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Copy number aberrations (CNA) are one of the most important classes of genomic

mutations related to oncogenetic effects. In the past three decades, a vast amount of

CNA data has been generated by molecular-cytogenetic and genome sequencing based

methods. While this data has been instrumental in the identification of cancer-related

genes and promoted research into the relation between CNA and histo-pathologically

defined cancer types, the heterogeneity of source data and derived CNV profiles pose

great challenges for data integration and comparative analysis. Furthermore, a majority

of existing studies have been focused on the association of CNA to pre-selected

“driver” genes with limited application to rare drivers and other genomic elements. In

this study, we developed a bioinformatics pipeline to integrate a collection of 44,988

high-quality CNA profiles of high diversity. Using a hybrid model of neural networks and

attention algorithm, we generated the CNA signatures of 31 cancer subtypes, depicting

the uniqueness of their respective CNA landscapes. Finally, we constructed a multi-

label classifier to identify the cancer type and the organ of origin from copy number

profiling data. The investigation of the signatures suggested common patterns, not only

of physiologically related cancer types but also of clinico-pathologically distant cancer

types such as different cancers originating from the neural crest. Further experiments

of classification models confirmed the effectiveness of the signatures in distinguishing

different cancer types and demonstrated their potential in tumor classification.

Keywords: cancer subtype classification, copy number variant, cancer, copy number, copy number alteration,

cancer signatures

INTRODUCTION

Copy number variations (CNV) are a class of structural genomic variants, in which the regional
ploidy differs from the normal state of the corresponding chromosome. Germline copy number
variations constitute a major part of genomic variability within and between populations and
are an important contributor to genetic and inherited diseases (Zhang et al., 2009). In most
cancer types, an extensive number of somatic CNV, usually referred to as sCNV or CNA (copy
number aberrations), accumulate during the progression of the disease (Baudis, 2007; Beroukhim
et al., 2010). CNAs have been shown to be directly associated with the expression of driver genes
(Upender et al., 2004; Cox et al., 2005) where expression of oncogenes can be increased by copy
number amplifications and tumor suppressor genes can be suppressed through heterozygous or
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homozygous deletions. On a genomic level, recurrent patterns of
CNVs are observed in a number of cancer types and have been
associated with cancer prognosis and development (Zack et al.,
2013).

While traditional karyotyping and various DNA hybridization
techniques had provided insights into specific CNV events,
the systematic, genome-wide screening for CNV emerged in
the 1990s as a reverse in-situ hybridization technology termed
“comparative genomic hybridization” (CGH; Kallioniemi et al.,
1992; Joos et al., 1993). Chromosomal CGH allowed the semi-
quantitative profiling of copy number changes over complete
(tumor-)genomes. However, the technology was limited through
its chromosomal banding based low resolution (Bentz et al.,
1998) and only indirect association of CNV events with
putative target genes. The hybridization of tumor (or germline)
DNA to genome-spanning matrices was refined through the
use of substrates (“arrays”) containing thousands to more
than 2 millions of mapped DNA sequence elements (Solinas-
Toldo et al., 1997; Pinkel et al., 1998), now allowing the
direct association of the experimental read-out to specific
genome features. A variation of this principle, SNP (single
nucleotide polymorphisms) based arrays (Wang et al., 1998),
originally developed for the detection of allelic variations within
populations, was rapidly adopted for CNV detection and allelic
decomposition analysis in cancer (Zhao et al., 2004). Nowadays,
Next-Generation Sequencing (NGS) techniques are increasingly
adopted to detect copy number variations, Zare et al. (2017), Li
et al. (2018), and Zhang et al. (2019) although technologies with
coverage below shallow whole genome sequencing (Macintyre
et al., 2016) show reduced utility for the analysis of CNV
events when compared to high-density arrays. Regardless of
their technical heterogeneity, a large number of CNV data has
been generated in the past three decades, which represents an
invaluable asset for genomics studies.

Spurred by an increasing interest in genomic heterogeneity
as well as mutational patterns shared across tumor types, the
exponential growth of available cancer CNV profiling data
stimulated the study of patterns in the context of meta-analyses
and large consortia studies, across multiple groups of tumors
(Beroukhim et al., 2010; Grasso et al., 2012; Stephens et al., 2012;
Ciriello et al., 2013;Wang et al., 2013; Zack et al., 2013; Zhao et al.,
2013; Juhlin et al., 2015). The majority of the studies focused on
finding either associations to cancer driver genes or the impact
of focal regions in specific tumor types. As a result, the CNA
patterns were often characterized by the coverage of driver genes
in contrast to comparative analyses of the whole genome. While
this approach can provide direct connections to the established
theories, it also bears two drawbacks. First, the distribution of
cancer driver genes is extremely skewed: a few hallmark drivers
are responsible for a large percentage of tumorigenesis, while a
long-tail of rare or putative drivers are reckoned to be the cause
of the rest (Hou and Ma, 2014). Second, besides the association
with somatic mutations, researches have also discovered different
facets of CNA in their relations to cellular regulations and
genome dynamics (Conrad et al., 2010; Völker et al., 2010;
Chen et al., 2014; Mishra and Whetstine, 2016). Therefore, CNA
patterns that solely rely on driver genes often lack the capacity

to embrace the full spectrum of the aberrations. To generate
CNA patterns, which capture their multitude of uniqueness, it
would be more comprehensive to abstract by the aberrations’
characteristics, rather than using focal regions that overlap with
driver genes.

In translational research, an imminent goal of studying the
CNA patterns of different cancers is to gain insight in designing
new therapeutic protocols. Recently, the discovery of circulating
cell-free DNA (cfDNA), which presents a potential for early-
stage and non-invasive cancer detection, attracts the attention
of both the academia and the industry (Pathak et al., 2006; Li
et al., 2017; Phallen et al., 2017; Panagopoulou et al., 2019).
While many cfDNAmethods in cancer detection are focusing on
somatic mutations, it is believed that the ultimate solution would
come from an ensemble of different genomic aberrations (Huang
et al., 2019). One of such aberrations is CNA in cancers that
bear high burdens of copy number mutation. Large-scale cancer
genome studies have illustrated the recurrent CNA patterns
across different types of cancer. Several studies have employed
CNA of cfDNA as biomarkers and demonstrated their potential
in identifying cancer types and tissues of origin (Leary et al.,
2012; Dawson et al., 2013; Heitzer et al., 2013). As an emerging
field, the accurate identification of genomic abnormalities and
classifications of the cfDNA yet remains challenging, and the
characterization of CNA patterns across cancer types would
provide a valuable piece of the solution to the puzzle.

