
Genes Influenced by the Non-Muscle Isoform of Myosin
Light Chain Kinase Impact Human Cancer Prognosis
Tong Zhou., Ting Wang., Joe G. N. Garcia*

Arizona Respiratory Center and Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America

Abstract

The multifunctional non-muscle isoform of myosin light chain kinase (nmMLCK) is critical to the rapid dynamic coordination
of the cytoskeleton involved in cancer cell proliferation and migration. We identified 45 nmMLCK-influenced genes by
bioinformatic filtering of genome–wide expression in wild type and nmMLCK knockout (KO) mice exposed to preclinical
models of murine acute inflammatory lung injury, pathologies that are well established to include nmMLCK as an essential
participant. To determine whether these nmMLCK-influenced genes were relevant to human cancers, the 45 mouse genes
were matched to 38 distinct human orthologs (M38 signature) (GeneCards definition) and underwent Kaplan-Meier survival
analysis in training and validation cohorts. These studies revealed that in training cohorts, the M38 signature successfully
identified cancer patients with poor overall survival in breast cancer (P,0.001), colon cancer (P,0.001), glioma (P,0.001),
and lung cancer (P,0.001). In validation cohorts, the M38 signature demonstrated significantly reduced overall survival for
high-score patients of breast cancer (P = 0.002), colon cancer (P = 0.035), glioma (P = 0.023), and lung cancer (P = 0.023). The
association between M38 risk score and overall survival was confirmed by univariate Cox proportional hazard analysis of
overall survival in the both training and validation cohorts. This study, providing a novel prognostic cancer gene signature
derived from a murine model of nmMLCK-associated lung inflammation, strongly supports nmMLCK-involved pathways in
tumor growth and progression in human cancers and nmMLCK as an attractive candidate molecular target in both
inflammatory and neoplastic processes.
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Introduction

Cancer cell proliferation and migration require rapid dynamic

regulation of the cytoskeleton, which is controlled by series of

cytoskeleton regulatory proteins, in which myosin light chain

kinase (MLCK) is a critical participant [1,2]. In addition,

endothelial cell paracellular extravasation and diapedesis by tumor

cells is an essential step for malignant tumor metastasis and

significantly influenced the activity of MLCK [3,4]. Although still

underestimated, MLCK started to be considered as a novel

functional protein in cancer pathogenesis (initiation, proliferation,

migration, and metastasis) [5,6,7]. This is especially true with the

more widely expressed non-muscle isoform (nmMLCK). Non-

muscle myosin light chain kinase or nmMLCK is centrally

involved in driving rearrangement of the cytoskeleton, which

regulates vascular endothelial barrier function, angiogenesis,

endothelial cell apoptosis, and leukocytic diapedesis [8]. In vivo

studies implicated nmMLCK as an attractive target for amelio-

rating the adverse effects of dysregulated lung inflammation,

including extravasation of inflammatory leukocytes [9,10], similar

with the procedure of cancer cell metastasis to lung tissues [11].

Deletion or silencing of nmMLCK produced greater protection

against acute lung injury (ALI) and ventilator-induced lung injury

(VILI) and significantly decreased alveolar and vascular perme-

ability and lung inflammation [9].

Recently, we reported that endothelial inflammation is a key

mediator of tumor growth and progression [12], supported by the

fact that a molecular signature reflective of the endothelial

inflammatory gene expression is predictive of clinical outcome in

multiple types of human cancer [12]. As nmMLCK plays a central

role in regulation of endothelial cytoskeleton and endothelial

inflammation, we would hypothesize that nmMLCK-related

cellular signaling actively participate in the tumor progression

and metastasis, although little is known regarding the effect of

nmMLCK on the pathogenesis of tumor and its influence on the

prognosis of human cancers.

In this present study, we would like to use nmMLCK-associated

gene network (nmMLCK-deregulated gene sets) to establish a

novel methodology for human cancer prognoses, by using a

computational biology approach.

