asthma [59,60]. However, it should be mentioned
that under certain conditions, breast milk contains allergens and cytokines (IL-4, IL-5,
IL-13, TGF-β, etc.) that might contribute to the development of asthma and airway wall
remodeling [60]. The composition of breast milk is affected by environmental factors to
which the mother is exposed and transferred to the child indirectly. Breast milk feeding
may also have an effect on asthma by modifying the microbiome and the gastrointestinal
mucosal immunity of the digestive system, which communicates with the respiratory
system [61,62]. There is evidence that food during early childhood affects DNA methylation
mainly of cytosine-guanine dinucleotides, and this epigenetic modification was higher in
children fed with breast milk compared to children exclusively formula fed [63]. However,
DNA methylation might not be the only epigenetic mechanism by which the precondition
to asthma during childhood is regulated, and further studies are needed [64]. Some
literature suggests that microRNAs can be transmitted from one cell type to another cell
type via vesicles through the blood stream and, therefore, might present a new way of
communication between the epithelium and sub-epithelial cells [65]. This transmission of
information between different cell types might initiate airway wall remodeling.

Below the epithelium and the basement membrane follows a layer of mesenchymal
cells, which consists of fibroblasts, myo-fibroblasts, and airway smooth muscle cells. Es-
pecially, the hypertrophy and hyperplasia of airway smooth muscle cells is considered
to be a key pathology of asthma and a major contributor to airway wall remodeling [66].
In childhood asthma, smooth muscle cell remodeling has also been reported, but it was
not clear if this is a link to inflammation or an independent pathology [67,68]. However,
the discussion of if airway wall remodeling is also a characteristic of childhood asthma
remains controversial and might be linked to asthma pheno-/endo-types [10].

Comparing the airway histology between 21 children with non-eosinophilic asthma
to that of 34 children with eosinophilic asthma and 25 non-asthma controls, it was clearly
demonstrated that airway remodeling was independent of eosinophilic inflammation,
and asthma-relevant mediators such as IL-4, IL-5, and TGF-β [69]. Increased airway
smooth muscle mass was reported in school children (median age 12) with severe and
difficult to treat asthma [70], as well as in preschool children with recurrent wheezing
(median age 7.8) [71]. Both studies indicated that airway remodeling in children is rather
independent of Th2 inflammation. In 49 pre-school children with wheezing, the size of
the airway smooth muscle inversely correlated with FEV1/FVC [72]. Interestingly, the
increased smooth muscles in asthma might be a major source of pro-inflammatory asthma-
relevant cytokines such as IL-13, IL-17, IL-22, IL-33, lymphopoietin, semaphorins, and CXC
chemokines [71–73]. All these factors alone have been reported to either interfere with
proliferation or are being released by airway smooth muscle cells [74–80].

Neo-vascularization had also been reported as a pathology of the sub-epithelial cell
layers in children with asthma, but this might be rather a consequence of remodeling
than a cause. Comparing the airway structure of 13 asthma patients (including children)
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to 12 controls, it was reported that asthma was significantly associated with increased
thickness of vessel tunica intima, while the tunica media was not affected [81]. Furthermore,
the increase of the vessel walls was independent of age, and was attributed to increased,
deranged collagen deposition. In a cohort of 49 pre-school children (median age 10.9 years),
26 (72.2%) had persistent asthma and the vessel density negatively correlated with FEV1%
predicted and FEV1/FVC [70]. Comparing the level of the angiogenesis stimulating factors
including the vascular endothelial growth factor VEGF), a negative correlation with the
duration of asthma was reported [82]. However, all asthmatics inhaled glucocorticoids,
and this might explain the reduced VEGF level as we reported earlier [83].

5. The Epithelium as the Central Regulator of the Airway Wall

The epithelium separates the airway tissues from the inhaled air and, thus, protects
the airways from damage and inflammation. The airway epithelium functions as a self-
cleaning barrier through the secretion of mucus, which traps inhaled dust, chemicals, and
microorganisms [84]. The mucus contains anti-microbial peptides, and the cilia move the
mucus out of the airways into the esophagus from where it enters the digestive system to
be degraded.