Due to the technical heterogeneity and underlying biological
variability, the meta-analysis of multi-platform cancer CNV data,
which is necessary for comprehensive “pan cancer” studies, also
poses great challenges in data integration and normalization (Gao
and Baudis, 2020). In this study, we have assembled a collection of
56,077 CNA profiles and created the CNA signatures of 31 cancer
subtypes, where each signature represented the CNA landscape
of a specific cancer group. The signatures were generated from a
computational pipeline (Figure 1), which unifies heterogeneous
data and is powered by a hybrid model of neural networks and
attention algorithm. Using the signatures, we also constructed a
multi-label classifier of cancer types and tissues of origin from
copy number segmentation data. The result illustrates the genetic
uniqueness of CNA in different cancer types and demonstrates
the potential of CNA signatures in tumor identification.

METHOD

Data Integration
In this study, we integrated CNA profiles of tumor samples
from three prominent resources. Progenetix (Cai et al., 2013) is a
curated resource targeting copy number profiling data in human
cancer. It features a large collection of data from different tissues
and platforms. The Cancer Genome Atlas (TCGA) (Hutter and
Zenklusen, 2018) represents a comprehensive cancer genomics
initiative that generated standardized molecular profiling data
for a wide range of cancer types. The Pan-Cancer Analysis
of Whole Genomes (PCAWG) represents an initiative from
the International Cancer Genome Consortium (ICGC) for the
uniform analysis of a representative set of cancer samples using
Whole Genome Sequencing (WGS) (Campbell et al., 2020). All
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FIGURE 1 | The workflow of the study was composed of three parts. The Features part consisted of methods of data integration and feature generation. The

Signature part focused on creating CNA signatures for cancer subtypes and the categorization of subtypes. The Classification part recruited machine learning

techniques to predict the organ and the subtype from a given copy number profile.

three repositories provide publicly—though with the exception
of Progenetix—partially access-controlled genomic data together
with clinical information and diagnostic classifications. The
initial collection consisted of 56,077 samples, representing an
accumulation of CNA data from a wide range of tumor types and
technological platforms.

When integrating data of high diversity for analyses, two
major technical challenges can be encountered. First, genomics
studies performed over the last decade will have applied different
reference genome editions in their analysis pipeline, leading to
shifted coordinates in results such as CNV segments. It is crucial
to convert all data to the same coordinate system when analyzing
data from multiple studies through a remapping procedure.
However, unlike with SNP or other types of mutations involving
short DNA sequences, applying standard remapping tools such
as liftover (Kuhn et al., 2013) would result in a considerable
information loss when converting copy number data, due to
the occurrence of disruptive remapping in a relevant proportion
of CNA segments. We previously addressed this problem with
the development of a generic tool named segmentLiftover, to

convert CNA data with high efficiency and minimized data
loss (Gao et al., 2018). Second, regardless of the underlying
technology, genomic copy number data is derived from the
relative assessment and integration of multiple signals, with the
data generation process being prone to contamination from
several sources. Estimated copy number values have no absolute
or strictly linear correlation to their corresponding DNA levels,
and the extent of deviation differs between sample profiles, which
poses a great challenge for data integration and comparison in
large scale genome analysis. To tackle this problem, we designed
a method called Mecan4CNA (Minimum Error Calibration
and Normalization for Copy Numbers Analysis) to perform a
uniform normalization (Gao and Baudis, 2020).

In the integration pipeline, samples were first converted
to GRCh38(Hg38) using segmentLiftover. Then, the values
in the sample were aligned to the corresponding true copy
number levels of the main tumor clones using Mecan4CNA.
For each step, a quality control protocol was set up to
filter out samples carrying a low number of alternations,
causing ambiguity in interpretation, or such having incomplete
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TABLE 1 | The data composition in the final dataset after quality filtering.

Source Samples Topographies Morphologies Platform

Progenetix 31,805 63 197 SNP6, CytoscanHD,

250 K, and others

TCGA 11,287 139 137 SNP6

PCAWG 1,896 68 25 WGS

Total 44,988 271 211 –

diagnostic information. The details of the integration are
elaborated in Supplementary Implementations. In the end,
a normalized dataset of high-quality samples was generated,
which consisted of 44,988 tumor samples covering 271 ICDO-
topography terms and 211 ICDO-morphology terms (Table 1).

Feature Representation
All copy number data can be represented in a platform-
independent format of genomic segments, where each segment
represents a continuous region on a chromosome. As the
segments vary dramatically in platform-dependent resolution,
reported size, and biologically supported thresholds (Krijgsman
et al., 2014; Hastings et al., 2016), a pragmatic approach for cross-
study normalization lies in the creation of equally sized genomic
bins and mapping of segment data into those. This method is
elastic on the number of generated bins (features); therefore, it
cooperates well with follow-up computational models that are
sensitive to the feature numbers. However, the binning method
disregards the uneven distribution of genes and does not capture
any functional or structural information of the genome, thereby
limiting biological correlations between features and the final
model.

Another straightforward approach is to use the coverage
of protein coding genes to represent each segment. This
method provides inherent connections to genetic functions;
however, direct mapping to protein coding genes overlooks the
structural impact of CNA and also results in a large number
of features, which are often difficult for machine learning
methods to perform in optimal. In this study, we designed a
two-phase approach to generate a refined gene panel as the
feature representation, so that the noise and redundancy of the
feature space could be reduced with consideration to functional
significance. In the first phase, CNA segment data was mapped
to cytobands, which represent “genomic phenotypes” correlated
to gene density and chromosome structure and provided a
good balance between feature number and genomic resolution.
The cytobands features were then added to a hybrid model
of Autoencoder and Layer-wise Relevance Propagation (LRP)
to perform a feature extraction, which generated a panel of
cytobands with high separation power. In the second phase,
the selected cytoband features were denormalized to the protein
coding genes from each band. Finally, another iteration of the
feature selection process was performed to arrive at a selection
of genes that contribute to the distinctiveness of individual
sample profiles.

Feature Extraction
Autoencoder
An autoencoder is an unsupervised neural network that can
derive abstracted representations from data. It usually consists of
two parts, an encoder and a decoder, and both are also neural
networks on their own. The input is first transformed to an
encoding, then restored to its original by the decoder. The aim
of an autoencoder is to reconstruct the input as exact as possible,
and in the process, it learns a representation (encoding) of the
input. It’s typically used for dimensionality reduction and to
remove noise from signals (Feng et al., 2014; Gondara, 2016; Pei
et al., 2020).

An autoencoder possesses several features that are suitable
for our research. Its ability to remove noise is well-suited to
limit the amount of “noise” from true passenger mutations,
which may represent a considerable part of the copy number
variations in tumors but do not have a functional impact.
In the process of restoration, the encoding is able to capture
the traits and distinguishing details, which is ideal for sample
characterization in terms of their individual uniqueness. Finally,
as a neural network, it can benefit from the extensive collection
of heterogeneous data through its generalization capability.
In this study, four different autoencoders (basic, denoising,
sparse, and contractive autoencoders) were compared on their
abilities of input reconstruction. The denoising and contractive
autoencoders showed the best performance in the restoration of
CNV data, and the denoising autoencoder was chosen for its
efficiency in implementation. The details of the comparison are
elaborated in Supplementary Implementations.