The purpose of this study is two-fold. The first was to identify

the genes potentially regulated by nmMLCK. The second was to

develop a prognostic cancer gene signature derived from the

nmMLCK-associated genes. Using an experimental murine model

of lung injury induced by mechanical ventilation with increased

tidal volumes (the VILI model), we characterized the top

differentially expressed genes between VILI-challenged wild-type

(WT) mice and nmMLCK knockout (KO) mice. The mouse genes

mediated by nmMLCK expression were identified. We matched
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the nmMLCK-mediated mouse genes to their human orthologs,

which formed the basis of a multivariate molecular predictor of

overall survival in several human cancers, including lung cancer,

breast cancer, colon cancer, and glioma. This molecular signature

predicted outcome independently of, but cooperatively with,

standard clinical and pathological prognostic factors including

patient age, lymph node involvement, tumor size, tumor grade,

and so on.

Materials and Methods

Gene expression data
Microarray data of lung RNA from WT control, VILI-exposed

WT, and VILI-exposed nmMLCK KO mice were obtained from

NCBI GEO database (GSE14525) [9]. We used this dataset to

filter out the nmMLCK-mediated mouse genes.

The gene expression datasets representing human cancers were

downloaded from publicly available repositories. These datasets

were chosen based on the availability of clinical survival data and

the large size of samples. For each tumor type, training and

validation cohorts were constructed. The dataset for breast cancer

(n = 295) was available from http://bioinformatics.nki.nl/data.

php (Netherlands Cancer Institute, Computational Cancer Biol-

ogy Data Repository) [13]. The breast cancer patients were

randomly separated into two parts (1/2 for training and 1/2 for

validation). For colon cancer, we downloaded two datasets from a

single study [14]. One dataset was used as training cohort (n = 177;

GSE17536) and the other one was used for validation (n = 55;

GSE17537). For glioma, distinct datasets from two different

studies were obtained for training (n = 77; GSE4271) [15] and

validation (n = 50; http://www.broadinstitute.org/cgi-bin/

ca?ncer/datasets.cgi) [16]. Lastly, we obtained three datasets

(n = 359) for lung cancer which were available from a single study

[17]. Two datasets were combined as training cohort (n = 161) and

the other one was used as validation cohort (n = 178). The CEL

files for the study are available at https://caarraydb.nci.nih.gov/

caarray/publicExperimentDetailAction.do?expId = 101594523614

1280.

Statistical analysis
SAM (Significance Analysis of Microarrays) [18], implemented

in the samr library of the R Statistical Package [19], was used to

compare log2-transformed gene expression levels between WT

control, VILI-exposed WT, and VILI-exposed nmMLCK KO

mice. False discovery rate (FDR) was controlled using the q-value

method [20]. Transcripts with a fold-change greater than 2 and

FDR less than 10% were deemed differentially expressed. We

searched for any enriched Kyoto Encyclopedia of Genes and

Genomes (KEGG) [21] physiological pathways among the

differential genes relative to the final analysis set using the NIH/

DAVID [22,23]. Hierarchical clustering via complete linkage rule

with Euclidean distance metric was applied to visualize gene

expression differences, using gplots library of R Statistical Package

[19].

For each cancer training/validation dataset, we normalized the

gene expression level into the scale of [21, 1] by POE (probability

of expression) algorithm [24,25] implemented in the metaArray

library of the R Statistical Package [19]. Based on the gene

expression and clinical outcome data from the training dataset, we

can assign a Wald statistic generated by univariate Cox

proportional-hazard regression to each gene as a weight. A risk

score was calculated for each patient using a linear combination of

weighted gene expression as below:

s~
Xn

i~1

wi(ei{mi)=ti

Here, s is the risk score of the patient; n is the number of

differentially expressed genes; wi denotes the weight of gene i; ei

denotes the expression level of gene i; and mi and ti are the mean

and standard deviation of the gene expression values for gene i

across all samples, respectively. Patients were then divided into

high-score and low-score groups with the median of the risk score

as the threshold value. A high score indicated a poor outcome.

The weight of each gene was fixed, based on the training groups,

and then tested in the validation groups [12]. Overall survival was

analyzed by the Kaplan-Meier method. Differences in survival

were tested for statistical significance by the log-rank test. P-values

of less than 0.05 were considered to indicate statistical significance.

