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Abstract: The aim of this study was to create a radiomics model for Locally Advanced Cervical
Cancer (LACC) patients to predict pathological complete response (pCR) after neoadjuvant chemora-
diotherapy (NACRT) analysing T2-weighted 1.5 T magnetic resonance imaging (MRI) acquired
before treatment start. Patients with LACC and an International Federation of Gynecology and
Obstetrics stage from IB2 to IVA at diagnosis were retrospectively enrolled for this study. All patients
underwent NACRT, followed by radical surgery; pCR—assessed on surgical specimen—was defined
as absence of any residual tumour. Finally, 1889 features were extracted from MR images; features
showing statistical significance in predicting pCR at the univariate analysis were selected following
an iterative method, which was ad-hoc developed for this study. Based on this method, 15 different
classifiers were trained considering the most significant features selected. Model selection was
carried out using the area under the receiver operating characteristic curve (AUC) as target metrics.
One hundred eighty-three patients from two institutions were analysed. The model, showing the
highest performance with an AUC of 0.80, was the random forest method initialised with default
parameters. Radiomics appeared to be a reliable tool in pCR prediction for LACC patients undergo-
ing NACRT, supporting the identification of patient risk groups, which paves treatment pathways
tailored according to the predicted outcome.

Keywords: radiomics; MRI; cervical cancer; pathological response; prediction model

1. Introduction

Cervical cancer (CC) represents the fourth leading cause of cancer death in women,
with 311,000 deaths in 2018 worldwide [1]. Treatment depends mainly on the stage of
the tumour at diagnosis, as assessed by the International Federation of Gynecology and
Obstetrics (FIGO) 2009 staging system [2].

Locally advanced stages are usually treated with external beam radiotherapy in
association with platinum-based chemotherapy (CRT) followed by brachytherapy boost [3].
Although survival rates for women with Locally Advanced Cervical Cancer (LACC) are
improving, one in three women develop local and pelvic recurrences, which supports the
hypothesis of residual disease presence after definitive chemoradiation therapy [4].
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Data suggest a role of neoadjuvant chemoradiotherapy (NACRT) followed by radical
hysterectomy to remove potential radio- and chemo-resistant neoplastic foci, which im-
proves local control in nonresponding patients [5–7]. Furthermore, pathological complete
response (pCR) was associated with higher disease-free and long-term survival [8–10].
Therefore, a pCR pretreatment prediction may have a significant impact on LACC patient
management by identifying tailored approaches for patient subgroups to achieve better
clinical results.

In this context, the application of medical imaging technologies has significantly devel-
oped during the last decade from a primarily qualitative analysis to a quantitative approach
disclosing an immense amount of information. The revised FIGO staging permits the use
of imaging and pathological findings, where accessible, to determine the stage. Regarding
imaging technique the revised FIGO staging allows any of the imaging modalities depend-
ing on the accessible sources, such as ultrasound, CT, magnetic resonance imaging (MRI),
positron emission tomography (PET), to give information regarding tumour dimension,
nodal status and local and systemic extension [11]. MRI is the best imaging technique
for the assessment of cervical lesions greater than 1 cm and it is recommended for initial
imaging evaluation when tumour dimension is greater than 2 cm, showing to be effective
for LACC staging and prognosis evaluation [12]. Different MRI sequences (T2WI, DW-MRI,
DCE-MRI) have been assessed as noninvasive biomarkers of treatment response with
variable and promising results [13–15]. In particular, T2-sequences and diffusion-weighted
imaging (DWI) have been studied in this setting. However, the role of DWI and apparent
diffusion coefficient (ADC), to monitor early treatment response in patients affected by
LACC undergoing CRT, is still controversial in literature [14,16]. Moreover, the future
direction in term of prognostic noninvasive biomarkers should include the combination
of different imaging technique such us US, CT, MRI and PET integrated with clinical and
histologic data.

Radiomics is to date a rapidly expanding field of clinical research, which gives the
possibility to quantify intratumoural heterogeneity in a high throughput and noninvasive
way, and offers the chance to individuate risk groups for single patients to allow tailored
treatment according to the predicted outcome [17–19]. Indeed, tumour heterogeneity
showed significant correlations with radiomics in a variety of cancer patients, including
cervical cancer [20–22].

Some preliminary studies reporting CC pretreatment experiences used MRI images to
characterise cervical lesions [13,14], to predict local response and to assess biological tumour
heterogeneity [23]. However, no studies have correlated pretreatment MRI radiomics and
histopathology in LACC patients treated with NACRT followed by radical hysterectomy.