Layer-Wise Relevance Propagation
Layer-wise Relevance Propagation (LRP) is a technique to scale
the importance and contribution of input features in a deep
neural network. It utilizes the network weights and activation
functions to propagate the output backward until the input. The
basic propagation rule is illustrated as the following:

Rj =
∑

k

ajwjk
∑j

0 ajwjk

Rk

Here, j and k are two neurons from two adjacent layers. a is
the activation of a neuron, and w is the weight between two
neurons. The initial R is known from the output, and this formula
is iterated to compute R for each neuron in the previous layer
until reaching the input layer. LRP provides a solution to the
“black-box” problem of deep neural networks, and is especially
useful in tracing the network attentions and understanding the
network behavior. In our hybridmodel, we exploited LRP’s ability
to quantify the importance of input features in distinguishing
different samples. When an autoencoder can reconstruct a large
number of inputs with high accuracy, it provides an encoding
that carries the information to recognize the differences between
samples. If we apply LRP to this encoding, we would be able to
measure the importance of each feature in the encoding.
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The Hybrid Model
A primary goal of the research was to investigate the similarity
and differences of CNA between cancers, through CNA feature
dimension reduction toward an optimal representation of the
uniqueness of each sample. In our hybrid model, we combined
autoencoder’s ability to recognize differences and the LRP’s ability
to scale feature relevance. First, the transformed feature matrix
was used as the input data for the training of a denoising
autoencoder. Then, the encoding generated by the autoencoder
was used as the input of LRP to compute the weightings of each
feature in the initial feature matrix. Next, the weightings of each
feature were summed and normalized for all samples. Finally,
by applying a threshold, we obtained a panel of high weighting
features representing the uniqueness of each input sample.

In the two-phased feature extraction, the hybrid model first
returned a panel of cytobands with high weighted CNA coverage;
then, the hybrid model was utilized on the new feature matrix
(CNA coverage on protein coding genes of the high-weighting
cytobands), to calculate a panel of high-weighting genes as a
representation of each sample’s feature space. Table 2 shows
the resulting feature numbers for each step. The details of the
procedures are provided in Supplementary Implementations.

Signature Generation
A Dataset of Major Cancer Types
To derive the genomic characteristics of different cancer types,
it is important to utilize accurate, systematic mappings between
samples and disease classifications. Following the standardized
protocol set up for the Progenetix and arrayMap resources (Cai
et al., 2013, 2015), all samples were labeled usingmorphology and
topography defined by International Classification of Diseases for
Oncology (ICD-O 3) (World, 2013). The complete data collection
included 211 unique morphology (ICDOM) and 271 unique
topography (ICDOT) terms. While the combination of ICDOM
and ICDOT terms in principle can result in detailed disease
classifications, the granularity of available sample descriptors
varied dramatically between different studies. For example,
while some samples were annotated as “epidermoid carcinoma,
keratinizing” at “lower lobe, bronchus,” for other pulmonary
carcinomas a more general “squamous cell carcinoma” of the
“lung” was available in the input data. Also, the number of
samples mapped to individual classification terms was extremely
imbalanced. For example, while “infiltrating duct carcinoma of
breast” was available with more than 5,000 samples, “mucinous
adenocarcinoma of lung” only was represented with 14 samples.
For the sake of statistical validity and to minimize small-batch
effects, we decided to focus on a data subset of 11 major
organ systems with abundant samples and reliable copy number
mutation content.

Signatures of Cancer Subtypes
After the two-phase feature extraction, we obtained a panel
of genes, which drastically reduced the feature space to the
signals of 927 genes. For any given sample, a small subset of
the genes from this panel reflects its “signature” mutations and
is able to represent the uniqueness of the sample against all
other samples. When aggregating the samples of a disease type,

TABLE 2 | The number of features before and after each extraction phase.

Phase Step Representation Features

Phase 1
Input Cytobands 1,622

Output Cytobands 159

Phase 2
Input Genes 3,029

Output Genes 927

Cytoband features represent CNA occurrence on cytoband locations. Gene features are

CNA coverage of protein coding genes, on the selected high weighted cytobands.

we should be able to identify a subset of feature genes that
are significantly altered in this disease (implementation details
in Supplementary Implementations). Thus, we could use this
subset of feature genes and their intensities as the CNA signature
of the group. However, as mentioned in earlier sections, the
samples were not labeled with the same granularity. For the
clarity of analyses, samples of similar signatures were grouped
together with a consistent label. First, samples were grouped
into subtypes by the combination of their topography and
morphology. Subtypes with <50 samples were removed. Then,
the signature of each subtype was generated and the Pearson’s
correlation coefficient of signatures was computed for subtypes
of the same organ. Next, for each organ, subtypes of the same
morphology level were merged into a more general morphology
term if their correlation is >0.9. Similarly, a subtype with a more
detailed morphology is merged into another subtype of a more
general morphology if their correlation is >0.9. Finally, a dataset
with refined disease labels was produced, which consisted of
22,671 samples covering 11 topography (organs) and 31 cancer
subtypes. Table 3 shows the number of selected samples and
subtypes in each organ. The complete table of subtypes and the
merging are presented in Supplementary Subtypes.

Classifiers of Subtypes and Organ
Involvement
The compact feature panel and the curated labels provided us an
opportunity to apply machine learning methods of classification
performance. We constructed a multi-label classifier using
the signature genes and their normalized signal intensities as
features, and the subtype of each sample as labels. The primary
challenge of building a multi-label classifier came from the
extremely imbalanced number of samples in different classes,
because the classifier would be significantly biased by the
classes with a high number of samples. To create a robust
classifier, we first applied undersampling on classes with a
high number of samples and oversampling on classes with a
low number of samples, so that the number of samples in
each class became relatively balanced. Then, we recruited a
random forest to learn and predict the subtypes. In addition
to the prediction of subtypes, we were also able to evaluate
the classifier’s performance on predicting samples’ organ of
origin by mapping the subtype labels from predictions to the
corresponding organ labels. Comparing with the approach that
directly used the organ of each sample as labels in training, the
subtype mapping method showed an improved performance.
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TABLE 3 | The number of samples and cancer subtypes in the studied organs.

ICDO topography Samples Subtypes

Breast 6,255 3

Lung 3,968 5

Brain 2,808 5

Ovary 2,128 3

Colon 1,832 4

Kidney 1,385 2

Stomach 1,303 5

Skin 1,238 1

Prostate 1,198 1

Cerebellum 1,111 1

Liver 673 1

The implementation details of the model and comparisons are
presented in Supplementary Implementations.