In asthma, this protective function of the epithelium is disturbed, but it is unclear if
this is the cause of the result of asthma. Airway epithelial cells are the first cell type to get
into contact with pathogens and allergens. Airway epithelial cells not only separate the
inhaled air from the lung tissues, but they also remove inhaled particles and produce a large
number of chemokines and cytokines. Thus, epithelial cells communicate with immune
cells and sub-epithelial tissue forming cells. Interestingly, several studies suggested that
the airway epithelial cells have some sort of “memory” of previous infections or damages,
which is linked to the immune response [43,44,84]. In another study, new variants of genes
encoding for TNF receptors and TGF-β receptors were identified as risk factors for airway
wall remodeling in asthma [85]. The composition of the extracellular matrix, especially of
the basal membrane, was modified in childhood asthma, where epithelial cells produced
insufficient amount of fibronectin and thereby reduced the capacity of the epithelium to
repair [86].

The modified expression of these proteins affected the host response to infectious
microorganisms, immune response, and tissue remodeling. The airway epithelium of
the upper and lower respiratory tracts should be regarded as an integrated unit, which
interacts on infections and chronic airway diseases through the epithelium. Specifically,
the confirmation of the chromatin and protein folding controllers such as heat shock
proteins (HSPs) were identified as essential contributors [87]. Moreover, HSP60 secreted
by microorganisms such as Chlamydia have been shown 20 years ago to stimulate asthma
exacerbation [88,89]. Airflow limitation correlated to C. pneumoniae-derived HSP60 in adult
asthma patients [90]. Airway wall remodeling by C. pneumoniae-specific HSP60 involved
toll like receptor 4 (TLR4) and p38 mitogen activated protein kinase (MAPK), followed
by TGF-β activated kinase 1 [91]. As described above, the TGF-β signaling pathway is a
well-known contributor to airway wall remodeling in asthma.

Circulating HSP60 and HSP70 have been suggested to play a role in asthma sever-
ity [92], which may be linked to an interaction between mother and child during embryo-
genesis [93]. A transcriptomic analysis further supported a role of HSP60 in macrophages
of allergic asthma patients [94]. Airway fibroblast remodeling was sensitive to epithelial
cell-derived HSP60, which increased the expression of an epigenetic regulator, protein
arginine methyltransferase 1 (PRMT1) [95]. Earlier, it was shown that asthmatic airway
smooth muscle cells constitutively expressed PRMT1 due to the lack of microRNA-19a [96].
In a further study, it was suggested that the ratio of epithelial cell-derived HSP60 to HSP70
and HSP90 affected airway wall remodeling by smooth muscle cells [97]. Moreover, the
secretion of HSPs was sensitive to heat applied as a therapy for severe asthma during
bronchial thermoplasty [95]. Remodeling parameters of human airway fibroblasts were
also upregulated via PRMT1 and a signaling pathway involving C/EBP-β, leading to
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mitochondrial activity [98–100]. In airway epithelial cells, the processing of microRNAs
might increase the susceptibility to develop asthma [101]. However, the role of the different
HSPs and their variants in the context of asthma-associated airway wall remodeling is
controversial and has to be further investigated [102].

The interaction between the epithelium and sub-epithelial mesenchymal fibroblasts
and airway smooth muscle cells in the pathogenesis of asthma has been frequently dis-
cussed over decades, but rarely thoroughly studied [47]. The major problem for such re-
search is the lack of valid in vitro models for human epithelial cells and mesenchymal cells.

6. Parental Asthma, the, Environment, Epigenetics, and the Epithelium

Epigenetic mechanisms such as methylation or acetylation have been linked to the
pathogenesis of asthma as reviewed by Sheikhpour et al. [103], and can occur during
embryogenesis by exposure of the mothers to environmental risk factors [104,105]. The
exact mechanism(s) of how epigenetics makes the lungs more vulnerable to develop chronic
inflammatory diseases later in life remains to be identified. Importantly, some of these
epigenetic events can be handed down over several generations and seem to mimic genetic
inheritance [106–108] (Figure 3).
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Figure 3. Epigenetic mechanisms may mimic genetic inheritance of asthma susceptibility. However,
the reason as to how DNA and protein-methylation or the reduction of specific microRNAs (miR)
become constitutive and inheritable remains to be investigated.