The aim of this study was to investigate the potential role of MRI radiomics, used for
staging, to predict pCR following NACRT in LACC patients with different FIGO stages.

2. Materials and Methods
2.1. Patient Enrolment and Image Acquisition Protocol

Patients affected by LACC, with FIGO stage from IB2 to IVA, treated in two different
institutions, were considered for this retrospective analysis.

The cohort of institution A consisted of patients treated between 2007 and 2014; the
cohort of institution B included cases treated from 2005 to 2013. Inclusion criteria were
histological confirmed invasive carcinoma of the cervix, FIGO stage from IB2 to IVA, and
absence of distant metastasis (cM0). Patients younger than 18 years, without pretreatment
MRI, treated with palliative intent or those who did not undergo surgery for histological
confirmation of response, were excluded from the analysis. Table 1 summarises a complete
description of the cohorts investigated in this study.
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Table 1. Patient characteristics.

Institution A
(156 pts)

Institution B
(27 pts)

Age (Mean) 22–76 (50.2) 28–79 (54.2)

Histology
Squamous cell carcinoma 142 (91%) 23 (85.2%)

Glassy cell squamous
carcinoma 0 1 (3.7%)

Clear cell adeno-squamous
carcinoma 1 (0.7%) 0

Adenocarcinoma 12 (7.6%) 2 (7.4%)
Adeno-squamous 1 (0.7%) 1 (3.7%)

FIGO Stage
IB2 6 (3.8%) 2 (7.4%)
IIA 9 (5.8%) 2 (7.4%)
IIB 119 (76.3%) 21 (77.8%)

IIIA 6 (3.8%) 2 (7.4%)
IIIB 13 (8.4%) 0
IVA 3 (1.9%) 0

Nodal status
N0 75 (48.1%) 17 (63%)
N1 81 (51.9%) 10 (37%)

Pathological Response
pR0 66 (42.4%) 8 (29.7%)
pR1 45 (28.8%) 9 (33.3%)
pR2 45 (28.8%) 10 (37%)

pR0: absence of any residual tumour after treatment at any site; pR1: microscopic response as persistent tumour
foci of maximum dimension inferior to 3 mm; pR2: macroscopic response as persistent tumour foci with maximum
dimension exceeding 3 mm.

In both centres, a 1.5 T MR machine (GE Signa Exite, Little Chalfont, UK) was used
for imaging.

2.2. Treatment Workflow and Response Assessment

All patients underwent NACRT. Radiotherapy volumes were delineated according
to consensus guidelines [24]. Concurrent chemotherapy was administrated with cisplatin
alone or cisplatin plus 5-fluorouracil [25,26]. Radiotherapy consisted of 50.6 Gy administra-
tion to the primary tumour (PTV1) and 45 Gy to nodal drainage (PTV2) or 45 Gy to PTV1
and PTV2, according to the clinical disease stage. Restaging was performed 4–6 weeks after
NACRT completion with MRI and PET-CT. All patients underwent radical hysterectomy
plus pelvic lymphadenectomy within 6–8 weeks from NACRT completion. Pathological
response to treatment was evaluated on surgical specimens. Complete pathological re-
sponse (pCR) was defined as absence of any residual tumour after treatment at any site;
microscopic response (pR1) as persistent tumour foci of maximum dimension inferior to
3 mm; macroscopic response (pR2) as persistent tumour foci with maximum dimension
exceeding 3 mm [27].

2.3. Image Analysis

MRI for staging was acquired according to local institutional diagnostic protocols
without injecting contrast agents. Acquisition parameters adopted in the MR protocol are
reported in Table 2.
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Table 2. Magnetic resonance imaging (MRI) acquisition parameters used in the MR clinical protocol adopted for axial (AX),
sagittal (SAG) and coronal (COR) acquisitions.