RESULTS

CNA Signatures
By using the data processing and modeling procedures described
in the Method section, we generated a panel of feature genes
from the collected CNA samples. Then, with the feature genes,
we were able to create an abstract representation for each copy
number profile, where only alternations that contributed to the
distinctiveness of the sample were preserved. Figure 2 compares
the original CNA patterns with the derived signature features
where the frequent and extensive regional alterations in the
original data have been replaced by a small number of feature
genes, which visibly compare to subsets of characteristic changes
in the original CNA data and represent the most discriminative
alternations. With our methodology, ubiquitous alterations such
as deletions on the short arm of chromosome 8 (Figure 2) are
considered “non-typical” and therefore are not represented in the
abstracted signatures.

While the complete panel of feature genes provides the feature
space for the whole of analyzed samples, in each individual
sample only a small subset of these features reflects the sample’s
own mutations. By aggregating samples from individual cancer
subtypes, we were able to deduct the set of subtype related,
significantly altered feature genes and could generate the CNA
signatures of 31 cancer subtypes. Every signature consists of
a subset of the general feature genes and their relative signal
intensity comparing to other signatures. Figure 5 illustrates parts
of the signature of medulloblastoma, glioma, and melanoma.
The complete list of signatures in all subtypes are included in
Supplementary Signatures.

In the majority of copy number studies, analyses of tumor
samples are focused on identifying the driver genes or the focal
regions. However, in this study, the frequent drivers such as TP53
and PTEN, and the common aberrations such as CDKN2A/B
and MYC are removed due to their prevalence. The genes in the
signatures rather reflect the uniqueness of each sample or each
cancer subtype. It is importance to note that the feature genes

are not intended as the only nor the optimal representation. The
fundamental objective of the study is to explore the potential
driver mutations that are infrequent but relevant to specific
cancer types. Although the signatures do not imply pathogenic
causation, we can instead reveal their potential implications
and correlations by investigating the signatures and the feature
genes (Figure 6). In general, spatial and annotation analysis
suggest that some feature genes reflect structural and functional
alternations in samples; the signatures of different subtypes show
high preference in several genomic regions that suffer frequent
CNAs in many cancer types; and some subtypes, which have
distinct disease codes, exhibit high similarity in their signatures.

Focal and Regional Feature Groups
The vast number of CNAs in cancer distribute in a wide spectrum
of sizes, ranging from several kilobases to entire chromosomes.
Recent research showed they are neither randomly nor uniformly
distributed (Beroukhim et al., 2010; Mermel et al., 2011).
Regarding their individual extent, CNAs can be categorized into
two primary groups: they are either focal, affecting a region
with a limited set of potential target genes, or very large and
covering an extensive fraction of a chromosome. It has been
found that—in general—these two groups of CNAs are caused
by different biological mechanisms and can play different roles
in tumorigenesis (Pihan et al., 1998; van Gent et al., 2001;
Hastings et al., 2009). Focal CNAs usually arise from errors
during DNA repairs and can suppress or promote the affected
genes. On the other hand, chromosome level CNAs usually arise
from errors during mitosis and can lead to dramatic structural
aberrations, also involving large numbers of genes. Therefore, it
seems important to explore the distinctions of focal and larger
CNAs among the signatures’ features.

In studies of focal and large CNAs, no strict consensus on exact
size the limits exists though general practice is to use an upper
limit of 1–3 Mb for “focal” events (Bignell et al., 2010; Krijgsman
et al., 2014) while others used a proportional cut-off such as
90% of a chromosome arm for “chromosomal” CNA (Beroukhim
et al., 2010; Mermel et al., 2011). Because the signature feature
genes are the simplification of the original CNA landscape, all
chromosome arm level variations have been reduced to much
smaller representations. Instead of studying arm-level CNAs, we
merged adjacent feature genes within the distance of 5 MB to
construct regional features, which indicates the high frequency
and significant discriminative weightings of the covered region
and the nearby regions. Feature genes, which are away from
others for more than 5 MB on both ends, were considered
focal features. After merging, the 927 signature genes were
separated into 15 focal features and 43 regional feature groups.
Figures 3A,B show the distributions of the different feature
groups on the entire genome by their types and sizes. As expected,
there are more regional feature groups than focal features in
the merged feature space in both amplifications and deletions.
This is because high-frequency focal CNAs were removed in
the process of feature selection for their weak discriminating
abilities. Among the regional groups, there are 50% more small
regions (<5 MB) than large regions, especially in the deletions.
It suggests that the small regions may represent the difference
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FIGURE 2 | The copy number alternation landscape of all samples using the original CNVs and the feature genes. The feature genes are able to dramatically reduce

the complexity of CNA signals while maintaining the mutational characteristics. The blue colors above the chromosome axis represent the average amplifications, and

the red colors below the chromosome axis represent the average deletions. The amplitude of amplifications and deletions are normalized to [0,1] separately.

of the original arm level alternations between different cancer
subtypes. Although at a lower frequency, the size of large regional
groups can extend up to 200 MB, which strongly suggests that
they represent distinctive arm-level events at these loci. Spatially,
the large regions often occur exclusively and do not overlap
with the same or the other type of CNVs. As illustrated in
Figure 3C, the large regional groups are mostly of low amplitude
(the average of normalized CNV log-ratios across all samples);
and no significant correlations with the amplitude are observed
between different groups or types. The analysis of regional
and focal features’ patterns across a large number of samples
and cancer types confirmed and agreed with observations
in several previous studies (Baudis, 2007; Beroukhim et al.,
2010; Zack et al., 2013; Mishra and Whetstine, 2016). The
size distribution of merged feature groups also provided
important implications to the underlying representation of
different features.

Functional Implications of the Feature
Genes
A cardinal concept in this study was to describe cancer subtypes
using CNAs based on their uniqueness and discriminating
ability, instead of their frequencies. The selected feature genes
usually exhibited different patterns in either their presents
or variation amplitude between different subtypes. As a
result, the final features mainly included non-focal and less
prevalent genes that do not play known central roles in
tumorigenesis. However, it is still interesting to investigate the
feature genes by their annotations and discuss their potential
functional meanings.

