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L E T T E R TO TH E ED I TOR

Association between molecular markers of COVID‐19 and
Alzheimer's disease

To the Editor,

The COVID‐19 pandemic has represented an exceptional health chal-

lenge as the severe acute respiratory syndrome coronavirus 2 (SARS‐

CoV‐2) infection has acute and chronic consequences. Acute events are

mainly related to the respiratory tract; however, SARS‐CoV‐2 may

affect the cardiovascular system, kidneys, gut, and brain. Several studies

have suggested patients with more severe systemic presentations are

most affected by neurological symptoms,1,2 while data from brains of

postmortem patients show that SARS‐CoV‐2 has neuroinvasive prop-

erties. The outcomes in the central nervous system (CNS) may be also

associated with an exacerbated inflammatory process, or cytokine

storm, a well‐characterized effect of COVID‐19 that results from an

overreaction of the immune system, particularly involving the augment

of interleukin 6 (IL‐6). In line with this, SARS‐CoV‐2 may activate glial

cells, thus potentially triggering chronic neuroinflammation and neuro-

degeneration.3 Of note, the inflammatory response may lead to the

neuronal death observed in postmortem samples of patients with

COVID‐19,4 as well as SARS‐CoV‐2 neuroinvasion may trigger

neuropathological changes.5

Alzheimer's disease (AD) is the most common age‐related

neurodegenerative disease. The main histopathological hallmarks of

AD are extracellular senile plaques of amyloid‐β peptides (Aβ), the

product of β/γ‐secretase proteolytic cleavage of the amyloid

precursor protein (APP), and intracellular neurofibrillary tangles

composed of abnormal hyperphosphorylated tau protein.6 In

addition, metabolic disorders and neuroinflammation have emerged

as potential risk factors for dementia and AD.6 Although

inflammatory cytokine levels were shown to be relevant in the

induction of metabolic disorders, chronic metabolic changes were

able to induce inflammation, with a notable role of glial cells.6 In

agreement with the relevant role of inflammation in the progression

of AD, increased levels of IL‐6 in plasma, cerebrospinal fluid, and

brain of AD patients have been reported. Mitochondrial dysfunctions

are also critical to the pathogenesis of AD, contributing to the in-

itiation and progression of this disease.6 Aging is the major risk factor

for AD, and the age of 65 years is often used to categorize it into

early‐onset AD (EOAD) and late‐onset AD (LOAD). Although EOAD

has a prominent genetic basis, LOAD has a more heterogeneous

etiology that involves genetic risk and environmental factors, including

infections.7 Importantly, both EOAD and LOAD follow a similar

pathological course, sharing the biochemical features mentioned above

(doi:10.3233/JAD‐143210). Although the understanding of the etiol-

ogy and pathogenesis of AD has been expanded in the last years, the

potential association between COVID‐19 and AD remains unclear.3

Importantly, some pathomechanisms related to AD are shared with

COVID‐19. The severity of COVID‐19 neurological damage may be

correlated with the innate and adaptive immune response to the virus

and upon the existence of previous or concomitant CNS disease.3 Thus,

we identified differentially expressed genes from clinical datasets of

COVID‐19 patients, which were associated with AD (Figure 1), including

several genes that encode potential biomarkers and/or whose expres-

sion have been altered in different samples from patients or in vitro and

in vivo experimental models of AD.

Presenilins and cathepsin D are associated with EOAD because

they regulate the cleavage of APP, leading to the formation of Aβ

peptides.8 PSEN2, CTSD, and LGALS3 were upregulated in our

analysis. LGALS3 promotes Aβ oligomerization and toxicity in AD

animal models, and it is increased in AD patients.9 In contrast,

membrane metalloendopeptidase and ABCB1, which participate in

the degradation and clearance of Aβ,8 were downregulated.

Regarding CHRNA7, it was upregulated and has been increased in

both neurons and astrocytes.8

We also identified upregulation of IGFBP3 and JAK2. IGFBP3

can act as an inflammatory mediator and is highly increased in AD

brains, in addition to possibly contribute to tau phosphorylation

and cell death induced by Aβ,10 while the JAK2/STAT3 pathway

can modulate inflammatory responses and glial activation,

indirectly regulating Aβ deposition and cognitive decline. CTSL, a

proteinase that may be involved in immune system responses,

was also upregulated and, interestingly, it is necessary for entry

of the SARS‐CoV‐2 into the cell.11 Although interferon‐gamma

participates in the inflammatory response, we found a down-

regulation of this gene, that can increase microglial activation and

proinflammatory cytokines, but it also diminished phospho‐tau

pathology and increased neurogenesis in an animal model of

AD.12 Other genes related to immune pathways and that

represent possible biomarkers for AD were also differentially

expressed. AD is additionally linked to glucose and cholesterol

metabolism, which presents an upregulation of genes related to

glycolysis and synthesis and endocytosis of cholesterol. More-

over, we identified changes in the expression of genes that may

be associated with responses to cellular energy levels and cellular

stress, as well as neuronal cell death. Importantly, all these

alterations can be found in both EOAD and LOAD.13

In summary, our data provided inputs/citations of bio-

markers, gene expression, and posttranslational modifications,
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which were changed by COVID‐19 and AD. Our findings also

point out that patients with AD and COVID‐19 may require the

special attention of healthcare professionals to observe the

late clinical outcomes of SARS‐CoV‐2 infection, because it can

deteriorate or accelerate neurochemical dysfunctions,

particularly associated with inflammation, metabolic disorders,

and cellular homeostasis, which are crucial to the onset and

progression of AD.
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F IGURE 1 Alzheimer's disease (AD)‐related markers in COVID‐19 patients' blood samples. (A) Interactome of known and predicted protein‐
protein and gene‐disease interactions of upregulated (red circle) and downregulated (green circle) gene‐products differentially expressed in
blood samples of COVID‐19 patients found in SARSCOVIDB database14 and limited to AD‐related genes according to DisGeNET, visualized with
Cytoscape v3.8.2 (cytoscape.org). (B) DisGeNET association type ontology of identified genes in “A” with AD. SARSCOVIDB is a platform that
encompasses manually curate dysregulated genes in response to SARS‐CoV‐2 infection (sarscovidb.org). DisGeNET is a discovery platform
containing one of the largest publicly available collections of genes and variants associated with human diseases (disgenet.org)
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