The survival library of the R Statistical Package [19] was used to

conduct survival analysis on the risk score.

Results

nmMLCK-mediated mouse genes
At the specified significance level (fold-change .2 and

FDR,10%), 365 genes were found be differentially expressed

between VILI-exposed WT and nmMLCK KO mice, among

which 117 genes were up-regulated while 248 genes were down-

regulated in nmMLCK KO mice (Table S1). Several pathways

were significantly enriched among these differentially expressed

genes (P,0.05), such as vascular smooth muscle contraction,

chemokine signaling pathway, calcium signaling pathway, ErbB

signaling pathway, focal adhesion and so on (Figure 1A).

To filter out the top genes potentially associated with

nmMLCK, we also compared the gene expression between WT

control and VILI-exposed WT mice. 981 genes were found to be

differentially expressed (fold-change .2 and FDR,10%) between

these two groups (Table S2). Among these genes, we retained the

genes with opposite direction of differential expression comparing

Table S1 and S2. In other words, only the genes with attenuated

VILI-mediated gene expression in nmMLCK KO mice were

considered here. This step yielded 53 mouse genes. Lastly, we

excluded the genes differentially expressed between WT control

and VILI-exposed nmMLCK KO mice. In total, we retained 45

mouse genes for further study. Pathway analysis demonstrated a

significant linkage of this gene set to ErbB signaling pathway,

Glioma, Circadian rhythm (Figure 1B), which suggests that

nmMLCK signaling contributes to the development and malig-

nancy of tumors. Expression heatmap indicates that the expression

profile of the 45 mouse genes were recovered at approximately

normal levels of expression in nmMLCK KO mice exposed to

VILI (Figure 1C). We deemed these 45 mouse genes as

nmMLCK-mediated gene set (Table 1).

Prognostic molecular signature
nmMLCK is potentially involved in the pathogenesis of cancers

[3,4,26]. To determine whether nmMLCK-mediated genes

derived from nmMLCK KO mouse model were relevant to

human cancers, we matched the 45 nmMLCK-mediated mouse

genes to 38 distinct human orthologs (M38 signature) according to

the definition of GeneCards [27,28] (Table 2). We hypothesized

that the M38 signature would be predictive of tumor outcome in

cancer patients.

We constructed a risk scoring system that combined gene

expression of M38 with risk for death in the training dataset. High-
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score patients were defined as those having a risk score greater

than or equal to the group median score. In independent

validation cohorts, we tested the ability of the risk score to stratify

patients into prognostic groups. We performed Kaplan-Meier

survival analysis comparing the high-score and low-score groups

and determined statistical significance by log-rank tests. As

expected, the M38 signature was able to identify patients with

poor overall survival in breast cancer (P,0.001), colon cancer

(P,0.001), glioma (P,0.001), and lung cancer (P,0.001) in the

training cohorts (Figure S1). In the validation cohorts, Kaplan-

Meier survival analysis comparing patient groups demonstrated a

significantly reduced overall survival for high-score patients of

breast cancer (P = 0.002), colon cancer (P = 0.035), glioma

(P = 0.023), and lung cancer (P = 0.023) (Figure 2). The association

between M38 risk score and overall survival was also confirmed by

univariate Cox proportional hazard analysis of overall survival in

both training and validation cohorts (Table 3). In the validation

cohorts, high-score patients had an increased risk for death of

3.10-fold in breast cancer, 2.96-fold in colon cancer, 2.23-fold in

glioma, and 1.60-fold in lung cancer.

Independence of M38 from other clinicopathologic
factors

We investigated the performance of the M38 signature in

comparison with clinicopathologic variables associated with

prognosis in human cancers. A multivariate Cox analysis of

overall survival indicated that M38 status remained a significant

covariate in relation to the standard clinicopathologic factors in

the four types of human cancers, such as patient age, lymph node

status, tumor size, tumor grade, and so on (Table 4). We next

stratified the patients according to the factors significant on

multivariate analysis.