The HGNC (HUGO Gene Nomenclature Committee) gene
families are defined based on evolutional and functional
homologies (Daugherty et al., 2012). Table 4 lists the significantly
over and under expressed HGNC families, where the family
has <0.05 p-value in Binomial test and includes at least five
feature genes: (1) The immunoglobulin heavy chains related
genes showed the highest significance. Although the mutations
of these genes are known to play causal roles in B-cell
related malignancies (Nishida et al., 1997; Othman et al.,
2016), surprisingly, accumulating evidence has also shown their
frequent overexpression in epithelial cancers (Babbage et al.,

2006; Hu et al., 2008). Though their functions and mechanisms
in oncogenesis are still not well understood, several studies have
demonstrated their tumor-promoting impacts and observed their
prognostic implications in breast cancer and ovarian cancer
(Lee and Ge, 2009; Hu et al., 2011; Larsson et al., 2020).
(2) Olfactory receptors are one of the largest gene families in
the human genome. Similar to immunoglobulin genes, their
overexpression has also been observed in various cancers and

is often neglected in genomic cancer studies because of their
specific role (Weber et al., 2018). However, recent studies have
begun to reveal their functional roles and prognostic potentials

in prostate cancer and breast cancer (Ranzani et al., 2017; Li
M. et al., 2019; Masjedi et al., 2019). (3) The tripartite-motif
(TRIM) family proteins are involved in a variety of biological

processes including transcriptional regulation, cell growth and
apoptosis, and their dysregulation has been extensively linked
to cancer risk and prognosis (Hatakeyama, 2011; Jaworska et al.,
2020; Mandell et al., 2020). (4) The HOXL subclass homeoboxes

are overexpressed in amplifications and underexpressed in

deletions. The family consists mainly of HOX genes, which are
master regulatory transcription factors in embryogenesis, cellular
development, and issue homeostasis (Li B. et al., 2019). Recent
researches have shown that depending on the type of the tumor,
the expression of HOX genes may be increased or decreased
and play roles in oncogenesis or tumor suppression (Shah and
Sukumar, 2010; Bhatlekar et al., 2014; Brotto et al., 2020). (5)
Keratin-associated proteins have no confirmed role in cancer. (6)
The combined actions of glycosidases and glycosyltransferases
constitute the primary catalytic machinery for the synthesis and
breakage of glycosidic bonds. The aberrant glycosylation patterns
are often considered a hallmark of cancer, which promotes
tumor proliferation, invasion, and metastasis (Bernacki et al.,
1985; Sandrine and Juillerat-Jeanneret, 2006; Andergassen et al.,
2015; Wu et al., 2019). (7) Intermediate filaments proteins are
often used as diagnostic markers in cancer, because changes
in their expression patterns are often associated with tumor
progression and cancerous cells usually partially retain their
original structural signatures (Strouhalova et al., 2020). Several
recent studies have reported their active roles in tumor invasion
and metastasis (Holle et al., 2017; Sharma et al., 2019). (8) Zinc
fingers C2H2-type family is the largest group of transcription
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FIGURE 3 | (A) The distribution of focal and regional feature groups on the genome. The groups were generated from the 927 feature genes, where genes within 5

million-bases were merged into a group. The position of the mark was determined using the center of the group or gene. The size of the mark was determined by the

length of the group or gene, in the unit of million-bases and a minimum size of 1 MB. (B) The length distribution of feature groups. (C) The amplitude of feature groups

in 31 studied cancer subtypes. The values were computed using the average of the normalized CNV log ratios of all samples in each subtype. On the x-axis, F

denotes focal, R denotes regional, the number denotes chromosome name.

factors in humans. A number of studies have revealed that
aberrant expression of C2H2 proteins promotes tumorigenesis
with various roles in several cancer types (Jen and Wang, 2016;
Munro et al., 2018).

The functional background of the significantly expressed
HCNC families reveals several exciting aspects of the feature
genes. First, the features consist of biomarker genes, which
are frequently and abnormally expressed in many cancer types.
Although their exact mechanisms in tumorigenesis are not
fully understood, many studies have confirmed their functional
roles and prognostic correlations in cancer. Second, the features
describe functional aberrations by including several families
that are related to transcriptional regulations. Previous studies
have shown the high correlation of CNAs and differential gene

expression in cancers (Shao et al., 2019; Bhattacharya et al., 2020),
and partially elucidated their involvement in tumor development
and progression. Finally, the features include hallmark signatures
in invasion and metastasis, which are crucial indications of late-
stage cancer progression. They are more likely to represent the
consequence of other mutational activities rather than the direct
impact of CNAs.

In summary, the analysis of feature genes agreed with a
variety of previous research in their cancer-promoting or related
roles and suggested the potential rationales behind the features.
It also confirmed that malignant cell transformation is often
an orchestrated process of many interplaying parts. While
important driver mutations can signify the milestones in tumor
development, the minor mutations during the development
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TABLE 4 | The significant HGNC gene families of the 927 feature genes, where

the family is covered by at least five genes and with the Binomial test <0.05.

HGNC family Type P-value Potential impact

Immunoglobulin heavy locus

at 14q32.33

AMP 3.18E-08 Increased IGH expression,

prognostic correlations

Olfactory receptors, family

52

AMP 6.83E-06 Increased OR expression,

prognostic correlations

Tripartite motif containing AMP 3.71E-04 Transcription, cell growth,

apoptosis

Olfactory receptors, family

51

AMP 7.10E-04 Increased OR expression,

prognostic correlations

HOXL subclass

homeoboxes

AMP 1.83E-03 Oncogenesis,

tumor suppression

Keratin associated proteins AMP 4.11E-03 N/A

Glycoside hydrolases AMP 9.84E-03 Invasion,

metastasis

Glycosyltransferases AMP 3.26E-02 Invasion,

metastasis

Intermediate filaments AMP 3.44E-02 Invasion,

metastasis

Zinc fingers C2H2-type AMP 3.50E-02 Transcription,

multiple roles

ANTP class homeoboxes DEL 4.40E-05 Oncogenesis,

tumor suppression

can also provide valuable characterization to specifics between
different cancer types.

Discriminative Genomic Loci
Since feature genes represented the uniqueness of individual
samples, it is expected that they would distribute exclusively
among different subtypes in general. Interestingly, while most
of the features are sparsely distributed, there are also a few “hot
zones,” which are frequent CNV regions in general, that are
commonly included in many signatures with high significance.
Figures in the Supplementary Distribution Density illustrate
the distribution and frequency of duplication and deletion
feature genes separately. Figures on the first row are plotted
using the full panel of feature genes, and figures on the
second row are plotted using feature genes from all signatures
(i.e., significantly high frequency). The most prominent
feature genes among subtypes are those representing
duplications on chromosome 7 and 8. Specifically, the
feature genes are distributed in groups in several regions:
chr7:28,953,358–34,878,332 and chr7:49,773,638–50,405,101
on the p arm of chromosome 7; chr7:91,692,008–93,361,123,
chr7:105,014,190–117,715,971, chr7:129,611,720–130,734,176,
and chr7:148,590,766–152,855,378 on the q arm of chromosome
7; chr8:47,260,878–50,796,692, chr8:51,319,577–54,871,720 and
chr8:112,222,928–138,497,261 on the q arm of chromosome
8. As shown in Figure 2, chromosome 7 and 8 contain
the most frequently duplicated regions among all studied
cancer types. Despite their common existence, analysis of
individual signatures and samples reveals three patterns
that may explain their prominence in features: first, on the
two chromosomes, samples often have large duplications.