AX T1-W AX T2-W SAG
T2-W

AX
OBLIQUE
T2-W (Per-
pendicular
to the Long
Axis of the

Cervix)

COR
OBLIQUE

T2-W
(Parallel to
the Long

Axis of the
Cervix)

AX
ABDOMI-

NAL
T2-W

AX
OBLIQUE
DWI (= Ax

Oblique
T2-w)

Sequence FSE FRFSE FRFSE FRFSE FRFSE FRFSE- XL EPI
Echo time (ms) 16 85 85 85 85 84 Minimum

NEX 2 2 2 4 4 1 6
Repetition time (ms), TR 470 4500 4500 4500 4500 1850 5425

No. of sections 30 30 26 16 16 48 30
Receiver bandwidth (kHz) 31.25 31.25 41.67 41.67 41.67 41.67

Echo train length 3 26 15 26 26 17
Field of view (mm), FOV 24 24 24 22 24 46 28
Section thickness (mm) 4 4 4 3 4 5 4
Section spacing (mm) 0.5 0.5 0.4 0.5 0.5 1 0.5

Matrix size 448 × 288 384 × 256 384 × 256 384 × 256 384 × 256 256 × 256 128 × 128
b Value (s/mm2) — — — — — — 800
Phase direction A/P A/P S/I UNSWAP UNSWAP R/L R/L

The gross tumour volume (GTV) was contoured on the axial T2-weighted MR images.
GTV was manually contoured in consensus by two radiologists, experts in gynaecological
imaging, using a radiotherapy treatment planning system (TPS) (Eclipse, Varian Medical
Systems, Palo Alto, CA, USA).

The segmented images were then processed using MODDICOM, an R library designed
to perform radiomic analysis. Before starting the radiomic analysis, image resolution was
homogenised and all MR images were resampled to a value of spatial planar resolution
equal to 0.548 × 0.548 mm2 [28,29].

2.4. Feature Extraction

Once resampled, MR images were processed using the Laplacian of Gaussian (LoG)
or the intensity based (IB) image filter. The LOG filter was applied varying the σ parameter,
which is a measure of filter width, in the range 0–4.2 mm with steps of 0.35 mm (13 steps in
total). Regarding the IB filter, a preliminary normalisation of the pixel intensities inside the
region of interest (ROI) was performed, using the first and 99th percentile of ROI histogram
grey levels as extremes. Pixel clusters were then identified considering two threshold levels
(lower and upper level), defined as percentages of the maximum intensity level [30].

The IB filter was applied considering all the possible combinations of thresholds for
levels ranging from 0% to 100% by 10% steps (for 55 combinations).

The feature extraction was then performed on the filtered images considering the GTV
as ROI: in particular, first-order features were calculated on the images processed with the
LOG filter, while fractal, textural and morphological features were calculated considering
the MR images processed using the IB filter.

Considering the application of all the filters used, a total of 1889 radiomic features
were extracted. The computer code used for image analysis can be found at https://
bitbucket.org/kboadmin/lacc_radiomics/src/master/ (accessed date: 24 February 2020),
while the comprehensive list of the features calculated is reported in the IBSI initiative [31].

2.5. Statistical Analysis

The two patient cohorts were merged in a unique training set: feature selection and
model training were carried out following an iterative method, ad-hoc developed for
this study.

https://bitbucket.org/kboadmin/lacc_radiomics/src/master/
https://bitbucket.org/kboadmin/lacc_radiomics/src/master/
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This process consisted in a first step of feature selection and in a following step of
classifier selection.

Concerning the feature selection step, an eight-fold cross validation was performed:
the merged dataset was randomly divided in eight folders and eight different datasets
were analysed, considering each time seven of the eight folders defined.

For each combination of the seven folders selected, Wilcoxon Mann–Whitney (WMW)
test (or Student’s t-test depending on normality of the data distribution) was computed to
investigate the ability of each radiomic feature in predicting the defined outcome at the
univariate analysis.

Features, resulting at least five times on the eight folder combinations significant
(p < 0.05), were selected for correlation analysis, which was computed calculating the
Pearson correlation coefficient (PCC). The final set of significant features was composed
by features showing a correlation value inferior to 0.6, to remove features with moderate
mutual correlation [32].

Regarding the model selection, 15 different classifiers were trained considering signifi-
cant features selected by previous analysis.

Table 3 reports the extended names and the caret method of each of the tested models.

Table 3. Models’ legend, extended name and method used to calculate the classifier using the caret
package of the R statistical software.