For breast cancer, patients were stratified by age, tumor grade,

and estrogen receptor (ER) status, respectively. For patients with

age ,40 and $40, the high-score ones had a significantly

increased risk for death of 6.36-fold (P,0.001) and 2.80-fold

(P = 0.001), respectively. For patients with tumor grade ,2 and

$2, the high-score patients had an increased risk for death of 2.63-

fold (P = 0.410) and 2.65-fold (P,0.001), respectively. For patients

with negative and positive ER status, the high-score patients had a

significantly increased risk for death of 2.25-fold (P = 0.025) and

4.00-fold (P,0.001), respectively.

For colon cancer, patients were grouped by age and clinical

stage, respectively. For patients with age ,60 and $60, the high-

Figure 1. nmMLCK-mediated mouse genes. (A) Enriched pathways among the differentially expressed genes between WT VILI-exposed and
VILI-exposed nmMLCK KO mice. The red line indicates the cutoff of significance (P,0.05). (B) Enriched pathways among the 45 nmMLCK-mediated
genes. The red line indicates the cutoff of significance (P,0.05). (C) Heatmap of expression for WT control, WT VILI-exposed, and VILI-exposed
nmMLCK KO mice. Red represents increased gene expression; Blue represents down-regulation.
doi:10.1371/journal.pone.0094325.g001
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Table 1. nmMLCK-mediated mouse genes.

WT control vs. WT VILI WT VILI vs. KO VILI

Gene symbol Gene title FCa FDR FCb FDR

Litaf LPS-induced TN factor 2.48 ,0.001 0.47 ,0.001

Cxcl5 chemokine (C-X-C motif) ligand 5 5.44 ,0.001 0.22 ,0.001

Prkcc protein kinase C, gamma 4.03 ,0.001 0.37 ,0.001

Cdkn1a cyclin-dependent kinase inhibitor 1A (P21) 4.02 ,0.001 0.44 ,0.001

Lmnb1 lamin B1 2.14 ,0.001 0.49 ,0.001

Rasd1 RAS, dexamethasone-induced 1 3.53 ,0.001 0.48 ,0.001

Arntl aryl hydrocarbon receptor nuclear translocator-like 9.95 ,0.001 0.18 ,0.001

Clec4n C-type lectin domain family 4, member n 2.45 ,0.001 0.45 ,0.001

Dio2 deiodinase, iodothyronine, type II 5.57 ,0.001 0.21 ,0.001

Plcxd2 phosphatidylinositol-specific phospholipase C, X domain containing 2 2.78 ,0.001 0.26 ,0.001

Txndc9 thioredoxin domain containing 9 4.63 ,0.001 0.42 ,0.001

Slc38a4 solute carrier family 38, member 4 2.24 ,0.001 0.47 ,0.001

Sprr1a small proline-rich protein 1A 4.51 ,0.001 0.45 ,0.001

Adora2b adenosine A2b receptor 4.71 ,0.001 0.28 ,0.001

1700109H08Rik RIKEN cDNA 1700109H08 gene 3.51 ,0.001 0.40 ,0.001

Mbd1 methyl-CpG binding domain protein 1 2.37 ,0.001 0.47 ,0.001

D10Ertd709e DNA segment, Chr 10, ERATO Doi 709, expressed 2.18 ,0.001 0.48 ,0.001

Rcan1 regulator of calcineurin 1 2.89 ,0.001 0.44 0.051

Spon2 spondin 2, extracellular matrix protein 3.51 ,0.001 0.35 0.051

Ereg epiregulin 4.19 ,0.001 0.44 0.051

Pi15 peptidase inhibitor 15 3.48 ,0.001 0.38 0.051

Pvr poliovirus receptor 2.90 ,0.001 0.38 0.051

Egfr epidermal growth factor receptor 2.32 0.052 0.38 0.051

Trim15 tripartite motif-containing 15 6.31 ,0.001 0.41 0.051

Cxcl1 chemokine (C-X-C motif) ligand 1 2.62 ,0.001 0.49 0.051

Nnt nicotinamide nucleotide transhydrogenase 0.47 ,0.001 2.18 ,0.001

Slc15a2 solute carrier family 15 (H+/peptide transporter), member 2 0.38 0.029 3.59 ,0.001