Parental asthma, especially of mothers, is a well-recognized risk factor for childhood
asthma, which cannot be fully explained by genetics or the shared environmental fac-
tors [109,110]. Specifically, greater influences are induced by uncontrolled maternal asthma
during pregnancy [111]. Maternal atopy or asthma is associated with neonatal airway
hyper-reactivity and impaired infant lung function, which is independent of allergen sensi-
tization [112,113]. Exposure to low dose antibiotics during pregnancy has increased the
risk of the child to develop asthma or eczema in the first 4 years after birth [114]. Animal
studies demonstrated that offspring from transgenic mice with elevated eosinophil num-
bers and IL-5 levels generated had significantly higher nerve cell density in the airway
epithelium, which might lead to airway hyper-responsiveness [21]. Hyper-innervation of
the airway epithelium was due to impaired in utero lung development, which had been
clearly linked to the onset of childhood asthma as reviewed by Belvisi [115]. Importantly,
such structural alternations will remain unchanged until adulthood and, thus, represent a
significant predisposition to asthma, as shown in a mouse model and humans [116].

In the DNA, clusters of cytosine and guanine dinucleotides, also named CpGs-island,
were indicated as the preferred target for methylation [117]. A multi-cohort epigenome
meta-analysis compared DNA-methylation in four age groups of asthmatics: (i) newborns,
(ii) 4 years old, (iii) 16 years old, and (iv) adults [118]. This study identified 9 differen-
tially methylated CpGs linked to asthma in newborns, and 36 CpGs linked to asthma in
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older children. Functional analysis of these epigenetic modifications confirmed the role
of IL-5 (IL5RA) and potassium voltage gated channels (KCNH2) for the predisposition
to asthma. However, the role of other novel biomarkers indicated in this study have to
be confirmed in the future. Subsequent studies confirmed the important role of DNA
methylation in the development of childhood asthma, as well as the potential to use the
nasal epithelium as a source to identify early biomarkers for asthma [119]. Some of the
genes harboring CpGs or other differentially methylated DNA sequences are related to
epithelial cell function, epithelium integrity, and extracellular matrix remodeling, including:
GJA4 (Gap junction protein alpha 4), POSTIN (Periostin), LDLRAD3 (low density lipopro-
tein receptor class A domain containing 3), ATP9B (Atpase Phospholipid transporting 9B),
LAMA5 (Laminin subunit alpha 5), PDE6A (Phosphodiesterase 6A), NOS1AP(Nitric iodide
synthase 1 adaptor protein), and KCNH2 (Potassium voltage-gated channel subfamily H
member 2) [120–123]. All of these proteins have been linked to the presence of childhood
asthma, but their detection requires tissue biopsies, which would be hard to obtain from
children for diagnostic reasons.

7. The Difficulty to Study Airway Wall Remodeling, Particularly in
Childhood Asthma

Two major obstacles make it difficult to study and understand airway wall remodeling
in asthma: (i) the term “airway wall remodeling” is not well-defined and includes hyperpla-
sia of the epithelium, increased basement membrane thickness, sub-epithelial extracellular
matrix deposition, sub-epithelial fibrosis, and increased of smooth muscle mass; (ii) the clas-
sification of asthma pheno- and endo-types has been changed over the years. In addition,
despite many studies, there is a lack of biomarkers that indicate airway wall remodeling,
especially in childhood asthma [124]. Several studies aimed to link asthma pheno- and
endo-types to different aspects of airway wall remodeling. Childhood asthma was subdi-
vided into pheno- and endo-types according to: (i) epigenetic methylation of DNA and
histones [125]; (ii) Th1 and Th2 cytokines [126,127]; (iii) comorbidities and response to
treatment [128,129]; (iv) interferon γ/interleukin-5(IL-5)/IL-17 predominance [130]; (v)
wheezing, atopy, and respiratory morbidity [131]. However, airway wall remodeling was
not linked to any specific endo- or phenotype. It is therefore unclear if all aspects of airway
wall remodeling are present in every patient, or if certain aspects are linked to different
sub-types of asthma [6,29].