Model Extended Name Caret Method

C5TREE Decision tree C5.0Tree
DT Decision tree C5.0

HDDA High dimensional discriminant
analysis hda

KNN K-nearest neighbours kknn
LOGREG Logistic regression glm

NB Naive Bayes nb
NN Neural network nn

PAM Nearest shrunken centroids pam
PDA Penalised discriminant analysis pda
PLS Partial least square pls

RF_DEF Random forest rf. Default parameters
RF_GRID Random forest rf. Grid search

RF_RAND Random forest rf. Random search
SDA Shrinkage discriminant analysis sda
SVM Support vector machine svmPoly. Polynomial Kernel

Even in this case, the merged dataset was partitioned in eight folders and each
classifier was trained on seven of the eight folders considered, using the remaining folder
as validation set. For each classifier, eight receiver operating characteristic (ROC) curves
were calculated, one for each unique combination of folders. The area under these ROC
curves (AUC) was considered as metric to identify the best model. The model selection
process was repeated three times, modifying the random selection of the cases in the eight
folders. At the end of the three iterations, 24 ROC curves were analysed for each classifier,
and the mean AUC value with the corresponding standard deviation was calculated. The
model showing the highest mean AUC value on the three iterations of the cross-validation
analysis was considered as the best classifier [33]. The best classifier was then trained on
the whole dataset to obtain the final predictive model. The scheme of the entire workflow
adopted for the features and model selection is reported in Figure 1.
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Figure 1. Scheme of the workflow used for features and model selection.

The performance of the final predictive model was quantified in terms of sensitivity,
specificity and accuracy at the optimal discriminative threshold, which was identified
through the Youden Index calculation, as reported in similar experiences [34,35].

All analyses described were performed using the caret package of the R software
(version 3.4.3, 2017; www.r-project.org (accessed on 25 February 2021)).

3. Results

In total, 183 patients were included in the analysis. Out of 156 patients of cohort A,
66 (42%) pCR, 45 (29%) pR1 and 45 (29%) pR2 were observed. In cohort B (n = 27), we
observed 8 (30%) patients with pCR, 9 (33%) with pR1 and 10 (37%) with pR2. The feature
selection process identified 19 radiomic features significant at the univariate analysis.

Starting from the identified significant features, a total of 15 predictive models were
calculated: Table 4 reports the mean AUC values obtained on the 24 iterations performed
during model selection for 15 classifiers considered, together with the standard devia-
tion (SD) value, which was considered as measurement of the variation in predictive
performance of the elaborated models.

www.r-project.org
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Table 4. Mean and standard deviation (SD) values obtained in terms of area under the receiver
operating characteristic curve (AUC) on the 24 iterations performed for model selection.

Model Mean AUC SD (AUC)

RF_DEF 0.80 0.08
RF_GRID 0.79 0.11

RF_RAND 0.79 0.07
NN 0.73 0.11

SVM 0.69 0.11
PLS 0.68 0.10
PDA 0.68 0.11
DT 0.67 0.13
NB 0.67 0.09

SDA 067 0.10
KNN 0.66 0.09

LOGREG 0.66 0.12
PAM 0.64 0.12

HDDA 0.63 0.09
C5TREE 0.63 0.11

The AUC of the ROC curves calculated on the 24 iterations performed for the 15 classifiers
considered in the work are provided as Supplementary Materials.

The model showing the highest performance was the random forest (RF_DEF), which
was initialised with the following default parameters: number of trees (ntree) equal to 500,
and number of variables randomly sampled as candidates for each split (mtry) set equal to
4, which corresponds to the square root of variable numbers for classification. The final
ROC curve model trained on the whole dataset is reported in Figure 2.
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Figure 2. Receiver operating characteristic (ROC) curve obtained considering the random forest
model initialised with default parameters.

The RF_DEF model showed a mean AUC of 0.80 ± 0.8. The best cut off threshold was
equal to 0.69 which corresponds to a Youden Index of 0.486.
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At the best cut-off threshold, the present model reports a specificity of 98.4% and a
sensitivity of 50.2%, with an overall accuracy of 74.5%.

The importance of the single variables included in the random forest model is reported
in Figure 3.
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Figure 3. Importance of the parameters included in the model.

The most important feature of the model is the cluster shade calculated on the grey
level co-occurrence matrix, after the application of the LOG filter on the raw images with a
σ value of 0.7.

The other two features showing an importance higher than 50% are the maximum
fractal dimension calculated on the subpopulation from 20% to 60% of the maximum pixel
value and the kurtosis calculated on the raw MR images.

4. Discussion

Although NACRT followed by surgery is not a care standard for LACC patients in
many centres, this approach achieved encouraging results with high rates of pathologically
assessed complete response and local control rates with acceptable toxicity [8,9].