Cys1 cystin 1 0.29 ,0.001 2.52 ,0.001

4933411K20Rik RIKEN cDNA 4933411K20 gene 0.45 ,0.001 2.10 ,0.001

Dnmt3a DNA methyltransferase 3A 0.31 ,0.001 4.15 ,0.001

Igj immunoglobulin joining chain 0.43 ,0.001 8.34 ,0.001

Cml3 camello-like 3 0.27 ,0.001 2.33 ,0.001

6820402A03Rik RIKEN cDNA 6820402A03 gene 0.47 ,0.001 2.04 ,0.001

Hlf hepatic leukemia factor 0.30 ,0.001 3.34 ,0.001

Tef thyrotroph embryonic factor 0.43 ,0.001 2.78 ,0.001

Sord sorbitol dehydrogenase 0.34 ,0.001 2.18 ,0.001

Agbl5 ATP/GTP binding protein-like 5 0.34 ,0.001 2.09 ,0.001

Vps13a vacuolar protein sorting 13A (yeast) 0.43 ,0.001 2.11 ,0.001

2610301F02Rik RIKEN cDNA 2610301F02 gene 0.41 0.075 3.03 ,0.001

Dnmt1 DNA methyltransferase (cytosine-5) 1 0.32 ,0.001 2.46 ,0.001

Sfi1 Sfi1 homolog, spindle assembly associated (yeast) 0.42 ,0.001 2.24 ,0.001

A330076H08Rik RIKEN cDNA A330076H08 gene 0.27 ,0.001 2.06 ,0.001

6720457D02Rik RIKEN cDNA 6720457D02 gene 0.38 ,0.001 2.01 ,0.001

Per3 period homolog 3 (Drosophila) 0.19 ,0.001 2.75 ,0.001

9430047G12Rik RIKEN cDNA 9430047G12 gene 0.38 ,0.001 2.06 ,0.001

aFC: fold change, which is calculated by dividing the expression in VILI-exposed WT mice by the expression in WT control mice.
bFC: fold change, which is calculated by dividing the expression in VILI-exposed nmMLCK KO mice by the expression in WT VILI-exposed mice.
doi:10.1371/journal.pone.0094325.t001

nmMLCK-Associated Genes Predict Clinical Outcome in Human Cancers

PLOS ONE | www.plosone.org 4 April 2014 | Volume 9 | Issue 4 | e94325



score ones had a significantly increased risk for death of 2.29-fold

(P = 0.025) and 2.88-fold (P,0.001), respectively. For patients with

stage ,3and $3, the high-score ones had a significantly increased

risk for death of 3.50-fold (P = 0.015) and 1.71-fold (P = 0.024),

respectively.

Patients with glioma were grouped by age. For patients with age

,45 and $45, the high-score ones had a significantly increased

risk for death of 3.46-fold (P = 0.004) and 2.00-fold (P = 0.045),

respectively.

Lung cancer patients were stratified by age, lymph node status,

and tumor size, respectively. For patients with age ,65 and $65,

the high-score ones had a significantly increased risk for death of

2.35-fold (P,0.001) and 1.97-fold (P,0.001), respectively. For

patients with and without lymph node involvement, the high-score

patients had a significantly increased risk for death of 1.62-fold

(P = 0.012) and 1.73-fold (P = 0.014), respectively. For patients

with tumor size ,T3 and $T3, the high-score patients had an

increased risk for death of 2.20-fold (P,0.001) and 1.63-fold

(P = 0.180), respectively.

Kaplan-Meier survival analysis also demonstrated a significantly

reduced overall survival for high-score patients in each subset

grouped by each clinicopathologic factor (Figure S2-S5). Taken

Table 2. M38 signature.