The hypothesis that the lung is pre-conditioned during embryogenesis and early
childhood for the development of chronic inflammatory diseases later in life is gaining
ground in the past years [132], especially with the observation that epigenetic events
can become persistent [133]. Without a doubt, many, if not all, risk factors for asthma
have been shown to initiate epigenetic modifications, but the mechanisms of how they
become persistent remains unknown [134–136]. Thus, the major problems in studying and
understanding airway wall remodeling in asthma are: (i) which asthma pheno-/endo-type
to start with, (ii) which remodeling parameter(s) to focus on, and (iii) from whom to obtain
patient samples.

As mentioned earlier, several environmental factors can initiate epigenetic modifica-
tions during embryogenesis or early in life. In regard to smoking-associated predisposition
to asthma, the transmission of epigenetic mechanisms through mothers and grandmothers
has been reported, as summarized in Figure 3 [137,138]. In addition, the use of e-cigarettes
during pregnancy is also a cause of epigenetic modification of the embryo’s lung [139].
However, there is also indication that not only the mothers are responsible to “inherit”
DNA-methylation patterns, but also fathers might be the origins of such modifications.
DNA-methylation of the melatonin receptor has been described [140]. On the paternal side,
in sperm, nicotine exposure has been reported to alter DNA-methylation of certain genes
that are involved in lung development [141].
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8. Conclusions

Airway wall remodeling is often a pathology already occurring in childhood asthma.
The origin of airway wall remodeling in asthma is still unclear today. The above studies
can be summarized as follows:

(1) It must be noted that a large range of environmental asthma risk factors such as
cigarette smoke, fine dust, allergens, viruses, bacteria, etc., will initiate a protective
response of the airway against these inhaled irritants. The available data suggest that
this protective response of the airway wall is very similar, regardless of the nature
of the trigger. However, future large cohort studies need to provide more evidence
if specific types of tissue structural changes are unique for specific asthma endo- or
phenotypes.

(2) There is evidence that pattern recognition receptors such as TLRs could explain how
a wide range of different risk factors from the environment initiates airway wall
remodeling during embryogenesis and early childhood. In adult asthma, some stud-
ies indicated that damage-associated molecular patterns and pathogens-associated
molecular patterns play a role in tissue remodeling; however, this was so far only asso-
ciated with age-related asthma [45]. It has not been investigated if these mechanisms
might be active during embryogenesis and early childhood.

(3) Furthermore, it remains unknown why, for some people, this protective response does
not shut down after the trigger is gone, and further leads to airway wall remodeling.

(4) Many cellular pathologies of airway wall remodeling in asthma are maintained in
isolated cells; hence, indicating that the underlying mechanisms became persistent.
Furthermore, these cell type specific pathologies of airway wall remodeling can be
initiated by the above-named environmental asthma risk factors and the pattern
recognition proteins through epigenetic events, including microRNA expression,
DNA, and protein methylation/de-methylation.

(5) The epigenetic events can be passed over at least three generations, but the mechanism
underlying this “inheritability” is unknown. Importantly, this “epigenetic inheritance”
of the asthma predisposition might mimic real inheritance of susceptibility genes,
which needs to be investigated.

(6) A major problem in detecting airway wall remodeling in childhood asthma is the
lack of clear markers without obtaining tissue biopsies. This lack of information on
the structural changes of the airways at early stages of asthma makes it difficult to
correlate asthma pheno- and endo-types with specific aspects of remodeling.

There is increasing evidence that airway wall remodeling contributes to other asthma
pathologies including inflammation, hyper-reactivity, and probably the development of
allergies. Unfortunately, there is no form of therapy that can prevent, stop, or reverse airway
wall remodeling. To find such therapies, it is essential to understand the pathogenesis of
airway wall remodeling.
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