The aggregated signals in individual subtypes usually show
high alternation frequency of the whole region and pose a
plausible hint of frequent chromosome or arm level events.
Second, the spans of duplications differ among subtypes. For
example, the signature of melanoma consists of feature genes
covering the entire chromosome 7 and 8; the signature of lung
adenocarcinoma consists of feature genes only on the p arm of
chromosome 7, and the signature of ovary carcinoma consists
of feature genes only on the q arm of chromosome 8. Third, the
alternation amplitude of the feature genes also shows distinctive
patterns among subtypes. The subtle difference in the scale
and amplitude of CNV on chromosome 7 and 8 suggest that
aberrations of these hot regions may play differentiating roles in
different cancers.

Similar to duplications, the most common deletion features
distribute on three regions on chromosome 18: chr18:2,916,994–
7,117,797 on the p arm; chr18:58,481,247–60,372,775 and
chr18:69,400,888–70,330,199 on the q arm. Different from
duplications on chromosome 7 and 8, the deletions on
chromosome 18 show a similar pattern of high amplitude
deletions on the entire chromosome 18, where feature genes on
the p arm suggest a one-copy deletion on average, and feature
genes on the q arm indicate frequent homozygous deletions.
Interestingly, the deletion features on chromosome 18 are usually
mutually exclusive to the deletion features on chromosome 10,
which are under high pressure of chromosome level deletions
in several subtypes. Previous studies have observed strong
correlations of deletions on chromosome 18 and chromosome
10 to the progression of several cancer types. Other analyses
have investigated their functional impacts and suggested the
presence of several tumor suppressor genes (Bax et al., 2010;
Xie et al., 2012; Kwong and Chin, 2014; Shao et al., 2019).
Another hot zone of deletion features locates on the q arm
of chromosome 22 (chr22:48,489,460–48,850,912). High-level
deletions are frequently observed and selected as features inmany
subtypes. Different studies have shown similar observations of
frequent deletions on chromosome 22, however, the mechanism
of the deletion is still obscure and the functional impact remains
putative (Castells et al., 2000; Morikawa et al., 2018).

Besides high prevalence, the feature “hot zones” also exhibit
a higher copy number alternation level than average features.
As shown in Figure 4, the average copy number alternation
levels are far greater in these regions than in aggregated features:
56% higher in amplifications, and 70% higher in deletions.
Furthermore, several hot zones and the associated cancer types,
including the frequent amplifications near the centromere of
chromosome 7, on the q arm of chromosome 8, and deletions
closed to the telomere of chromosome 18, are in coherence
with the general CNA patterns identified in previous pan-cancer
studies (Beroukhim et al., 2010; Zack et al., 2013; McNulty et al.,
2019), which suggests these regions are related to high CNA
frequency. More specifically, some hot zones show correlations
with nearby driver genes, which are frequently observed with
high CNAs in cancers having high alternations in these hot zones.
First, the high alternations level on chromosome 7 hot zones are
in accordance with the overexpression of nearby EGFR, MET,
and BRAF genes in glioma, lung cancers, andmelanoma. EGFR is
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a well-studied oncogene in lung cancers and gliomas, MET is also
a frequent driver in lung cancers, and BRAF is a signature driver
gene in melanoma. A variety of studies have reported the CNA
amplifications at or near the hot zones, and investigated their
driver roles in these cancers (Taoudi Benchekroun et al., 2010;
Janjigian et al., 2011; Trombetta et al., 2011; Kang, 2013; McNulty
et al., 2019). Next, the frequent but relatively low-amplitude
hot zone on the q arm of chromosome 8 is correlated with
MYC, which is frequently amplified in numerous cancers. The
extensively amplified hot zones on the p of chromosome 8may be
associated with FGFR1 and IKBKB, which are often deregulated
by amplification in lung, colon, and bladder cancers. Studies of
copy number patterns in these cancers have shown the significant
correlations of increased gene expressions and amplification at
the hot zone regions (El Gammal et al., 2010; Moelans et al.,
2010; Weiss et al., 2010). Finally, the supporting evidence on
deletion hot zones are mostly prognostic instead of functional
confirmed, except on chromosome 10, where two frequent and
high-alternation hot zones are closed to PTEN. Although it is
one of the most common inactivated tumor suppressor genes in
cancers, the signal amplitude of these zones is in high consistency
with cancer types (gliomas, lung cancers, melanoma, and breast),
where the loss of PTEN is especially frequent and crucial (Milella
et al., 2015; Fusco et al., 2020).

Similarities of Neural Crest Originated
Subtypes
The signature based clustering of cancer subtypes (Figure 5)
shows that diseases in the same cluster usually also share
close ontologies. However, there is an interesting outlier,
which consists of medulloblastoma, melanoma, and glioma
(astrocytoma is a subtype of glioma). The three clinically and
topographically distant cancer types have signatures of high
similarity in both the selection of features and their alternation
frequencies. Figure 6 shows the comparison of the original CNV
data, the features and the known drivers of the three cancers
on chromosomes harboring similar signatures. Their signatures
exhibit high similarities in the duplication of chromosome 7
and the deletion of chromosome 10. They also share pairwise
similarities on the duplication of chromosome 1 and 20, and the
deletion of 9 and 14. For the three cancers, the most frequently
amplified chromosome 7 harbors several of the key oncogenes.
For example, EGFR, CDK6, and MET in glioma; KMT2C
and PMS2 in medulloblastoma; BRAF, RAC1 and TRRAP in
melanoma. The most frequently deleted chromosome 9 and
10 harbor several important suppressor genes. For example,
CDKN2A and PTEN in glioma; XPA, PPP6c, and CDKNA in
melanoma; PTCH1 and SUFU in medulloblastoma. Noticeably,
the CDKN2A/B deletion is the most frequent copy number
aberrations across all cancer types. Although the distribution of
driver genes shows a close correlation with the frequency and
amplitude of CNV, most drivers do not demonstrate signal peaks
nor overlap with the feature genes. Frequent duplications on
chromosome 1 and deletions on chromosome 14 do not show
direct correlations to common driver genes; however, a number
of studies have shown the connection of CNAs on these regions

to the progress and prognosis in these cancer types (Cross et al.,
2005; Parsons et al., 2011; Mathieu et al., 2012; Boots-Sprenger
et al., 2013; Cohen et al., 2015; Park et al., 2019).