In this context, a tool to identify specific subgroups of patients who can benefit from
a given treatment is necessary to achieve a fully personalised clinical approach. Several
studies aimed to predict and monitor treatment response and clinical outcome analysing
functional imaging like MRI or 18-FDG PET-TC in CC patients [23,36–38]. Literature sug-
gests that metabolic response in post-therapy PET-CT correlates with failure patterns [36]
and can predict OS in patients treated with CRT [37]. Some studies focused on temporal
changes in tumour heterogeneity patterns on functional imaging such as dynamic contrast
enhanced MRI, DWI [23] and FDG PET-CT [38] performed before, during and after CRT
course to correlate imaging with treatment response outcomes and to define prognostic
factors. In particular, tumour volume and ADC value were the most important prognostic
factors [12–14,22]. However, the role of functional imaging is still under investigation
in literature.

Promising evidence supports the use of delta radiomics assessment in predicting
outcomes (e.g., response to therapies) for treatment personalisation [23,39]. To the best
of our knowledge, this study represents the first radiomics based pCR prediction model
on pretreatment staging MRI in patients affected by locally advanced cervical cancer
undergoing NACRT. The choice of pCR as outcome parameter represents the strength of
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this study; in fact, surgery following CRT allows verifying the pathological response to
the treatment. The majority of studies on response prediction in CC is focused on early
treatment response assessment during or soon after NACRT.

The proposed model allows to predict the probability of achieving pCR using pretreat-
ment imaging to allow clinicians the possibility to better plan the entire treatment using
routinely acquired imaging for disease staging.

Clinicians can also consider new protocols of dose escalation or dose-de-intensification
based on single patient’s predicted outcomes, in order to ensure a response to treatment.
This approach could significantly save resources in the management of this patient popula-
tion optimising treatment workflows based on outcome prediction.

The technical robustness of the model selection procedures and the encouraging
AUC values (0.80) of the random forest method proposed represent an innovative tool for
clinical decision support and oncological treatment personalisation. However, one of the
main weaknesses of this predictive model is the low degree of direct interpretability of the
individual features extracted from the MR images; the proposed method acts as a black-box,
limiting the clinical interpretability of the key parameters on which this model is based.
The poor interpretability of the model elaborated represents one of the main limitations
of the modern techniques of image analysis, such as machine learning and deep learning:
several experiences have already highlighted these limitations and new research fields are
currently aiming to explain the artificial cognitive processes of these techniques [40,41].

Another limitation is represented by the lack of an external validation dataset, which
is partially overcome by means of cross-validation: further studies aiming to externally
validate this model are recommended in the future.

The present study was performed considering only T2-w MR images, as it was the
only imaging modality available for all patients included in the study. Other MR imaging
modalities, such as DWI or dynamic contrast enhanced sequences, were object of radiomic
analysis in some experiences [20,23,42,43], and not considered in other studies based only
on T2-w MR image analysis [42–44].

Future developments of this innovative approach can therefore take into account ex-
ternal validation cohorts with images acquired on scanners provided by different vendors,
as already performed for other tumour sites like rectal cancer [45]. Moreover, the inclusion
of DWI ADC-maps segmentation should be evaluated in future studies in order to find
other radiomic features useful for pCR prediction [46,47].

These innovative imaging approaches could play a fundamental role in hybrid mag-
netic resonance guided radiotherapy (MRgRT) treatments, optimising radiotherapy plan-
ning of radiomics’ analysis output through the quantification of feature changes throughout
treatment. Taken this into consideration, new dose delivery and targeting paradigms could
be proposed and better treatment outcomes may be achieved, as already demonstrated in
rectal and cervical cancer [48,49].

In conclusion, this radiomics based prediction pCR model can be useful to guide
clinicians in their decision-making process, tailoring treatment according to response
prediction in the frame of fully personalised clinical management of cervical cancer care.
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LACC Locally Advanced Cervical Cancer;
pCR pathological complete response;
NACRT neoadjuvant chemoradiotherapy;
MRI magnetic resonance imaging;
AUC area under the curve;
CC cervical cancer;
FIGO International Federation of Gynecology and Obstetrics;
CRT chemoradiotherapy;
DWI diffusion-weighted imaging;
ADC apparent diffusion coefficient;
PTV planned target volume;
GTV gross tumour volume;
TPS treatment planning systems;
LoG Laplacian of Gaussian;
IB intensity based;
ROI region of interest;
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Ntree number of trees;
Mtry number of variables randomly sampled as candidates for each split;
OS overall survival;
MRgRT magnetic resonance guided radiotherapy.
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