Mouse Human Gene title

Adora2b ADORA2B adenosine A2b receptor

Agbl5 AGBL5 ATP/GTP binding protein-like 5

Arntl ARNTL aryl hydrocarbon receptor nuclear translocator-like

Ccdc141 CCDC141 coiled-coil domain containing 141

Cdkn1a CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1)

Clec4n CLEC6A C-type lectin domain family 6, member A

Cxcl1 CXCL2 chemokine (C-X-C motif) ligand 2

Cxcl5 CXCL6 chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic protein 2)

Cys1 CYS1 cystin 1

Dio2 DIO2 deiodinase, iodothyronine, type II

Dnmt1 DNMT1 DNA (cytosine-5-)-methyltransferase 1

Dnmt3a DNMT3A DNA (cytosine-5-)-methyltransferase 3 alpha

Egfr EGFR epidermal growth factor receptor

Ereg EREG epiregulin

Hlf HLF hepatic leukemia factor

Igj IGJ immunoglobulin J polypeptide, linker protein for immunoglobulin alpha and mu polypeptides

4933411K20Rik KIAA1430 KIAA1430

Litaf LITAF lipopolysaccharide-induced TNF factor

Lmnb1 LMNB1 lamin B1

Mbd1 MBD1 methyl-CpG binding domain protein 1

Nnt NNT nicotinamide nucleotide transhydrogenase

Per3 PER3 period homolog 3 (Drosophila)

Pi15 PI15 peptidase inhibitor 15

Plcxd2 PLCXD2 phosphatidylinositol-specific phospholipase C, X domain containing 2

Prkcc PRKCG protein kinase C, gamma

Pvr PVR poliovirus receptor

Rasd1 RASD1 RAS, dexamethasone-induced 1

Rcan1 RCAN1 regulator of calcineurin 1

Sfi1 SFI1 Sfi1 homolog, spindle assembly associated (yeast)

Slc15a2 SLC15A2 solute carrier family 15 (H+/peptide transporter), member 2

Slc38a4 SLC38A4 solute carrier family 38, member 4

Sord SORD sorbitol dehydrogenase

Spon2 SPON2 spondin 2, extracellular matrix protein

Sprr1a SPRR1A small proline-rich protein 1A

Tef TEF thyrotrophic embryonic factor

Trim15 TRIM15 tripartite motif containing 15

Txndc9 TXNDC9 thioredoxin domain containing 9

Vps13a VPS13A vacuolar protein sorting 13 homolog A (S. cerevisiae)

doi:10.1371/journal.pone.0094325.t002
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together, these results suggest that the expression of M38 signature

is associated with clinical outcomes and is an independent

prognostic factor.

Discussion

This current study confirms an internal link between

nmMLCK-mediate signaling and clinical cancer mortality with

novel evidence: first, we defined a group of nmMLCK-driven

genes with a murine model of lung inflammatory injury under

which the effects of nmMLCK are amplified. Second. This

nmMLCK-centralized molecular signature reflective of lung

inflammatory gene expression is highly predictive of poor clinical

outcome in four types of human cancer.

MLCK (gene code: MYLK) is a Ca2+/calmodulin-dependent

kinase that phosphorylates myosin light chains (MLCs) to promote

myosin interaction with cytoskeletal actin filaments [29]. It plays a

key role in cytoskeleton rearrangement and contractile activities of

both non-muscle tissue [30] and smooth muscle tissues [31]. The

non-muscle isoform, nmMLCK, has been demonstrated to be a

key participant in the inflammatory response based its ability to

regulate vascular endothelium integrity and leukocyte influx from

circulation into the lung broncoalveolar space [9]. Similar to

pathogenesis in endothelial cells in ALI, cancer cell proliferation

and migration require rapid dynamic regulation of the cytoskel-

eton, which is controlled by a group of cytoskeleton regulatory

proteins, in which nmMLCK serves as a critical and central

participant [1,2]. In addition, trans-cellular extravasation, the

essential step for malignant tumor metastasis, is well controlled by

the activity of MLCK [3,4]. Although still underestimated, MLCK

started to be considered as a novel functional protein in cancer

pathogenesis (initiation, proliferation, migration, and metastasis)

[5,6,7]. This is especially true with the more widely expressed non-

muscle isoform (nmMLCK).

Although little is known regarding the mechanisms of

nmMLCK in the pathogenesis of tumor and its influence on the

prognosis of human cancers, inflammatory response that regulated

by nmMLCK in lungs is playing an active role in tumorogenesis

and many successful therapies targeting chronic inflammation

directly alter endothelial gene expression [32]. Murine VILI

model amplifies the nmMLCK-mediated gene expression and

serves as a satisfactory platform to dissect nmMLCK molecular

signature in lung inflammatory injury.