In the 1990s, epidemic studies (Azizi et al., 1995; Desai
and Grossman, 2008; Scarbrough et al., 2014) first revealed
the connection between melanoma and tumors of the nervous
system: not only a familial association, which was confirmed
by germline mutations; but also a significantly increased risk
of one disease in people having a history of the other one.
Although there was evidence showing their potential common
pathophysiologic pathways and responsiveness to the same
drugs, the genetic connection of the two disease groups was
still largely unclear (Middleton et al., 2000). In spite of their
ontological difference, medulloblastoma, melanoma, and glioma
are all derived from the lineages of neural crest cells. Recent
studies of neural crest cells and the cancers from their lineage
cells suggest that malignant cells mimic many of the behavioral,
molecular, and morphologic aspects of neural crest development
(Jiang et al., 2011; Powell et al., 2014; Maguire et al., 2015).
Aberrations in tumor cells may lead to the reactivation of their
embryonic developmental programs and promote tumorigenesis
and metastasis. For example, the WNT family members,
which play import roles during the epithelial-to-mesenchymal
transition of neural crest cell, are reactivated during invasive
transformation in melanoma (Kovacs et al., 2016; Sinnberg
et al., 2018). In glioblastoma, experimental data suggests that the
dysregulation of the WNT signaling pathway supports the onset
of cancer stem cells, which assure the enlargement of the tumoral
mass and eventually the spread of metastases (Zuccarini et al.,
2018). In medulloblastoma, the WNT subgroup signifies one of
the four molecular subtypes of the disease (Doussouki et al.,
2019). In regions represented by the similar signatures, several
WNT genes exhibit abnormal amplification frequencies, which
are a potential reflection of the overexpression ofWNT signaling.
Specifically, WNT2B and WNT4 are covered by amplifications
of moderate frequencies, and WNT2, WNT3A, WNT9A, and
WNT16 are encompassed by amplifications of high frequencies.
WNT2 and WNT16 are signature genes in all three subtypes
implicating their prevalence among individual samples.

Another interesting result from the similar signatures is the
connection between melanoma and medulloblastoma, which
has dramatic differences in many biological aspects. For
example, medulloblastoma is considered primarily originated
from embryonal cells in early development. It mostly occurs
in children and usually has good prognosis outcomes. On the
other hand, melanoma is primarily caused by ultraviolet light
exposure. Its risk has a positive correlation with age and the
prognosis is usually very poor once passing the early stage of the
disease. However, besides their differences, all three cancer types
are notorious for their fast progression, high invasiveness and
wide metastasis. It’s possible that their common CNA signatures
are the imprint of their acquired cancer hallmarks instead of
their mutational characteristics. The combined evidence suggests
that different types of tumor may achieve their hallmark abilities
through different evolution paths (Gallik et al., 2017). The
acquired hallmarks exhibit a number of common genotypes
such as copy number aberrations, which are potentially the
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FIGURE 4 | The average copy number alternation level of the hot-zone features among different cancer subtypes. The values were calculated using the mean of the

normalized CNV log ratios of all samples in each subtype.

downstream result of primary mutation events that contribute to
the functional sustainability of tumor cells.

Classification of Subtypes and Organs
In the previous sections, we explored the implications of the
feature genes and cancer signatures. It is also interesting to assess
the robustness and usefulness of the feature genes in sample
classifications, especially when most of the primary driver genes
are excluded from the features. The identification of the origin
of a tumor sample is a challenging task that attracted significant
attention from both academia and industry. A great number
of computational methods have been proposed in recent years
to facilitate the early diagnosis of cancers from liquid biopsies
(Heitzer et al., 2013; Volik et al., 2016; Phallen et al., 2017; Wood-
Bouwens et al., 2017; Chin et al., 2019). Among the various
explored genomic aberrations, several studies have illustrated
the predictive effectiveness of copy number aberrations (Leary
et al., 2012; Dawson et al., 2013; Heitzer et al., 2013). In the
meantime, machine learning researchers have also proposed a
number of classification methods to predict cancer types using
copy number data (Zhang et al., 2016; Karim et al., 2020;
Liang et al., 2020). However, these methods usually utilized a
uniform dataset such as TCGA to investigate the feasibility of
the method and the performance of the model. They often lack
the generalization experiments to apply the method on data
that is not from the training data pipeline. Also, the goal of
machine learning researches usually focused on constructing a
classifier of high accuracy, whereas in this study, we focused on

exploring the unique and typical mutations in different cancer
subtypes. Therefore, we would like to use the classification results
of copy number signatures to demonstrate their potential in
the predictions of cancer subtypes and organs of origin from
liquid biopsies, and performed no direct comparisons with other
predictive studies.

In the prediction of subtypes, the model showed a wide
range of performance spectrum on different subtypes.
Figure 7A shows the confusion matrix of individual subtypes,
where the x-axis represents the true labels and the y-axis
represents the predicted labels. Specifically, the classifier
achieved good performance in predicting: breast intraductal
carcinoma, colon adenocarcinoma, brain glioma, cerebellum
medulloblastoma, cerebellum medulloblastoma, and kidney
clear cell adenocarcinoma, where the F1-score of individual
subtypes ranged from 0.72 to 0.67. On the other hand, the
prediction performance was deficient in several subtypes, such
as brain astrocytoma, stomach carcinoma diffuse type, and
colon mucinous adenocarcinoma. The complete metrics of
each subtype are included in Supplementary Performance.
Investigation on false negatives and false positives showed that
most of the false predictions fell into the subtypes that were
from the same organ and had significantly more samples. In
general, the performance of individual subtypes was positively

correlated with the number of samples (Figure 7C). The

difficulty in predicting some subtypes suggests that some clinico-

pathologically closed cancer subtypes share similar copy number
mutation patterns. While the copy number signatures showed
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FIGURE 5 | A clustering heatmap of features in 31 signatures. Columns are normalized average CNV intensities of feature genes, where the blue colors are

duplication features and red colors are deletion features. Duplication and deletion frequencies are normalized separately.

FIGURE 6 | The integrated view of the original data and the selected features, in the neural crest originating entities medulloblastoma, glioma, and melanoma. The

shaded background area color illustrates the original data. Color bars illustrate the feature genes, where brighter colors indicate stronger signal intensity. The blue

colors above the chromosome axis represent the average amplifications, and the red colors below the chromosome axis represent the average deletions. The

amplitude of amplifications and deletions are normalized to [0,1] separately. The adjacent known driver genes are also included for each tumor type.
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promising predictive potential for some cancer subtypes, data
from complementary genomic aberrations are needed for a
comprehensive model to classify similar subtypes.

In the prediction of organs, the model showed a more
consistent performance than in subtypes. Figure 7B shows
the confusion matrix of individual organs. Specifically, the
classifier achieved good results in predicting: brain, lung,
colon, cerebellum, ovary, and kidney, where the F1-sore of
individual organs ranged from 0.75 to 0.67. Although some
organs showed relatively low prediction accuracy, they all had
dramatic improvements compared with the prediction results
of the divided subtypes. The complete metrics of each subtype
are included in Supplementary Performance. In general, the
performance was also positively correlated with the total
number of samples in each organ (Figure 7D). In contrast,
the prediction results of organs showed a significant overall
improvement over the subtypes. For example, none of the lung
subtypes had a good performance in the subtype classification.
However, when combined, the lung achieved the second-best
performance (0.72 F1-score) in organ prediction. A similar
improvement was also observed for the stomach while the
prediction performance of breast had a drastic decline compared
with divided subtypes; the latter is further discussed in the
subsequent section.

In summary, our classification experiments indicated that
the copy number signatures have good potential in predicting
several cancer subtypes and organs of origin. However,
not all investigated subtypes and organs achieved satisfying
performance with solely CNA features, which confirmed the
need for ensemble strategies to identify unknown tumor cells’
type and origin. Moreover, the improved performance in organ
classifications suggested the correlations of CNA and organ’s
functional influence in tumorigenesis. In future research, it would
be interesting to further investigate the difference between organ-
specific CNAs and subtype-specific CNAs.

Heterogeneity Within Subtypes
The results of the classifier showed significant differences in
performance among different subtypes and organs. While some
of the under-performance may be attributed to the insufficient
number of samples, the false predictions of several classes
suggested the heterogeneity within these subtypes. As shown in
Figure 7A, for breast infiltrating duct carcinoma and cerebellum
medulloblastoma, the false predictions were widely distributed
over several unrelated classes. Figures 7C,D highlighted breast
infiltrating duct carcinoma, lung non-small cell carcinoma, and
lung adenocarcinoma as outliers of the correlation, where the
high number of samples did not improve but deteriorate their
performance.

Large-scale cancer genome studies have shown that tumors
from the cerebellum, lung, and breast usually carry high burdens
of copy number mutations (Beroukhim et al., 2010; Zack et al.,
2013). With the extensive number of CNA in these subtypes,
it is expected to be more challenging to identify key signals.
Genomic studies in the past two decades have revealed mutation
characteristics in these diseases, and established classifications
of their molecular subtypes. For example, medulloblastomas are
now commonly categorized into four subgroups: WNT, SHH,

G3, and G4. Similarly, breast carcinomas can be categorized
into four subgroups: Luminal A, Luminal B, Her2-enriched, and
basal-like. Studies of their mutational patterns showed distinct
markers and different mutation landscapes of each subtype, and
multi-omics studies further revealed the intrinsic complexity
within subtypes and suggested classifications of more subgroups
(Banerji et al., 2012; Curtis et al., 2012; Tyanova et al., 2016).
However, the majority of the samples in our dataset were labeled
by their morphology, with the molecular subtype classification
missing in the sample annotations. As a result, large diagnostic
groups such as “breast infiltrating duct carcinoma” could not
be further separated a priory, resulting in a common label
for breast carcinomas with the diagnostic subtype consisting
of 5,657 samples, over three times more than the second-
largest subtype. While we addressed these skewed overall subtype
sizes through the application of undersampling techniques, the
implicit mixture of different molecular subgroups provided an
inevitable impact on the association of diagnostic labels and CNA
based classifiers.

DISCUSSION

For this study, we assembled a large collection of cancer
CNA profiles with the aim to identify genomic aberration
signatures with specificity for individual cancer types. In order
to integrate technically diverse data, we developed innovative
tools for genome data conversion and signal normalization.
Targeting the identification of unique components in diagnosis
mapped CNA profiles, we were able to derive the CNA
signatures of 31 cancer subtypes, where each signature was
characterized by a minimal representation of genes with high
discrimination capacity. The signatures were further evaluated
to derive classifiers identifying tumor types and organs of
origin. The comparative analyses of signature genes and their
represented regions showed that duplications on chromosome
7 and 8, and deletions on chromosome 22 were the most
common aberrations among studied cancer types. However,
these regions also harbored features of high differentiating
power, which may indicate the functional significance of cancer
related genes with specificity for cancer-type related pathway
involvement.

While our feature genes exhibited certain correlations with
known driver genes, this itself does not provide direct evidence
of their functional significance. Feature genes could also be the
result of the downstream effects of mutational activities or be
co-opted as a representation of an aberrant region where the
pathogenetic activity is provided by different genomic elements
(Szalai and Saez-Rodriguez, 2020). In the analysis, we were
prudent to limit propositions of the impact of individual feature
genes.

Our analyses showed that three clinico-pathologically distant
cancer types—medulloblastoma, melanoma, and glioma—shared
CNA signatures of high similarity. Developmentally, the
three tumor types can be traced back to common lineages
of neural crest cells. Research of neural crest cells and
epidemiologic studies of glioma and melanoma have shown
sporadic evidence of their connections in cancer development,
but the genetic foundation of their association with respect
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FIGURE 7 | (A) The classification performance of individual subtypes. (B) The classification performance of individual organs. For (A,B), the x-axis are true labels, and

the y-axis are predicted labels. (C) The correlation between the performance and the number of samples in the classification of subtypes. (D) The correlation between

the performance and the number of samples in the classification of organs.

to oncogenetic processes is still elusive. Here, comparative
analysis of shared mutations together with improvements of
developmental processes in the corresponding normal tissues
may provide insights into shared pathologies and potential
therapeutic targets.

The studies on genomic classifiers demonstrated
the capacity and potential of CNA signatures in
tumor identification. However, while the multi-label
classification approach showed promising performance
in many cancers, in a few subtypes the performance
was deteriorated by the intrinsic heterogeneity of their
CNA profiles. Here we expect that future follow-up
studies with extended input data and employing different
ontology-based grouping strategies may lead to improved
performance and the potential emergence of better group
aggregations.

An essential challenge in the study was the integration
of data from varying genomic profiling platforms. During
normalization and quality control, we removed samples that were
ambiguous in interpretation or had an abnormal distribution of
signals. However, as a trade-off,many genomically heterogeneous
samples (e.g., aneuploid or containing CTLP) were removed in
the process. For future studies, complementary strategies should
be developed to include these samples without detrimental effects
on data normalization and quality. With respect to sample
annotation for histologic and diagnostic classifications, extensive
efforts went into the curation of the data with the aim to use
a unified set of classifications. Here, future analyses may make
use of emerging cancer specific ontologies for a better integration
of varying annotation granularities using hierarchical terms and
concepts. Currently, our research group is finishing a parallel
study on ontology mappings of cancer samples, and we are
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expecting a considerable improvement in the disease annotation
of samples in future studies.

In summary, this study presents a systematic pipeline for
integrative and comparative analyses of a large amount of
copy number data. The resulting CNA signatures offer new
perspectives on the understanding of common foundations in
cancers and show promising potential in applications of tumor
classification.
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