Compared to a previous study [12], we used a non-conventional

inflammation marker nmMLCK (compared to TNFa), which is

more related to endothelial inflammation, as nmMLCK is

selective expressed in non-muscle tissues such as endothelium[29].

Combined together, these two studies further verify the key role of

‘‘endothelial-specific’’ inflammation in cancer progression. Since

nmMLCK is also expressed in other tissue types including

epithelium and inflammatory leukocytes (same as TNFa), ampli-

fied molecular signature of nmMLCK by lung inflammation (M38

signature) might also involve other type of tissues in lungs, i.e.,

epithelium and infiltrated neutrophils. The potential contribution

of M38 signature in pathogenesis in these tissues to cancer

prognosis might also be important.

Our next study will focus on validation of these candidate genes

filtered out in both nmMLCK and TNFa studies and generate a

more accurate cancer prognosis platform with a refined gene set,

which will lead to the development of cancer risk prediction/

prognosis gene array in clinical trials.

Figure 2. Expression of M38 signature predicts poor clinical outcome in multiple human cancers. Kaplan-Meier survival curves for
patient groups identified by M38 risk score. Red curves are for the high-score patients while blue curves are for the low-score patients. High-score
patients are defined as those having a M38 risk score greater than or equal to the group median score. P-values indicate significant differences in
overall survival as measured by log-rank tests.
doi:10.1371/journal.pone.0094325.g002

Table 3. Univariate Cox proportional hazards regression of overall survival against M38 signature status.

Training Testing

Cancer Hazard ratio 95% Confidence interval P-value Hazard ratio 95% Confidence interval P-value

Breast 4.50 (2.22, 9.12) ,0.001 3.10 (1.48, 6.49) 0.003

Colon 2.76 (1.69, 4.53) ,0.001 2.96 (1.13, 7.71) 0.027

Glioma 2.74 (1.63, 4.63) ,0.001 2.23 (1.10, 4.52) 0.026

Lung 2.55 (1.70, 3.84) ,0.001 1.60 (1.06, 2.41) 0.024

doi:10.1371/journal.pone.0094325.t003
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MYLK is not in the M38 gene list, although the 38 genes were

based on nmMLCK knockout mice. The possible complex reason

might be that nmMLCK (210 Kd) is an isotype of MYLK gene

product, while MYLK also produces smMLCK (108 Kd), which

comprises of .80% of the MYLK gene products in lung.

nmMLCK knockout does not interfere with smMLCK expression,

but the microarray platform does not differentiate nmMLCK from

smMLCK. This fact drives successful filtration of the

38 nmMLCK-mediated genes, but MYLK was not able to survive

in the M38 gene list. To address the effect of MYLK in cancer

survival prediction, we re-analyzed our datasets with the 39 genes

(M38 genes plus MYLK), but no obvious improvement was found

(Table S3). Nevertheless, several recent studies indicate that

nmMLCK expression is indeed changed in human cancers, such

as colorectal cancer [33] and prostate cancer [34].

We used a scoring system to assign a M38-based risk score to

each patients. This scoring system can also be directly applied to

other published cancer gene signatures. The comparison between

cancer gene signatures can be simply conducted by comparing the

prognostic power of the risk scores of individual gene signatures. In

this study, we used the median of M38 score to divide the patents

into two parts (high-score and low-score patients) to do categorized

analyses (such as Kaplan-Meier analysis and log-rank test).

Clinically, we can use zero as an absolute cutoff to stratify the

patients into high-risk and low-risk groups, because the median of

M38 score is approximately equal to zero in each dataset.

This study provides the first prognostic cancer gene signature

derived from a murine model of nmMLCK-associated lung

inflammation. Activation of nmMLCK-involved pathways con-

tributes to tumor growth and progression in human cancers. These

findings support the notion that nmMLCK is an attractive

candidate molecular target in lung diseases.

Supporting Information

Figure S1 Application of the M38 signature to training
datasets representing four human cancers. Kaplan-Meier

survival curves for patient groups identified by M38 risk score.

Red curves are for the high-score patients while blue curves are for

the low-score patients. High-score patients are defined as those

having a M38 risk score greater than or equal to the group median

score. P-values indicate significant differences in overall survival as

measured by log-rank tests.

(PDF)

Figure S2 M38 signature adds prognostic value to
clinicopathologic factors associated with survival in
human breast cancer. Kaplan-Meier survival curves of patient

cohorts grouped by (A) age, (B) tumor grade, or (C) ER status. Red

curves are for the high-score patients while blue curves are for the

low-score patients. High-score patients are defined as those having

a M38 risk score greater than or equal to the group median score.

P-values indicate significant differences in overall survival as

measured by log-rank tests.

(PDF)

Figure S3 M38 signature adds prognostic value to
clinicopathologic factors associated with survival in
human colon cancer. Kaplan-Meier survival curves of patient

cohorts grouped by (A) age or (B) clinical stage. Red curves are for

the high-score patients while blue curves are for the low-score

patients. High-score patients are defined as those having a M38

risk score greater than or equal to the group median score. P-

values indicate significant differences in overall survival as

measured by log-rank tests.

(PDF)

Table 4. Multivariate Cox proportional hazards regression of overall survival.

Covariate Hazard ratio 95% Confidence interval P-value

Breast cancer M38 high-score vs. low-score 1.47 (1.13, 1.92) 0.005

Age (per year) 0.95 (0.91, 0.99) 0.016

Lymph node status (+) vs. (2) 1.04 (0.66, 1.64) 0.878

Tumor size $T2 vs. ,T2 1.58 (0.99, 2.52) 0.054

Tumor grade 2,3 vs. 1 4.26 (1.51, 12.01) 0. 006

ER (2) vs. (+) 1.93 (1.20, 3.11) 0.007

Colon cancer M38 high-score vs. low-score 1.55 (1.23, 1.94) ,0.001

Age (per year) 1.03 (1.01, 1.05) 0.001

Tumor grade 2,3 vs. 1 1.12 (0.40, 3.10) 0.828

Stage 2.68 (2.01, 3.56) ,0.001

Glioma M38 high-score vs. low-score 1.46 (1.11, 1.92) 0.006

Age (per year) 1.02 (1.00, 1.05) 0.029

Lung cancer M38 high-score vs. low-score 1.35 (1.16, 1.57) ,0.001

Age (per year) 1.04 (1.02, 1.06) ,0.001

Lymph node status (+) vs. (2) 2.49 (1.85, 3.34) ,0.001

Tumor size $T3 vs. ,T3 2.46 (1.66, 3.65) ,0.001

Tumor grade 2,3 vs. 1 0.81 (0.52, 1.27) 0.359

doi:10.1371/journal.pone.0094325.t004
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Figure S4 M38 signature adds prognostic value to
clinicopathologic factors associated with survival in
human glioma. Kaplan-Meier survival curves of patient cohorts

grouped by age. Red curves are for the high-score patients while

blue curves are for the low-score patients. High-score patients are

defined as those having a M38 risk score greater than or equal to

the group median score. P-values indicate significant differences in

overall survival as measured by log-rank tests.

(PDF)

Figure S5 M38 signature adds prognostic value to
clinicopathologic factors associated with survival in
human lung cancer. Kaplan-Meier survival curves of patient

cohorts grouped by (A) age, (B) lymph node status, or (C) tumor

size. Red curves are for the high-score patients while blue curves

are for the low-score patients. High-score patients are defined as

those having a M38 risk score greater than or equal to the group

median score. P-values indicate significant differences in overall

survival as measured by log-rank tests.

(PDF)

Table S1 Differentially expressed genes between VILI-
exposed WT and VILI-exposed nmMLCK KO mice.

(PDF)

Table S2 Differentially expressed genes between WT
control and VILI-exposed WT mice.

(PDF)

Table S3 Univariate Cox proportional hazards regres-
sion of overall survival against M38+MYLK signature
status.

(PDF)
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